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A CONSTRUCTIVE "CLOSED SUBGROUP THEOREM"

FOR LOCALIC GROUPS AND GROUPOIDS

by Peter T. JOHNSTONE

CAHIERS DE TOPOLOGIE

ET GI:OMI:TRIE DIFFÉRENTIELLE

CA TÉGORIQUES

VOL. XXX-1 (1989)

ReSUMe. Cet article introduit de nouveaux concepts de

fermeture et densite poux les sous-locales de locales sur

une base locale B. Si B est le locale terminal, ces notions
se r6duisent classiquement aux notions usuelles, mais

elles sont differentes de mani6re constructive. En les

utilisant, nous montrons une version constructive du th6o-
reme selon lequel tout sous-groupe localique d’un groupe
localique est ferme, et une extension de ce r6sultat aux

groupoides localiques.

INTRODUCTION.

The "closed subgroup Theorem" for localic groups, first

proved in [2] (and subsequently, by a shorter proof, in [6]), as-
serts that any localic subgroup of a localic group G is closed as
a sublocale of G. It is well known that this result, as ordinarily
stated, is not true constructively (we shall give a counterexam-
ple shortly); in view of the importance of a constructive ap-

proach in locale theory, as emphasized in 151, this has for some

time been a matter for regret (to the present author, at least).

Recently, it has emerged that the fault lies in the notion of

closedness: in this paper we shall introduce a new notion of
"weak closedness" for sublocales, which reduces to the usual

notion in the presence of the Law of Excluded Middle (but is

otherwise strictly weaker), and we shall prove

THEOREM 1. Let H be a localic subgroup of a localic

group G , and suppose H is an open locale. Then H is

weakl_y closed in G.

Since classically every locale is open, this theorem genui-
nely reduces to the main theorem of [2] and [6] in the presence
of classical logic. However, it yields new results even in the
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classical context, about "fibrewise localic groups" (that is, group
objects in Loc/B, where B is a fixed base locale), and hence
should illuminate the relation between fibrewise localic and

fibrewise topological groups (cf. [3]) in much the same way as

the original closed subgroup theorem illuminates the relationship
between localic and topological groups.

This seems an appropriate point at which to give our pro-
mised example to show why the closed subgroup theorem, as

usually formulated, cannot be constructively true. Let B be a

base locale (which may as well be spatial, so long as it is not

discrete), and G a nontrivial discrete group. Then (the sheaf of
sections of) the projection GxB-j B is a group object in the

topos Sh(B) of sheaves on B, and we may think of it as a dis-

crete localic group. Let U be an open sublocale of B which is

not closed, and let H be the open sublocale (GxU)u({e}xB) of

GxB. Clearly H is a subgroup of GxB in Sh(B), but if we regard
it as a (discrete) localic subgroup it is not closed, because clo-
sedness is "absolute" - i.e., it is preserved and reflected by the
equivalence between internal locales in Sh(B) and external lo-

cales over B.

On the other hand, there is clearly a sense in which H is
closed in GxB, at least if B is spatial: it is closed in each fibre
of the projection GxB-&#x3E; B, since these fibres are discrete. Our

first aim in this paper is thus to develop a notion of "fibrewise
closedness" (and a corresponding notion of fibrewise denseness)
for locales over an arbitrary base locale B; our definition of
weak closedness will then be as fibrewise closedness over the

terminal locale fl. (There is a certain spurious generality about
developing fibrewise closedness over an arbitrary base B, rather

than simply over 0, since the equivalence from locales over B to
internal locales in Sh(B) maps B itself to fl; but since we shall

require a number of results involving change of base, it will be
convenient to have the base locale explicitly present throughout
our arguments - in the first two sections, at least.)

Reverting to Theorem 1, it turns out that there is still

more that can be said, concerning localic groupoids: in view of
the recent interest in localic groupoids [10,11,12] arising from
the Joyal-Tierney representation Theorem [8] for Grothendieck

toposes, this result seems very likely to be of use in the future.

