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A SURVEY OF TOTALITY
FOR ENRICHED AND ORDINARY CA TEGORIES

by G.M. KELL Y

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XX VIT-2 (1986)

RESUME. Une V -categorie A est dite totale si son plongement
de Yoneda Y : A -&#x3E; [A °p, V ] admet un adjoint 6 gauche; on peut
exprimer cela sans mention explicite de [ A °p V J, qui en general
n’existe pas en tant que V -cat6gorie. La totalite n’a guere 6t6
6tudi6e sauf dans le cas V = Set des categories ordinaires locale-
ment petites. Nous d6montrons qu’une A totale jouit de propri6t6s
trbs fortes de compl6tude et de cocompi6tude, et nous donnons
une variete de conditions suffisantes pour la totalite. Meme dans
Ie cas classique V = Set, notre traitement est plus complet que
ceux donnes dans la litt6rature, et nos d6monstrations souvent

plus simples. Finalement, nous comparons (ce qui n’avait pas 6t6

fait, meme dans Ie cas V = Ab) la totalite de la V -cat6gorie A
et celle de sa cat6gorie ordinaire sous-jacente Ao .

1. INTRODUCTION.

The notion of totality for a category was introduced by Street
and Walters [19] in an abstract setting, wide enough to cover ordinary
categories, enriched categories, and internal categories. An ordinary
category A is said to be total if it is locally small - so that we
have a Yoneda embedding Y : A -&#x3E; [A°p, Set] where Set is the category
of small sets - and if this embedding Y admits a left adjoint Z. Total-
ity for these ordinary categories has been further investigated by Tholen
[22], Wood [24J, and Street [18J; it turns out to imply very strong
completeness and cocompleteness properties of A - not in fact
dual to one another - and yet to be a property enjoyed by all the

commonly-occurring categories of mathematical structures, and
in many cases by their opposite categories as well. It is accordingly
an important notion.

In the same way, a V-category A is said to be total if its Yoneda

embedding Y : A -&#x3E; EA’P, VI has a left adjoint; this can be so re-phrased
as to avoid mention of the functor-category [A°P, V ] which (since A
is rarely small) does not in general exist as a V -category - just as the
[A °p, Set ] of the last paragraph, not being locally small in general,
is not a Set -category.
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For instance, a locally-small additive category A - that is, an
Ab-category A where Ab is the closed category of small abelian groups
- is total if Y : A -&#x3E; [A’P , Ab] has a left adjoint, where EAOP , Ab]
is the (additive) category of additive functors AOP -&#x3E; Ab. This totality
of the additive A is not, on the face of it, at all the same thing as
totality of its underlying ordinary category A o - although in fact it
is equivalent to it, as we shall see. For more general closed categories
V , however, totality of a V-category A is not equivalent to that of

Ao ; for the good V that occur in practice, the former is stricly
stronger.

Our present concern is with totality in the V -enriched case,
which has not been further investigated since [191, except that a

forthcoming article [41 by Day and Street is set in this context.

Our aims are, first, to examine the completeness and cocompleteness
properties implied by totality; secondly, to give various sufficient con-
ditions for totality; and thirdly, to pursue the relations beween the

totality of a V-category A and that of its underlying ordinary categ-
ory A 0 . In the first two of these aims we are in large part generalizing
from ordinary categories to enriched ones the results of the authors
above. In these circumstances it has seemed to us proper to aim at
a certain completeness, giving proofs (often new and simpler) even of
those of their results peculiar to the case V - Set , so that the

present article can serve as a compendium of the principal results
on totality.

By this we mean totality as such . There is a more special aspect
of totality which does not concern us here. The total A is said to be
lex-total if the left adjoint Z of Y preserves finite limits. Lex-totality
is as rare as totality is common: Street U7] (see also [18]) has
shown that essentially the only lex-total ordinary categories are the
Grothendieck toposes. Similarly a lex-total additive category, at

least if it has a strong generator, is a Grothendieck abelian category.
(Note that lex-totality of the additive A , unlike mere totality, is quite
different from lex-totality of A 0.) The recent work [4J of Day and
Street referred to above is concerned with the intermediate case where
Z is required to preserve certain monomorphisms; this is still a com-

paratively rare property since it implies, as they show, that every
small full subcategory of A that is strongly generating is in fact
dense - which is false even for such well-behaved ordinary categories
as A b . 

