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REMARKS ON DUALITY FOR 03A3-GROUPS

I. PRODUCTS AND COPRODUCTS

by Denis HIGGS1

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXX-1 (1989)

RÉSUMÉ. En 1957, Wylie a introduit la notion de 1-groupe
(i.e., un groupe abelien avec certaines sommes infinies)
afin d’obtenir une th6orie de dualite satisfaisante pour
diff6rents groupes de chaines infinies. Dans cet article, on

rappelle les th6or6mes de Wylie relatifs a cette dualite,
en les g6n6ralisant de différentes faqons: on consid6re un
certain £ "tight" d6fini sur les ensembles Hom(A,B) de

£-groupes, ainsi que les E ponctuels, ou "lax", etudies par
Wylie; on prouve que le produit de £-groupes r6flexifs

est toujours r6flexif, quelque soit le £-groupe B utilise

pour former Hom(-,B); et on donne des conditions I-

th6oriques sur B qui assurent que les r6sultats de Wylie
pour Hom ( - , T) , ou T est le groupe cercle, s’6tendent a

Hom(-,B).

1. INTRODUCTION

In 1957, Wylie [6] introduced the notion of an abelian

group fortified by a non-finite additive structure in order to be

able to define duality relations of the familiar kind between va-
rious chain and cochain groups on infinite cell complexes. Let us
call such an enriched abelian group a Z-group (12,31; in 161, the

term "congregation" is used). It turns out that if A and B are

E-groups then the set Hom(A,B) of all £-preserving functions
from A to B can be given the structure of a £-group in two

natural ways, leading to £-groups [A,B]t and [A,B]1 (t = "tight",
I = "lax") .

Let T be the circle group with its usual £-structure (see
below). Wylie proved that the dual with respect to T of the O-
product of a family of £-groups is isomorphic to the

O*-product of their duals and deduced that C-products of re-

1 Research supported by NSERC Grant A-8054.
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flexive £-groups are reflexive provided that O**=O (O-products
are defined in §2, and O* in §4; Wylie considered only lax

duality but his arguments go through essentially unchanged for

tight duality).

In the present paper, the notions which we shall need are
introduced in §2; in §3 we prove that all products (in the usual
sense) of reflexive £-groups are reflexive irrespective of the Z-
group B with respect to which duals are taken, and we recall

Wy lie’s Theorems in §4, showing that the circle group T may be
replaced by any 7--group B satisfying a certain condition (W) in

the case of tight duality and a somewhat more restrictive condi-
tion (W’) in the case of lax duality.

I thank Bob Par6, who independently had the idea of using
axiomatic infinite sums to handle infinite-dimensional duality and
whose remarks to me thereon encouraged me to return to the

topic, and also Shaun Wylie, without whose pioneering work the
present paper would largely evaporate.

2. PRELIMINARIES.

A 7--group is an abelian group A together with a class S
of series (that is, families) of elements of A and a function 7-:

S -&#x3E; A satisfying axioms (£1) to (£4) below. First we mention so-

me terminology and notation.
A series (x;: i E I) which is in S is said to be summable

and 7-(xi: i E I) is its sum. As is customary, we write £1EXi, or
just £-ixi, for both the series (Xi: i E I) and, if it is in S, for its

sum. A subseries of a series (X1: i E I) is a series of the form

(xi:i E J) where JCI.
Here are the axioms:

(£1) Each finite series £-ni E x i is summable and its sum =

x1+...+Xn; .

(L2) If a series can be partitioned into finitely ma-
ny summable subseries then the whole series

is summable and its

(E3) If a summable series is partitioned into arbi-

trarily many finite subseries , then the seri es
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is summable and its sum = Y-i,,Ixi;
J

(£4) The summability of a series is unaffected by the in-
sertion/deletion of arbitrarily many zero terms.

This definition of 7--group is equivalent to Wylie’s but is

more general than that used in 121 and [3]; I am indebted to

Isidore Fleischer for suggesting the present version to me.

A series £iXi on a 7--group A will be said to be subsum-
mable if it is a subseries of summable series on A; this is easi-

ly seen to be equivalent to saying that the series £i xi + £i(-&#x3E;xi)
is summable (necessarily to 0).