THEOREM 2. Let
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be a localic groupoid, and

a subgroupoid such that the domain map (or equivalently
the codomain map) H1 -&#x3E; Ho is open (i.e., H is a regular
localic groupoid, in the terminology of [9]). Then the in-

clusion Ht -&#x3E;G1 is fibrewise closed over Go X Go .

Theorem 1 is of course a special case of Theorem 2, in

which Go and Ho are both taken to be Q. However, we shall

give (in Section 3 below) a separate proof of Theorem 1, both in

order to motivate the argument employed in proving Theorem 2

and to emphasize the extent to which the proof of Theorem 1

follows exactly the same lines as the proof of the classical

result of [6]. The proof of Theorem 2 occupies Section 4; the

final section of the paper discusses other potential applications
of weak and fibrewise closedness, some of which will be inves-

tigated further in later papers.

The results described in this paper were obtained during
A. Kock’s visit to Cambridge in April- May 1988, and it is a plea-
sure to acknowledge the stimulation provided by conversations

with him, which contributed significantly to the paper’s final

form.

1. FIBREWISB DENSE AND FIBREWISE CLOSED INCLUSIONS.

Throughout this section we shall be working (constructi-

vely) in the category Loc/B of locales over a fixed base B; re-

sults which involve a change of base will be relegated to Sec-

tion 2. We begin with the definition of fibrewise denseness.

DEFINITION 1.1. Let

be an inclusion in Loc/B. We say f is B-fibrewise dense (or fi-
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brewise dense over B, or - if it is necessary to name the struc-

ture map A-&#x3E;B explicitly - fibrewise dense over g ) if the follo-

wing (clearly equivalent) conditions are satisfied:

(i) For every b E B, f*h*(b)= g*(b).
(ii) For every a E A and b E B,

(iii) The nucleus j = f* f* on A fixes all elements of the
form g*(b).

(iv) As a subset of A, A’ contains the image of g*.
In the case when B is the terminal locale n, we say that the

inclusion f is strongly dense. Note that this implies that f is

dense in the usual sense (i.e., that f* preserves 0); if we assu-
me classical logic, so that n = {0,1}, it is equivalent to ordinary
denseness, since the equality f*h*(I) = g*(1) holds automatically.

From condition (iv) of the definition, we immediately ob-
tain :

LEMMA 1.2. Anv locale over B has a smallest B-fibrewise dense
sublocale.

PROOF. The smallest B-fibrewise dense sublocale of (g: A-&#x3E;B) is

simply the intersection of all sublocales of A which contain the

image of g* (cf. [4], II 2.5 ). ·

The nucleus corresponding to the sublocale in Lemma 1.2

can be writtern down explicitly; it is the map

However, this explicit description does not appear to be of any

practical use.

LEMMA 1.3. Let j and k be nuclei on a locale A over B with

j &#x3E; k ,. so that we have a diagram
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Then d is B-fibrewise dense iff the nuclei j and k agree on the

image of g .
PROOF. Suppose jg* = kg*. Then for any b E B we have

whence

since e* is injective. The converse is similar. D

COROLLARY 1.4. Given a diagram

there is a unique largest sublocale of A (the B-fibrewise closure
of Ay) which contains A j as a B-fibrewise dense sublocale.
PROOF. By Lemma 1.3, finding this largest sublocale is equiva-
lent to finding the smallest nucleus on A which agrees with j at
all elements of the form g*(b). But meets in the lattice of nu-
clei are computed pointwise ([4], II 2.5), so we simply take the
meet of all nuclei which agree with j on the image of g*. D

It is clear from the construction that the B-fibrewise clo-
sure operation is idempotent.

DEFINITION 1.5. We say a sublocale of a locale over B is B-fi-
brewise closed if it coincides with its B-fibrewise closure. In

the particular case B = n, we say the sublocale is weakly closed
(and refer to the weak closure of an arbitrary sublocale).