2. PRELIMINARIES ON SMALLNESS AND LIMITS.

The notion of totality for A being expressible in terms of the exist-
ence in A of certain large colimits, questions of size play a central role
below. Accordingly we begin by making precise our conventions and

language regarding smallness for ordinary categories and for V -categ-
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ories. In doing so we also recall, for the convenience of readers less
familiar with them, the basic ideas on indexed limits in enriched

categories.

We take the view that the morphisms of any (ordinary) category
A constitute a set. Choosing some universe once for all, we call its
elements small sets, and write Set for the category of these. (In most
contexts it is harmless to call a set "small" if it is equipotent to

one in our universe; that is, if its cardinal is less than the inaccessible
00 associated to the universe.) Then the category A is locally small
if each hom-set A(A, B) is small; while A is small if it is locally
small and its set of objects is small - equivalently, if its set of

morphisms is small. The limit of T : K-&#x3E; A is a small limit if the

category K is small; and A is complete if it admits all small limits -

similarly for cocomplete. We use large to mean non-small, or sometimes

not-necessarily-small.
1-1

Our general reference for enriched category theory is the
author’s book [12]. We consider, as there, a (symmetric monoidal)
closed category V , whose tensor product, identity object, and internal-
hom are e, I, and [ , ], and whose underlying category Vo is locally
small, complete, and cocomplete. We further suppose that Vo admits
intersections of arbitrary families of subobjects, even large ones if
need be; this was not demanded in a2l but it is trivially satisfied if

Vo is wellpowered, and is true in all the examples of interest -
even the non-wellpowered one given by Spanier’s quasi-topological
spaces. As in [12], we write V : : V o -&#x3E; Set for the functor Vo (I, -);
and we write F : Set + Vo for its left adjoint, sending the set W to
the coproduct W.I of W copies of I. We are now concerned with

V -categories, V-functors, and V -natural transformations; of course,
a Set-category is the same thing as a locally-small ordinary category.

We recall from Section 1.3 of [12J that a V-category A gives
rise to an "underlying" locally-small ordinary category Ao with the
same objects and with

that a V -functor T : A -&#x3E;6 gives rise to an "underlying" functor

To : Ao -&#x3E; Bo where (To)AB = VTAB; and that the components of
a V-natural out : T -&#x3E; S constitute a natural transformation aa : T. - S,, .
The value To f of To at a morphism f of Ao is often written T f ;
especially so when T is the representable A (C, -) : A -&#x3E; V , so that
we have

in Vo. If A and B are V-categories and we speak of a functor T : A -&#x3E; B
we mean of course a V -functor; if we meant an ordinary functor
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T : A-&#x3E; B,,, we should say just this. Similarly, when a V -functor is
said to have a left adjoint, it is a V-left-adjoint that is meant; and
so on.

A V -category A is Small when its set of objects is small; when
V =Set, this agrees with the definition above. When A and B are V-

categories with A small, we have as in Section 2.2 of [12] ] the V -

category [A, B] of V-functors A -&#x3E; B , with V-valued-hom

then [A, BJ .(T, S) is just the set of V -natural transformations T - S.
When A is large, the end on the right side of (2.1) does not in general
exist for all T and S ; whereupon we say that [A, BJ does not exist as a

V-category. Yet this end may well exist for a particular pair T, S :

A -&#x3E; B (as it always does when B = V and T is representable); then,
even though there is no V -category [A , 8] , we say that [A , , 8](T, S)
exists jll V.