Many 1-groups (but not all) are obtained as follows

(Bourbaki [I], Chapter III, §5). Let A be a Hausdorff abelian

group (that is, a topological abelian group whose topology is

Hausdorff). Then a E-group structure on A is defined by putting
£iEI Xi = X iff, for each neighborhood U of 0 in A, there exists a

finite subset Io of I such that

X - £iEI1 Xi E U for every finite subset I1 of I containing Io .

In particular, let A be a metric abelian group. Then, as is well-

known, we may suppose that the topology on A is determined

by a norm on A, that is, a function !!-!!: A-&#x3E;R such that
(i) !!x!! &#x3E;0 for all X E A, with equality iff X = 0,

and (ii) !!X-Y!!  ll x ll + ll y ll for all X,.J’ E A.

It is convenient to record here the easily verified fact that if

sn,x;, is a series on A for which £n ll Xn ll  oo then £n Xn is sub-

summable in A (of course, it is not true in general that if

2..n ll Xn ll  oo then 2..n"Y n is actually summable in A, nor that if

£nXn is summable then £..n llXn ll oo).
A morphism from a 2..-group A to a 7--group B is a func-

tion f: A-&#x3E; B such that

in B whenever

The set Hom (A, B) of all morphisms from A to B is evidently an
abelian group under pointwise addition and it can be given the

structure of a 7--group in two natural ways: Let fi, i E J, and f
be in Hom(A,B). Then we say that £jfy = f in the tight sense if

in B whenever in A,



48

and we say that in lax sense if

in B for all X in A.

It is straightforward to verify that both of these definitions lead
to £-group structures on Hom (A, B). For the tight £, we denote
the resulting 1-group by [A,B]t - or, more usually, by just C A,
B] - and for the lax £, by [A,B]I. We refer to [A,B] and

EA,Bli as the tight and lax B-duals of A respectively. We dis-
cuss tight duals primarily; most of the results are of a suffi-

ciently general nature that they carry over unchanged to the lax
case, the proofs going through largely or completely unchanged
too.

The internal hom functors C-,-J and [-, - ]I enjoy various
predictable properties. For example, a morphism f: A-B induces
morphisms

and similarly for [-, -]I ( (2.2) below provides another example).
Of particular relevance here are the natural morphisms

defined by n(X)(f) = f(x) for all x E A and f E [A,B]; likewise
for C-,-Jl . If n: A-&#x3E; EIA,B1,B] is an isomorphism then we say
that A is tightlj, B-reflexive, the lax version being defined simi-
larly. The following proposition is well-known, and very elemen-

tary.

(2.1) If A is tightly,- B-reflexive then [A,B] and all retracts
of A are tightly B-reflexive, and likewise for I ax reflexl vi ty.
PROOF. (1)A,B,B] is the inverse of n [A,B],B. If f: R-&#x3E;A and g:
A - R are morphisms such that go f =1 then

is the inverse of 1)R,B .

Let Ak, k E A, be a family of 1-groups and let C be an

ideal on A such that every finite subset of A is in C (that is, 0
is a dense ideal on A). Then the C-product f1°A, (more preci-
sely, II Ok E Ak) of the A k ’s is the 7--group constructed as fol-

lows : the elements of II OAk are those elements x of the carte-
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sian product II k E AAk with

and (ii) Ui supp(xi) E O.

This notion is due to Wylie (161, §5). For each g EA, define

morphisms

by

respectively, and if fk: Ak-&#x3E; Bk, kEA, is a family of morphisms,
define the morphism

If we take C = P(A) = the power set of A then II OAk, along with
the 1tÀ ’s, gives the product IIAX of the Ak’s in the category of

7--groups, whereas if we take C = PfinA) = the ideal of all finite

subsets of A then IIO Ak, along with the sx’s, gives the copro-
duct IlAÀ of the Ak’s in this category (Brunker 121, 4.2.2,
4.2.3).

The following isomorphisms are obtained by taking
(D = Pfin(A) in the isomorphisms of 161, Theorem 4, and (4.2) be-
low. We discuss them here because they are needed in §3 and
because, in contrast to the case of arbitrary (D, they hold for all

£-groups B.

an d similarly for [-, - ] 1-
PROOF. We discuss the tight case only; the proof for the lax
case is similar. Define

by I

and define

by
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We show that f and g are morphisms which are inverse to each
other.