I have not been able to find an intrinsic characterization
of the nuclei on A which correspond to B-fibrewise closed su-
blocales. By analogy with the classical case, one might expect
the B-fibrewise closure of a nucleus j on A to be the map

a b avj(g*g*(a)),
and it is not hard to show that if this map is a nucleus then it

is the right one; but there seems to be no reason why it should
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be a nucleus in general. However, this lack of an explicit for-
mula turns out to be no barrier to further progress, as the fol-

lowing results show.

LEMMA 1.6. Given a commutative diagram

with f B-fibrewise closed and f’ B-fibrewise dense, there exists
a unique 1: C-A’ with fl = h and If’ = h’.

PROOF. First we consider the case when both h and h’ are in-

clusions. Let j,k be the nuclei f*f* and h*h* respectively; then
we need to show that j s k. or equivalently that j = j A k . But
since j is B-fibrewise closed, it suffices by the construction of
1. 4 to show that j and j &#x3E; k agree on elements of the form

g*(b). Now the fact that f’ is B-fibrewise dense means that, as

a subset of C, C’ contains all elements of the form h*g*(b);
and since C’ C A’n C as a subset of A, this means that

kg*(b) E A" for all b, or equivalently jkg*(b)= kg*(b). But this

clearly implies jg*(b)  kg*(b), so the result is proved in this

case.

In the general case, let 

and

be the image factorizations of h and .h’, and let f ": D’ - D be
the map induced by f and f ’ (note that f " is an inclusion, sin-

ce if"= fi’ is). It suffices to show that f" is B-fibrewise den-

se, since then we can apply the previous argument to f and f " .
But we have

since q is an epimorphism
since f ’ is fibrewise dense

since q’ is an epimorphism. ·



9

COROLLARY 1.7. B-fibrewise closure is functorial on the full

subcategory of (Loc/B)2 whose objects are inclusions over B..

COROLLARY 1.8. B-fibrewise closed inclusions are stable under

composition and pullback in Loc/B .

PROOF. Both assertions follow easily if we form the fibrewise
closure of the composite or pullback and then apply Lemma 1.6
to the appropriate commutative square. ·

It is immediate from Definition 1.1 (i) that B-fibrewise
dense inclusions are stable under composition; but we should

not expect them to be stable under arbitrary pullback, since this

is not true for the classical notion of denseness. However:

LEMMA 1.9. B-fibrewise dense inclusions are stable under pull-
back along open maps.
PROOF. Consider a diagram

where f is B-fibrewise dense, h open and the square is a pull-
back. Then h’ is open, and the Beck condition h* f* = f’* h’*
holds for the pullback square, so we have

CoROLLARY 1.10. B-fibrewise closedness is reflected under

pullback along open surjections, i.e., given a diagram
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in which f ’ is B-fibrewise closed, h is an open surjection and
the square is a pullback, we may conclude that f is B-fibrewise
closed.

PROOF. By Corollary 1.8 and Lemma 1.9, the B-fibrewise closure
of f is preserved under pullback .along h ; so its dense part
pulls back to an isomorphism. But h is an epimorphism, so

pullback along it reflects isomorphisms. ·

LEMMA 1.11. Let

be a B-fibrewise dense inclusion,. Then

(i ) g is epimorphic iff h is.
(ii) g is open iff h is.

PROOF. ( i ) It is clear that g must be epimorphic if h is; con-

versely, if g is epimorphic (i.e., g* is injective), then h * is injec-
tive since f* h* = g*.