The limits appropriate to V -categories are the indexed ones of

[12J Chapter 3. Given V -functors

we recall that A admits the J -indexed limit fJ, Tt of T if, first,

exists in V for each A E A (which it surely does when K is small),
and if, further, the functor

admits a representation

We call the V -category A complete if it admits all small (indexed)
limits - that is, all those for which K is small. When V = Set this

definition of completeness does, by Section 3.4 of [12J, coincide with
that given above for a (locally-small) ordinary category A ; the point
is that the classical limit of T : K -&#x3E; A is then just the indexed
limit {Al, T} where Al : K -&#x3E; Set is the functor constant at 1, while
the indexed limit fJ, T is then the classical limit of T d : N -&#x3E; A where
d : N -&#x3E; K is the discrete op-fibration corresponding to J : K -&#x3E; Set .
Indexed colimits, and cocompleteness, are defined dually: it is conv-

enient to take as the indexing-type for a colimit a functor J : KOP - V
and then the J-indexed colimit J * T of T : K -&#x3E; A is defined by
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The V-category V itself is complete and cocomplete, and a functor-

category [A , B ] is complete or cocomplete if B is so, with limits or

colimits formed pointwise.

We recall finally from [12 J Chapter 3 that the concept of
indexed limit in the V -category A contains various particular limit-
notions as special cases. The end of T : M oP x M -&#x3E; A is the limit of T
indexed by Hom m M°P a M - V . The cotensor product X h B of X E V
and B E A , defined by

is the limit of B : I -&#x3E; A (where I is the unit V-category with one object
* and I(*, *) = I ) indexed by X : I -&#x3E; V . Given an ordinary functor
P : L -&#x3E; A 0’ a cone (aL:B -&#x3E;PL) is said to exhibit B as the (conical)
limit in A of P if each

is a limit-cone in Vo ; this implies that B is the limit of P in Ao,
and is implied by it if A is tensored (that is, admits tensor products
X x A for X E V and A E A ), or if V is conservative (that is, isomor-
phism-reflecting). So long as L is locally small, we have a free

V -category K= F_,, L on L ; and then the conical limit of P in
A is the same thing as the indexed limit { J, T } , where J : K -&#x3E; V

corresponds to 6 I : L + Vo and T : K + A to P : L -&#x3E; A o . Completeness
of A is equivalent to the existence of small conical limits and of co-
tensor products; by the above, it implies completeness of A 0 ; by
Proposition 3.76 of [12], it coincides with completeness of A 0 if V
is conservative and each object of Vo has but a small set of strongly-
epimorphic quotients (as, for instance, when V = Ab).

3. PRELIMINARIES ON FUNCTOR-CATEGORIES WITH LARGE DOMAINS

When V = Set, the functors A -&#x3E; B and the natural transformations
between them constitute a functor-category [A, B] even if A is large;
it fails to be a Set-category because it is not locally small, yet being
able to refer to it is a considerable convenience. It can of course be
seen as a Set’-category, where Set’ is the category of sets belonging
to some universe with ob A as an element. Similarly when V = Ab;
the additive functors A +B constitute an additive category [A, B ]
which, while not an Ab-category, is an Ab’-category where Ab’ consists
of the abelian groups in a suitable Set’. Similarly, too, for most other

concrete closed categories V that occur in practice; see Section 2.6
of [ 12 ]. In fact it was shown in Sections 3.11 and 3.12 of [12 ] that
we can, for any V , construct [A, B ] as a V’ -category where V’
is a suitable extension of V into a higher universe. While it is true that
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the results on totality below can be formulated with no reference to

[A, B ] itself, always being cast in terms of such [A, B] (T, S) as

exist in V , this is at the cost of some circumlocution: it is so convenient
to have an [A, 6] to refer to that we recall the relevant results
from a2l.

If Set’ is the category of sets in some universe containing (not
necessarily strictly) our chosen one, by a Set’-extension of V we mean

a (symmetric monoidal) closed category V’ with the following properties:
(i) the underlying ordinary category Vo of t" is ScL’ -locally-small,
Set’-complete and Set’-cocomplete, and admits arbitrary intersections
of monomorpn’sms; contains Vo (at least to within equivalence)
as a tull subcptenr-- .’.no the inclusion Vo -&#x3E;V’o preserves all limits

(small or large) that exist in Vo ; (iii) the symmetric monoidal closed
structure of 11 is the restriction of that of V’ . Then every V-category
can be seen 3s a V’ -category, and similarly for functors and natural

transformations. For V-categories A and B , to say that [A, B ] (T, S)
exists in V is - because Vo -&#x3E; Vo is fully-faithful and limit-preserving -
precisely to say that [A, B ] (T, S) exists in V’ and that its value there
lies in V . When ob A E Set’ , we have the existence in V’ of

[A, B ](T, S) for all T and S, and [A, B ] exists as a V’ -category.