To verify that f is a morphism, note first that, for z

in [II Ak,B], .

for each

, that is,

in [AÀ,B] for each in Aa . Then

in UAX and thus, since in

in B. But this last equation says that

as required.
In the definition of g, the equation

makes sense since the sum on the right-hand side is essentially
finite (supp(X) is finite). To see that
in II Ak, so that

and (ii) Ui supp(xi) is finite.

Now for each X, j,(k) E [Ak, B] and hence

by (i). By (ii), there are only finitely many values of X for which
the series £i-y(k)(xi(k)) is not identically zero, from which it

follows that

In view of the equation we obtained a moment ago, the right-
hand side here equals £ky(k) (X(k)). We thus have

as desired. To verify that g is itself a morphism now amounts
to showing that if £jYj=Y in II [Ak, B] and £ixi= x in II Ak then
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in B; the argument is nearly the same as the one just given and
we omit it.

Finally, to see that f and g are inverse to each other,
first let z E [UAk, B]. Then for each x EIIAX we have

and so go f = 1. On the other hand, if y E II [Ak, B}] then for each
X E A and a E Ak we have

and so f o g = 1.

3. REFLEXIVITY OF PRODUCTS.

Let Ak, k E A, and B be £-groups. Since TT k o s. =1 for each
X, it follows from (2.1) that if RIAX (or any IIOAk) is tightly
(laxly) B-reflexive then so is every A,. The main purpose of
this section is to prove the converse result. (Thus we obtain an

analogue for 7--groups of the Theorem of Kaplan [4] that the

product of topological abelian groups, each of which is reflexive
in the sense of Pontrjagin duality, in itself reflexive.) As in the

previous section, we discuss only the tight case in detail.
If Ak, k E A, and B, C are £-groups, the morphisms

determine a morphism

in terms of elements,

for all

(3.1) The following diagram commutes:
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PROOF. Let V e A. Then in the diagram

where v stands for IInk, the outside square commutes by the

naturality of [-,-], the square labelled (2) commutes by the de-
finition of v , and the triangle labelled (3) commutes by the de-
finition of 8. It follows that TT03BC o v o n = TT03BC o V for all 03BC E A, and

hence vo n = v (as can also be verified by a direct calculation, of
course).

(3.2) For any 7--group B, products of tightly B-reflexive
7--groups are tightly B -refl exi ve, and like wise for Jay reflevivity.
PROOF. Let Ak, k E A, be tightly B- reflexive. Referring to the
commutative triangle (1) in the preceding result, we note that

since each 1)À is an isomorphism, so also is V = IInk. Hence from
8 o q = v we obtain

so that

Suppose we have proved, as we shortly will, that 8 is a mono-

morphism in the category of £-groups. Then from the last of
the above equations we will have no v-1 0 v=1 which, coupled
with v-1 ovo n=1, implies that q is an isomorphism, hence that

II Ak is tightly B-reflexive.
That v is indeed always a monomorphism is a consequence

of (3.4) below, for which we need:
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PROOF. We have to show that if in RIAX then

in flAx , that is,

But Hence

is injective.

PROOF. Let v(h) = 0, h E E[IIAk,B],C]. For any z E [IIAk,B] we
can write z = £k z o ex by (3.3) and hence have

by the elementvvise definition of 8 given above. Therefore we
obtain h (z) = 0 for all z E [IIAk, B] and so h =0. Thus 8 is in-

jective.

It is not generally true that coproducts of B-reflexive’ I-
groups are B-reflexive in either the tight or the lax sense and
we now give an example to show this. Again we prove things
explicitly for tight duality only.

Let Zp be the additive group of p-adic integers and let Zp
carry the 7--structure associated with the usual metric topology
on Zp. 