(ii) Suppose h is open. Then h* has a left adjoint At, so

g* = f* h* has a left adjoint g! = h! f*. Moreover, for any a E A

and b E B, we have

since f* preserves finite meets

by Frobenius reciprocity for h

so Frobenius reciprocity holds for g. Conversely, if g is open,
let us define ht=g!f*, where g! is the left adjoint of g*. Then
for a’ E A’ and b E B we have

so ho is left adjoint to h*. And once again Frobenius reciprocity
for h follows from the corresponding condition on g, since

PROPOSITION 1.12. Let
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be the B-fibrewise closures of two inclusions in Loc/B, and

suppose the locales A’ and C’ are open over B . Then A" x B C" is

the B-fibrewise closure of A’xBC’ in AXBC.
PROOF. The inclusion A"xBC" -&#x3E; AXBC may be obtained by
composing pullbacks of the inclusions

A" -&#x3E; A and C" -&#x3E; C

and so is B-fibrewise closed by Corollary 1.8. Similarly,
A’ x B C’ -&#x3E; A" x B C" is the composite of the pullbacks of

A’ -&#x3E; A" and C’ -&#x3E; C"

along the maps
A" x B C’ -&#x3E; A" and A" x g C" -&#x3E; C "

respectively, and these are open maps (the latter by an applica-
tion of Lemma 1.11 (ii)); so A"XBC’ -&#x3E; A"XBC" is B-fibrewise
dense by Lemma 1.9. ·

COROLLARY 1.13. Let T be a finitary algebraic theory; let (g:
A-B) be a T-algebra in Loc/B , and let A’-&#x3E;A be a sub-T-al-

gebra such that A’ -&#x3E;B is open. Then the B-fibrewise closure of
A’ in A is also a sub-T-algebra.
PROOF. To define the operations of T on the fibrewise closure,
combine Proposition 1.12 with the functoriality of fibrewise clo-

sure (Corollary 1.7). ·

It seems quite probable that the openness hypotheses in

1.12 and 1.13 could be considerably weakened, but I have not

been able to dispense with them entirely.

2. CHANGE OF BASE.

We begin this section with a further batch of characteri-
zations of fibrewise denseness, which perhaps help to justify the
name "fibrewise dense".

LEMMA 2.1. Given
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the following are equivalent:
(i) f is B-fibrewise dense.
(ii) The pullback of f along any closed inclusion B’ -&#x3E; B

is dense.

(iii) The pullback of f along any locally closed inclusion
B’ -&#x3E; B is dense.

(iv) The pullback of f along any locally closed inclusion
B’’-&#x3E;B is B’-fibrewise dense.

PROOF. (j) - (ii) : Let

Then the pullbacks of A and A’ along B’ -&#x3E;B are respectively

T (g*(b) c A and T (h* (b)) C A’,

and the direct image of the pullback of f is just the restriction
of f* to these subsets. So the assertion that this pullback of f
is dense says precisely that f*h*(b) = g*(b);

(iii)=&#x3E;(ii) is trivial; and (ii)=&#x3E;(iii) since a pullback of a den-
se inclusion along an open inclusion is dense.

(iv)=&#x3E;(iii) is again trivial; given that (iii) implies (i), (iii)=&#x3E;
(iv) follows from the fact that a composite of locally closed in-
clusions is locally closed. ·

PROPOSITION 2.2. Fibrewise denseness is a local property: i.e.,
given

and an open covering {bi l i eI} of B, f is B-fibrewise dense iff
its pullback- along each B,,(b,)-4B is B,, (b,) -fibre wise dense.
PROOF. One direction is contained in the implication (i)=&#x3E;(iv) of
Lemma 2.1. For the converse, we use condition (ii) of Definition
1.1: suppose given a E A and b E B with f*(a) h*(b). If we iden-

tify the open sublocale Bu(bi) not with its direct image but with
the principal ideal l (bi)C B (and similarly for its pullbacks
l (g* (bi)) C A and l (h*(bi)) C A’), we deduce from the fibrewise

density of the pullback of f that
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since we have

But

since the bi form a covering of B, so we deduce a s g*(b). m

LEMMA 2.3. Suppose given a diagram

(i) If f is B-fibrewise dense, then it is B’-fibrewise den-
se.

(ii) If f is B’-fibrewise closed, then it is B-fibrewise clo-
sed.