If {Aa} is any set of V -categories, it is possible in many ways
to find an extension V’ of V with respect to which each Aa is

"small". One such extension that is always available - although
in many concrete cases it may not be the most natural one - is des-
cribed in Section 3.11 of [12]; we so choose the new universe that

ob Vo and each ob Aa lie in Set’ , and take Vo = [ Voop, Set’ ] with the
convolution symmetric monoidal closed structure. The modification
of this extension given in Section 3.12 of [12] is often more natural,
coinciding when Vo is locally presentable with the naive extension of

[121 Section 2.6; but for our purposes it is irrelevant which extension
we choose.

We emphasize that, having introduced V’ so as to give a meaning
to [A, B ] , we make no other use of V’ -categories. In particular,
when we speak of limits in a V -category A , we mean those indexed

by some J : K -&#x3E; V where K is a V -category. Recall from Section 3.11
of [12] that, given such a J and a V -functor T : K -&#x3E; A , we have
both the V-Iimit {J, T } and the V’-limit IJ’, T }, where J’ is the comp-
osite of J with the inclusion V -&#x3E; V’ ; but that there is no confusion
since these coincide, either existing if the other does. It follows that,
if the V -category B admits all limits (resp. colimits) indexed by such
a J, then [A, B ] - even when it exists only as a V’ -category -
admits J’-indexed limits (resp. colimits): if now the V -category C
is a full reflective subcategory of [A , B], it further follows that
C admits all J-indexed limits (resp. colimits).
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4. PRELIMINARIES ON MONOMORPHISMS AND GENERATORS.

The notion of a monomorphism in a V-category A , given by
Dubuc on page 1 of [6], was not used in the author’s book [12] ;
so we recall it here. A map f : B -&#x3E; C in A o is said to be a monomorphism
in A if each

is a monomorphism in the ordinary category V o. By the last paragraph
of Section 2 above, it clearly comes to the same thing to require that

be a pullback in A. By that same paragraph, then, a monomorphism
in A is one in A o, and the converse is true if A does admit pullbacks
(and thus if A is complete) or if A is tensored (and thus if A is

cocomplete); so it is true in particular when A is V or V°p (as well
as being trivially true for all A if V is faithful, and a fortiori if V is

conservative). Of course f is an epimorphism in A if it is a monomor-

phism in AOP, which is to say that each A(f, A) is a monomorphism
in V 0 .

If a family ( fx: B-&#x3E; C) of monomorphisms in A is such that the

diagram they constitute admits the (conical) limit

in A , we call the monomorphism f the intersection in A of the fX .
Again by the last paragraph of Section 2 above, this implies that f

is the intersection in A o of the fx , and is implied by it if A is

tensored or if V is conservative.

A small set G of objects of the V-category A is said to be a

generator for A if, for each A , B E A , the canonical map

is a monomorphism in Vo ; this clearly reduces to the usual notion of

generator (as given on page 123 of Mac Lane [14]) when V = Set , in
which case it may be expressed by saying that the functors
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are jointly faithful. (When the generator G has but one element G,
we also say that G is a generator for A. ) If A is cocomplete, the

codomain of (4.2) is isomorphic to A (SG A(G, A) m G, B) ; and, modulo
this isomorphism, cp is A( o-A, B) where

is the evident map. So G is a generator of the cocomplete A precisely
when each On is an epimorphism in A - which agrees with the definition
of generator given on page 82 of Dubuc [6J.

If A is complete or cocomplete, a small set of objects of
A that is a generator for A o is also one for A ; ; in more detail:

Proposition 4.1. A generator G for A 0 is also one for A if (1) V is

faithful, or (ii) A is cotensored, or (iii) A is cocomplete.