(3.5) Zp is tightly and laxly’ Zp -refl exi ve.
PROOF. The morphism

a: Lp-&#x3E;[Zp,Zp] defined by a(y)(x) =yx
is an isomorphism, with a-1 given by a-1 (f) = f (1) (this is

already well-known to be the case when [Zp,Zp] is interpreted
in the purely algebraic sense). It follows that

is also an isomorphism.
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(3.6) The coproduct of countable many copies of Zp is

neither tightlJ’ nor laxly Zp-reflexive.
PROOF. Let rl and U denote the product and coproduct respecti-
vely of countably many copies of’ the E-group indicated. By
(2.2). we have

Si nce we obtain [ so that

it is then easily checked that

Therefore, if we define z E [IIZP,ZP] by z(X)=£np X(n), there
is clearly no y E UZp with y(Y)= z. Since y is thus not an iso-

morphism, neither is q.

Let Ak, k E A, and B be 2:-groups. The above example
shows that, even if each Ak (and hence also II Ak) is tightly B-
reflexive then it is not necessarily the case that [IIAk, B]
= U [Ak, B]. Specifically, the proof of (3.6) shows that the cano-
nical morphism

(defined as in the proof of (2.2)) is not surjective. In fact,

[UZp,Zp] and U[Zp,Zp] are not isomorphic at al 1: the former is

tightly Zp-reflexive by (3.2) and (2.1), whereas the latter, being
isomorphic to U Zp, is not.

4 . WYLIE’S RESULTS ON T-DLIALITY.

Wylie considered duality with respect to the circle group
T. where T carries the 1-structure associated with its standard
metric topology. In order to isolate what appear to be the es-

sential 1-theoretic properties of T in this context, we introduce
the following two conditions on an arbitrary £-group B:

(W) For all bn E B, n E N, with bn+0 for all n, there exist

rn E IN, n E N, such that Lnrnbn is not subsummable in B;
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(W’) For all bmn E B, m,n E N, with bnn + 0 and bmn = 0 for
m &#x3E; n, there exist rm E N, m E IN, such that £n(£nm=1r m bmn) is

not subsummable in B.

In the case of a Hausdorff abelian group B, these two

conditions are related to the condition that B is a NSS group, a

topological group being an NSS group if there exists a neigh-
bourhood of the identity containing no non-trivial subgroup (see,
for example, Morris [51, Chapter 8; NSS = "no small l subgroups").

(4.1) (a) (W.) implies (W) for all 7--groups.
( b ) Ever)’ NSS Hausdorff abelian group satisfies (W’) .
(c) A n1etric abelial1 group satisfying (W) is an NSS

group.

PROOF. (a) Take bnn = bn, bmn = 0 for m + n.
(b) Let B be an NSS Hausdorff abelian group and let U

be a symmetric neighbourhood of 0 containing no non-trivial

subgroup of B. Let V be a symmetric neighbourhood of 0 such
that V + V c LI . We first show that if a, b E B and b # 0 then the-

re exists an r E N such that a + rb E V. Suppose that this does

not hold. Then for all r E N,

and so the cyclic subgroup generated by b is contained in U, a

contradiction. Now let bmn E B be as in (W’). Then there exists

an r 1 E IN such that r 1 b11 t. V, there exists an r2 E N such that

r1 b 12 + r2 b22 e V, and so on. It follows that £n(£nm=1rm bmn) is 
not subsummable in B.

(c) Let B be a metric abelian group and suppose that

for every E &#x3E; 0 there exists a non-trivial subgroup of B contained
in

Let Ln£n be a convergent series of positive numbers and for

each n let bn be a non-zero element of B such that the cyclic
subgroup generated by bn is contained in UEn Then, for all

choices of rn E IN, Lnrnbn satisfies

and is thus subsummable in B. Hence B does not satisfy (W).
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I have been unable to determine whether (W) always im-

plies (W’).

In order to formulate Wylie’s main results concerning
duality, the following notion is needed: if C is a dense ideal on

a set A then 0* consists of all subsets Y of A such that Xny
is finite for all XE 0; O* is evidently itself a dense ideal on A.

(4.2) Let Ax, X E A, and B be 7- -groups and let 0 be a

dense ideal on A.

(a) If B sa tisfi es (W), then I

(b) If B satisfies (W’) then I

PROOF. An instance of this result has already been proved in

(2.2), namely that with O = Pfin(A) (for which no condition on B
was required). The proof in the general case follows the same

lines, in particular the formulae defining the morphisms

are exactly the same as before. It will be sufficient to mention
how the relevant steps in the earlier proof are to be augmented;
again we consider explicitly only the case of tight duality, with
one exception. The specific points which require attention are as
follows.