PROOF. (i) is immediate from Definition 1.1, and (ii) follows di-

rectly from (i). D

In particular, we note that a weakly closed inclusion is

B-fibrewise closed for any B over which it is defined, and a

B-fibrewise dense inclusion (for some B) is strongly dense.

LEMMA 2.4. In the diagram of Lemma 2.3, suppose 1 is either

an inclusion or a local homeomorphism. Then the converse im-

plications to those of 2.3 are valid.

PROOF. Once again, the implication for "fibrewise closed" fol-
lows from that for "fibrewise dense", so we need only discuss

the latter. If 7 is an inclusion then 1* is surjective, so

If 7 is a local homeomorphism, then B has a covering by open
sublocales which map isomorphically to open sublocales of B’,
and the result follows from Proposition 2.2. ·

CoROLLARY 2. S. If g: A -&#x3E; B is the composite of an inclusion and
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a local homeomorphism, then every sublocale of A is B-fibrewi-
se closed.

PROOF. By Lemma 2.4, it suffices to show that every sublocale
of A is A-fibrewise closed, or (almost) equivalently that the

only A-fibrewise dense sublocale of A is A itself. But this is

immediate from Definition 1.1. ·

PROPOSITION 2.6. (i) If f : X -&#x3E; A is B-fibrewise closed, then
the pullback of f along any B’ -B is B’-fibrewise closed.

(ii) Fibrewise closedness is a local property (cf. 2.2).

PROOF. (i) The pullback of f along B’ -&#x3E; B is B-fibrewise closed

by Corollary 1.8 ; so it is B’-fibrewise closed by Lemma 2.3 (ii).
(ii) Suppose {bi l i E I) is an open cover of B such that the

pullback of f along each Bu(bi)-&#x3E;B is Bu(bi)-&#x3E;fibrewise closed.

Then these pullbacks are B-fibrewise closed by Lemma 2.4 ; and
since the family of maps BU(bi)-&#x3E;B is jointly epimorphic, an

easy modification of Corollary 1.10 shows that f is B-fibrewise
closed. ·

Regarding the stability of fibrewise denseness under arbi-
trary change of base, we have

PROPOSITION 2.7. Let

be a B-fibrewise dense inclusion, and suppose g (or equivalently
h, by 1.11 (ii) ) is open. Then the pullback of f along an arbitrary
locale map 1: B’-B is B’-fibrewise dense.

PROOF. Form the diagram
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in which the parallelograms are pullbacks. Then g’ and h’ are

open, so in order to show that g’*= f’*h’*, it suffices to prove
the equality g"!= h’if’* of their left adjoints. Moreover, since

the left adjoints preserve joins, it suffices to verify that g’!(c)=
h’if’*(c) not for an arbitrary c E C but merely for an "open
rectangle" g’* (b") A I"*(a), since every element of C is a join of

such elements. And for such an element we have

by Frobenius reciprocity
by the Beck condition

since f is fibrewise dense

by the Beck condition
by Frobenius reciprocity

as required. ·

We conclude this section with a portmanteau result which
assembles all the justification we currently possess for the use
of the term "fibrewise", in the case of locales over a spatial ba-
se locale.

PROPOSITION 2.8. Let B be a spatial locale (equivalently, a so-

ber space); let

be an inclusion in Loc/B, and for each point p: -&#x3E; B write

fl,: A’p-&#x3E;Ap for the pullback of f along p. Assume classical

logic, i.e., that n = {0, 1}.
(i) If f is B-fibrewise closed, then each fp is closed.
(ii) Assume either that B is a TD-space (i.e., that all its

points are locally closed) or that h is open. If f is B-fibrewise

dense, then each fp is dense.
(iii) Assume one of the hypotheses of (ii) and additionally

that A (respectively, the B-fibrewise closure of A’ in A) is a

spatial locale. Then the converse of (ii) (respectivelj,, (i)) holds.