Proof. The image under V of the codomain of (4.2) is isomorphic to
TIG V 0 (A% G, A), A (G, B)). Suppressing this isomorphism, we have

commutativity in

where Y is the A 0 -analogue of cp and t is a product of instances of

Since Y is monomorphic, so is Vp ; whence (i) follows. As for (ii),
we have for each X E V commutativity in

where the isomorphisms are the canonical ones. Since Vcp is monomorphic,
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each Vo(X, cp) is monomorphic in Set , so that cp is monomorphic. For
(iii), recall from the last paragraph of Section 2 above that A o too is

cocomplete. If-F is the left adjoint of V, so that FW = W.I for W E Set ,
we have W.G :::: FW m G. In particular

It is easy to see that, if E : FV -&#x3E; 1 is the counit of the adjunction,
we have commutativity in

where TA is the A o-analogue of the o A of (4.3). So Gq is epimorphic
in A o because TA is so, and hence is epimorphic in the cocomplete A . 0

A generator G for A is not in general one for A o, even when A
is complete and cocomplete; the unit object I is always a generator
for the V -category V, but is one for Vo only when V is faithful.
However :

Proposition 4.2. If the tensored A has a generator G and the ordinary
category Vo has a generator H, the objects H 8 G for H E H and
G E G form a generator for A 0 .
Proof. Applying the representable V to the monomorphism (4.2) gives
a monomorphism

thus the functors A (G, -)o : A o-&#x3E; Vo are jointly faithful. Since the

functors Vo (H, -) : V 0 -&#x3E; Set are jointly faithful, so are the functors

Vo (H, A(G, -)o), and so too are their isomorphs A,,(H o G, -). 0

Remark 4.3. The closed categories V of practical interest all seem

to have generators for Vo ; this is certainly the case with all the

examples given in Section 1.1 of [12]. For such a V , the existence

of a generator for the cocomplete A is equivalent, by Propositions 4.1
and 4.2, to that of a generator for A o . To this extent, the following
Special Adjoint Functor Theorem for V -categories, which slightly
generalizes Theorem 111.2.2 of Dubuc [6], is no real advance on that
for ordinary categories, as given in Mac Lane [14J, from which it
follows trivially if A o , and not only A , has a cogenerator. We give it,
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nevertherless, so as to avoid the explir’lf t extra hypothesis that V 0
has a generator.

Proposition 4.4. Let the V-category A be complete, admit arbitrary
intersections of monomorphisms, and have a cogenerator. Then any
functor P : A -&#x3E; V that preserves small (indexed) limits and arbitrary
intersections of monomorphisms !s representable.
Proof. Since P preserves cotensor products, it suffices by Theorem
4.85 of EL2] to show that Po : Ao -&#x3E; Vo admits a left adjoint. (This
would be immediate from the classical Special Adjoint Functor Theorem
if A o had a cogenerator.) Write G for the cogenerator of A , so

that the o- of (4.3) now becomes a monomorphism

Given X E V and f : X-&#x3E; PA, and writing gG for the composite

we have a commutative diagram
r

where p is the evident map and B is the isomorphism expressing the
preservation by P of the product and the cotensor products. Since
P : A -&#x3E; V preserves monomorphisms, Po- A is monomorphic. That P.
has a left adjoint now follows by Day’s form ([3] Theorem 2.1) of the
Adjoint Functor Theorem. 0

We make no essential use of the notion of a strong generator
G for A , which occurs below only in counter-examples. We therefore
content ourselves with the simple definition of this given in Section
3.6 of [l2], which agrees in good cases with the stronger but more

complicated general definition. So the small set G of objects of A

is a strong generator when the functors A(G, -). : A. - V,, for G E G
are jointly conservative, meaning that f : A -&#x3E; B is invertible in A o
whenever each A(G, f) is invertible. If A is complete, a strong gener-
ator G is certainly a generator: the jointly-conservative A(G, -)o: A o -&#x3E; Vo
are jointly faithful since Ao has equalizers, so that the Vcp of (4.4) is

monomorphic, whence so too is the V. (X,p) of (4.5) and hence cp
itself. If A is cocomplete and G is a strong generator, each 0 A of (4.3)
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is a strong epimorphism in A o, by Proposition 4.3 of Im &#x26; Kelly
[10 J, if Ao admits all cointersections of strong epimorphisms or if

A o is finitely complete; so that then ug is a fortiori an epimorphism in
A o, and hence in the cocomplete A ; and once again G is a generator.
(The definition of strong generator used by Day and Street in [4J
is that aA be a strong epimorphism in A ; we have not spoken here of
strong epimorphisms in the V -category A , but for cocomplete A they
are in fact the same thing as strong epimorphisms in A o .)