(i) If z E [IIOAk, B] then f(Z) E II O*[Ak,B]: we now require
supp (f(z)) E O*. Suppose that this is not so, let X E O be such

that X n supp (f (z)) is infinite, and let kn, n E IN , be distinct ele-
ments of Xflsupp(f(z)). Then for each n, f(z)(kn) + 0 and hence
we may choose an E Akn such that bn = f(z) (kn) (an) + 0. Since B

satisfies (W), there exist rn E IN such that Lnr nbn is not sub-

summable in B. However

and so whence

is summable in B, a contradiction.

we require that
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(also that £k f(zk) (X) = f(z) (k) EKf(zk)(k)= f(z)(k) for all X - for this, the pre-

vious argument applies unchanged). Suppose that we have

Uk supp (f (zk)) E O and let X E O be such that

x n Uk supp(f(zk)) is infinite. Since each Xk = Xn supp (f(zk)) is

finite, we can find distinct kn and distinct Xn, n E N, such that

kn E Xkn for each n. Then f (zkn) (kn) + 0 and we may choose

such that

By (W), there exist rn E IN such that £nrnbn is not subsummable
in B. However,

and so £nEkn(rnan) is summable in f1°A,, which, coupled with
the fact that 2:kZk is summable in [IIO Ak, B], means that

£kn zk(Ekn(rnan)) is summable in B. Since £nrn bn is a subse-

ries of this last series (take k = kn), we have a contradiction.

(iii) If v E IIO*[CAk, B] and x E n0AÀ’ then the sum

£ky(k)(X)(X)) (used to define g) is essentially finite: supp (y) E O*
and supp (X) E O implies supp (Y) n supp(x) is finite.

(iv) If Y E f1°*lA, ,Bl and £i xi = x in IIOAk then there are
only finitely many values of X for which the series

£iy(k)(xj(k)) is not identically zero:

implies supp(y) n Ui SUPP(xi) is finite.

in B: as in the proof of (2.2), this step is nearly the same as
(iv) and we omit it again.

The details of the argument for the lax case (b) are simi-

lar, except for step (ii) above, where the fact that now £kzk = Z
is only given to hold in the lax sense necessitates the use of
the stronger condition (W’) in place of (W), together with the

more delicate argument employed by Wylie, in order to obtain

Uk supp(f(zk))E O*. Suppose that Uk supp (f(zk)) e O* and let

X, Xk, kn and kn be as in (ii) , where we now insist in addition

that km e UnmXkn for each m (this is possible since each Xk
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is finite whereas UkXk is infinite). Then

Again choose a n E Akn so that f (zkn) (kn) (an) + 0. Then the ele-

ments bmll = f (zkn)(km) (am) of B satisfy the hypothesis of (W’)
and so there exist rm E N such that £n(£nm=1rmb) is not

subsummable in B. However, evaluating £kzk at the element

IV Of f1°A, shows that £kzk(£m Er ma m) is

summable in B. Since this last series has

as a subseries, our sought-for contradiction is obtained.

(4.2) has the following corollaries.

(4.3) Let Ak, k E A, and B be £ -groups and let O be a

dense ideal on A such that O** = 4).

( a ) Let B satisfy (W). If each Ak is tightl.y B-reflective
then so is IIOAk.

(b) Let B satisfi- (W’) . If each Ak is laxly B-reflexive then
so is IIOAk.
PROOF. It is sufficient to note that

where the first isomorphism here is the appropriate version of

the isomorphism g of the preceding proof and the second is in-

duced by the isomorphism f of that proof (and where [-.-] is

read as C-,-Jl for (b) ).

(4.4) Let Ak, X E A. and B be !-groups.

(a) Let B satisy- (W). Then [IIAk,B] = II[Ak,B] and if
each Ak is tightJ.,v B-refle,,1(ive then so is IIAk.

(b) Let B satisw (W’). Then [IIAk B]I = II[Ak, B]I and if
each A, is laxly B-refle,,1(ive then so is UAX.
PROOF. The isomorphisms here follow from (4.2) and the fact
that P(A)* = Pfin(A): the reflexivity statements follow from
(4.3) and the fact that Pfin(A)**= Pfin(A).
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