PROOF. (i) follows from Proposition 2.6 ( i ), and (ii) from either

Lemma 2.1 or Proposition 2.7.
(iii) Let A" be the B-fibrewise closure of A’ in A. Then,
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by the first two parts, each A"p is the closure of Al, in Ap. So
if each fp is dense, then each A’P -&#x3E; Ap is an isomorphism; to

deduce that A" -&#x3E;A is an isomorphism, we need to know that the
family of maps Al, -&#x3E;A, p E pt(B), is jointly epimorphic. But this
follows from the hypothesis that A is spatial, since every point
of A (lies over some point of B, and hence) factors through so-
me Ap-&#x3E;A. The proof of the converse of (i) is similar. D

It should be emphasized that the pullbacks considered in

Proposition 2.8 must be computed in Loc, and not in the cate-

gory of spaces: even if A and A’ are spatial, the pullbacks Ap
and A’p need not be spatial in general (though they will be if B
is a TD-space, since then they are locally closed sublocales of
A and A’).

3. PROOF OF THEOREM 1.

Let G be a localic group, and H a localic subgroup of G

which is open as a locale. By Corollary 1.13 the weak closure of
H is a subgroup of G, and by Lemma 1.11 (ii) it is open as a

locale. So, to prove Theorem 1, it suffices to prove that an open
localic group cannot have a nontrivial strongly dense subgroup.
As in C6J , we do this by proving

PROPOSITION 3.1. Let G be an open localic group, and let S

and T be ani, two strongti- dense sublocales of G. Then the

product S . T (i.e., the image of the composite

is the whole of G.

PROOF. As in 161, we form the diagram

where both squares are pullbacks (the left-hand one being the

definition of P). The image of the bottom composite may not be
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exactly S.TxG (since image factorization is not stable under

pullback in Loc), but it is surely contained in it; so if we can

show that the top composite P--jG is epimorphic, then we may
conclude that the diagonal 0 factors through S . TX G, which

forces S.T = G. But TT2 : GXG-&#x3E;G is epimorphic (being split by A),
so it suffices by Lemma 1.11 (i) to show that the inclusion:

P -GXG is G-fibrewise dense.
Now SxTxG is the intersection of the sublocales SxGxG

and GxTxG of GxGxG; pulling these back along the middle ver-
tical map, we deduce that P is the intersection of SXG- GxG

and

But the inclusions

are G-fibrewise dense by Proposition 2.7, and the "twist map"
GxG-&#x3E;GxG is an isomorphism in Loc/G; so P -&#x3E; GxG is G-fi-
brewise dense in Lemma 1.2. ·

On comparing the above proof with that given in [61 (par-
ticularly bearing in mind the result of Lemma 2.1), it will be

apparent how close the author came to discovering the concept
of fibrewise denseness (without, at the time, realizing it) while

writing 161.
We conclude this section by mentioning a couple of sim-

ple corollaries of Theorem 1. The first is the result on fibrewise

localic groups mentioned in the Introduction, which is obtained

by interpreting Theorem 1 in the topos Sh(B):

COROLLARY 3.2. Let (G -&#x3E; B) be a group object in Loc/B, and

let H be a sublocale which is a subgroup of G in Loc/B, such

that the composite H-&#x3E;G-&#x3E;B is an open map. Then the in-

clusion H -&#x3E;G is B-fibrewise closed..

Of course, Corollary 3.2 may also be regarded as a special
case of Theorem 2, since a fibrewise localic group is the same

thing as a localic groupoid "in which every morphism is an en-

domorphism", i.e., one whose domain and codomain maps are

equal. (Theorem 2 would produce the conclusion that H -&#x3E;G is

fibrewise closed over BxB, but since the structure map G -&#x3E; B X B
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factors through the diagonal B -&#x3E; BxB, the result as stated fol-
lows from Lemma 2.3 (ii) .)

The second corollary is, like Theorem 1 itself, the con-

structive version of a result which is well-known classically:

COROLLARY 3.3. Any point of a localic group is weakly cl osed.