Regarding G now as the name of the small full subcategory of
A determined by the objects of G, we recall from Section 5.1 of [12J
that G is dense in A if the functor

is fully faithful. A dense G is certainly a strong generator, since the
fully-faithful No sends f : A - B to the V -natural transformation with

components A (G, f) ; and it is also a generator, the (P AB of (4.2) being
the composite of the isomorphism

with the inclusion of this end into TTG [A (G, A), A(G, B)].

5. TOTALITY AND ITS CONSEQUENCES.

Definition 5.1. The V -category A is said to be total when it admits,
for each U : A OP - V, the U-indexed colimit U * ’A of 1 A : A -&#x3E; A .

This definition, which makes no reference to large functor-categ-
ories, is that used by Day and Street in [4 . However :

Theorem 5.2. L et V’ be any extension of V (in the sense of Section 3

above) such that [AOP , V] exists as a V’-category, and let

be the Yoneda embedding. Then A is total if and only if Y admits a
left adjoint Z . The value of Z is given on objects by ZU = U*% .
Proof. If we are to have an adjunction

the right side of (5.1) must exist in V , since the left side belongs to
V . When this is the case, we have the desired adjunction, by Section
1.11 of [12], precisely when
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is representable for each U, say as A (ZU, -). Since YA = A (lA. -, A),
to ask all this is exactly, by Section 2 above and (2.3) in particular,
to ask for the existence of ZU = U .. 1 A . 0

Since V is complete and cocomplete, so is any total A , by the
last paragraph of Section 3. However much more is true: a total
A admits, besides small limits and colimits, certain large ones. Our
results for limits and for colimits are not dual: we begin with the
latter. A total A admits by definition the large colimits U * 1 A’ but
we have a generalization of this :

Theorem 5.3. The following are equivalent:

(i) A is total;
(ii) A admits the colimit J *T , where J : K op-&#x3E; V and T : K -&#x3E;A,

whenever V admits the colimit J * A(A , T-) for each A E A.

Proof. A(A, T-) is the composite

where EA is evaluation at A. We use the observations and the language
of the last paragraph of Section 3 above. If each J * EA YT exists,
this is also J’ * EAYT, and the V’ -category [ A op, V ] admits the

colimit J’ *YT. When A is total, the left adjoint Z of Y sends this to

the colimit J’*ZYT in A , or equally J * ZYT ; which is J *T since

(Y being fully faithful) we have ZY= 1. For the converse, take

now

does exist in V , being UA by the Yoneda isomorphism. So U*lA
exists, and A is total. 0

Remark 5.4. Since J *A(A, T-) certainly exists when K is small, Theor-
em 5.3 contains the assertion that a total A is cocomplete.

The following corollary of Theorem 5.3 in the case V = Set expands
a remark of Walters [23J ; see also Wood [24].

Theorem 5.5. When V = Set the follwing are equivalent:

(i) A is total;
(ii) A admits the colimit of T : K - A whenever, for each A E A,

the set n (A /T) of connected components of the comma category
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A/T is small.

(iii) A admits the colimit of T: K + A whenever T is a discrete

fibration with small fibres.

Proof. Recall 1 from Section 2 above that colim T = A 1 * T ; so that

which by (3.35) of a2’j is TT (,A/11 ). So (i) implies (ii) by Theorem 5.3.