PROOF. The identity point e: n -&#x3E; G is a localic subgroup, and n
is (trivially) an open locale; so e is weakly closed by Theorem 1.

But an arbitrary point g: n-&#x3E;G may be written as the composite

where 19 (left multiplication by g) is an isomorphism; so it too

is weakly closed. D

Classically, the closedness of the points of a localic

group is deduced from its regularity, which in turn follows from
its uniformizability (cf. 121). Constructively, localic groups are

uniformizable, but uniformizability does not imply regularity (as

usually formulated). We shall have more to say about this in

Section 5 below.

4. PROOF OF THEOREM 2.

The proof of the result for localic groupoids is similar to

that for localic groups, except that we have to make more use
of the base change results in Section 2. Let

be a localic groupoid, and let

be a subgroupoid (by which we mean that we have a functor
H -&#x3E; G whose components Ho -&#x3E; Go and H1 -&#x3E;G1 are inclusions, not

just monomorphisms) such that the domain and codomain maps
do , d1: H1 -&#x3E; Ho are open. The reader might expect us to begin by
considering the ( Go x Go )-fibrewise closure of H1 in G,; but it

seems impossible to prove that this object defines a subgroupoid
of G, unless we make the (unpleasantly restrictive) assumption
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that

is an open map. We shall therefore take a slightly different ap-
proach.

Let Hi -&#x3E;G1 be the fibrewise closure of H1 -&#x3E;G1 over

do: G1 -&#x3E; Go’ and Hr1-&#x3E;G1 the fibrewise closure of the same

inclusion over d1. Let H1 -&#x3E;G1 be the intersection of these

two sublocales; then the inclusion H1 -&#x3E;H1 is fibrewise dense
over both do and d1 (though not necessarily over

and H1 -&#x3E; G1 is (Go x Go )-fibrewise closed, since both

are (Go X Go )-fibrewise closed by Lemma 2.3 (ii). Now H-&#x3E;Go,
being an inclusion, is Go-fibrewise closed by Corollary 2.5; so

by applying Lemma 1.6 to the square

we deduce that do: G1 -&#x3E; Go restricts to a map HI1-&#x3E;Ho and hence
to a map H1-&#x3E;Ho . Similarly, d1: G1-&#x3E;Go restricts to a map

H1 -&#x3E;Ho . Moreover, the inclusion H1-&#x3E;H2 is fibrewise dense

over either of these maps H1-&#x3E;Ho , by Lemma 2.4, and so they
are both open maps by Lemma 1.11 (ii) .

LEMMA 4.1. R = (Ht =&#x3E; Ho ) is a subgroupoid of G.

PROOF. The composite

factors through H1 and hence through H1. Since the inverse

map i: G1 -&#x3E;G1 maps H, into itself, and interchanges do and d1,
it maps H’ into Hi and vice versa; so it maps H1 into itself.



20

Thus it remains to verify that the multiplication

maps H1 XGo H1 into H1 (note that, since Ho -&#x3E; Go is an inclu-

sion, we do not have to distinguish between fibre products over
Go and over Ho).

Now the inclusion

is fibrewise dense over the projection

by Lemma 1.9. And the inclusion

V u 

is fibrewise dense over TT1:H1xGo Hi -&#x3E;H1, by Proposition 2.7,
and hence over

by Lemma 2.3 (i). Putting these together, we see that

is fibrewise dense over do TT1, and so by Lemma 1.6 we deduce
that the composite 

factors through HI1-&#x3E;G1. By symmetry, it also factors

through H1r-&#x3E;G1, and hence through H1 -&#x3E;G1. D

Thus we may reduce the general case of Theorem 2 to the
particular case where Ho -&#x3E;Go is an isomorphism and the inclu-

sion H 1 -&#x3E;G1 is fibrewise dense over both do and d1 (so that,
by Lemma 1.11 (ii), these maps G1 -&#x3E;Go are both open); our aim

in this case is to prove that H1 is the whole of G1. To do this,
we use the following generalization of Proposition 3.1:

PROPOSITION 4.2. Let

be a localic groupoid such that do and d1: G1 -&#x3E; Go are open,



21

and let S and T be sublocales of G1 such that S -&#x3E; G1 is fi-

brewise dense over do: G1 -&#x3E; Go and T-&#x3E;G1 is fibrewise dense

over d1: G1 -&#x3E;Go. Then the composite

is epimorphic.
PROOF. By Lemma 1.11 (i), it suffices to show that the inclusion

is fibrewise dense over m, since m is clearly (split) epimorphic.
But S xGo T is the intersection of SXGo G1 and G1 xGo T; and we
have a diagram

in which both squares are pullbacks (the right-hand one because
G is a groupoid - [9] attributes this observation to D. Bourn),
so by Proposition 2.7, SXGo G1-&#x3E;G1xGo G1 is fibrewise dense

over m . Similarly, G1 x Go T-&#x3E;G1 xGo G1 is fibrewise dense over

m. So the result follows, as before, from Lemma 1.2. ·

We note that the proof of Theorem 2 just completed ac-
tually yields a slightly stronger conclusion about the inclusion

H1 -&#x3E;G1 than that stated in the Theorem: namely, if we have

any factorization

such that H1 -&#x3E; K is fibrewise dense over both do and

d1 : G1-&#x3E; Go, then H1 -&#x3E; K is an isomorphism. It is not clear
whether this extra strength is useful in practice. Note also that
in general, if we are given a diagram of the form
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the assertion that f is fibrewise dense over both B1 and B2 is

equivalent to saying that the maps f* h* and g* agree on all

"open rectangles" in B1 x B2 - but, because f* does not preserve
joins, this does not imply that the two maps are equal.

On comparing the proofs of Propositions 3.1 and 4.2, it

will be apparent that the former contains an unnecessary detour:
we could have proved directly that the inclusion S X T -GXG

is fibrewise dense over m: GxG-&#x3E;G, instead of first applying the
functor (-)xG and pulling back along the diagonal. We retained
the roundabout proof in 3.1 in order to emphasize the extent to
which it is the same as the proof in [6]; but when we came to
the groupoid case, it seemed better to omit the detour.

S. CONCLtIDING REMARKS.

It is clear that the "classical" notions of closedness and
denseness are not supplanted by the notions of weak closedness
and strong denseness introduced in this paper, since there are

many constructive contexts in which the original notions are

clearly the right ones to use (a case in point being Lemma 2.1

in this paper, where we definitely need to consider closed inclu-
sions B’-&#x3E; B rather than weakly closed ones). However, there

are many other areas within (constructive) locale theory where it

may be profitable to consider the effect of replacing the old

notions by the new ones.
One such area concerns the separation axioms. Although,

once again, the usual definition of regularity for locales (C4J, III

1.1) is clearly the "right" one in many contexts (for example, in

the presence of compactness), we have already mentioned the

unfortunate fact that, constructively, not every uniformizable
locale is regular in this sense. (Indeed, not every discrete locale
is regular: a discrete locale QX is regular iff the object X is de-
cidable.) We may now define a locale A to be weakly’ regular if
every open sublocale Au(a) is expressible as a join of open sub-
locales whose weak closures are contained in Aufa); it is then
clear from Corollary 2.5 that, at least, every discrete locale is

weakly regular.
We may also define a locale A to be weakly Hausdorff if

the diagonal A-AXA is weakly closed (if the terminology of [1]

and [4] were followed, this should be "weakly strongly Haus-
dorff", but this concatenation of adverbs is clearly unaccepta-
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ble). Note that if a localic group G is an open locale, then it

follows at once from Theorem 1 that G is weakly Hausdorff,
strengthening Corollary 3.3.

Further aspects of these weak separation axioms, and

their relations with uniformizability, will be investigated in a

subsequent paper [7].
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