To give a discrete fibration T : K -&#x3E; A with small fibres is equally to
give a functor U : Aop -&#x3E; Set , whereupon 1T (A/T) is the small set

UA ; so (ii) implies (iii). In these circumstances U * lA = colim T by
(3.34) of U2J; so that (iii) implies (i) . 0

We now turn to limits in A, and begin by introducing some nomen-
clature. Extending to V -categories the term of Isbell [11], we call A

compact if U : Aop ~ V is representable whenever it preserves (as
every representable must) all those limits that exist in A °p . Recall
from the last paragraph of Section 3 that we consider only those limits
in A °p indexed by some J : K ~ V with K a V -category; so that,
taking V = Set, a locally-small ordinary category A is compact in
our sense if U : A OP - Set is representable whenever it preserves all
those lim T that exist in A °p where T : K ~ Aop has locally -small
domain K . This restriction to locally-small K is absent in Isbell’s

original definition; yet our definition is in fact equivalent to his. If
K is not locally small, we can factorize T into a P : K ~ K’ that
is bijective on objects and surjective on maps, and a T’ : K’ ~ A op

that is faithful. Now K’ is locally small since A°P is so, while T

and T’ admit the same cones, giving lim T = lim T’ if either exists.

Adapting to V -categories the language of Borgeret al. in [ 2J,
we call A hypercomplete if it admits the limit { J, T } whenever
the necessary condition, that the right side

of (2.2) exists in V for each A E A , is satisfied. That is to say, A
admits all such limits as are not excluded by size-considerations. Com-
pare this with the in-some-sense-dual (ii) of Theorem 5.3; while the
latter is equivalent to totality, we shall see that hypercompleteness is

strictly weaker. Note that, when V - Set , hypercompleteness of A
becomes the condition that T : K ~ A have a limit whenever K
is locally small and Cone(A, T) is small for each A E A . Again, the
restriction to locally-small K is missing in the original definition;
but, for reasons given at the end of the last paragraph, this does not

change the scope of the definition.

Our result on the existence of limits in total categories is the
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implication (i) =&#x3E; (iii) of the following theorem. The implication
(i) =&#x3E; (ii) is in [19], while the other implications, for ordinary categories,
are in [2].

Theorem 5.6. For a V-category A, each of the assertions below implies
the next :

(i) A is total.
(ii) A is compact.

iiii) A is hypercomplete.
(iv) A is complete and admits arbitrary intersections of monomor-

phisms.
(v) A is complete.

Proof. Given U : Aop ~ V , the colimit U * 1. that exists by Definition

5.1 when A is total is equally the limit {U, lAoP I in Aop. If U pre-
serves all limits that exist in A °p , it preserves this limit and is there-
fore representable by Theorem 4.80 of [12]. Thus a total A is compact.

Given J : K - V and T : K ~ A such that (5.2) exists in V for

each A E A , write U : AOP ~ V for the functor

sending A to (5.2). Since the representable A(-, TK) : AOP - V pre-
serves whatever limits exist, as does the representable [ JK, - ] : V ~ V ,
and since JK commutes with limits (see (3.20) of [12]), U preserves
whatever limits exist. If A is compact, U is therefore representable,
which is to say that {j T} exists; thus a compact A is hypercomplete.

A hypercomplete A is certainly complete, since (5.2) surely exists
in V when K is small. It remains to show that a hypercomplete
A admits arbitrary intersections of monomorphisms. Regard a family

as in (4.1) as a functor P : L --&#x3E; A a , where ob L = A +1 and 1- has,
besides identity maps, one map X - 1 for each X e A ; clearly L
is locally small. We saw in the last paragraph of Section 2 how to

express as an indexed limit J, T } the conical limit of P in A ; for
this J and T, it follows from (3.50) of [121 that (5.2) is the limit of

When the f l are monomorphisms in A , (5.2) does indeed exist in V ,
being the intersection in Vo of the monomorphisms A(A, f») - recall
from Section 2 that we are supposing Vo to admit all intersections of

monomorphisms. So the hypercomplete A does admit the conical limit

{J, T} of P, namely the intersection in A of the monomorphisms j . 0
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Remark 5.7. None of the implications in Theorem 5.6 can be reversed,
even for V = Set. (i) The following example of a compact A, with a
strong generator, that does not admit coequalizers and thus is certainly
not total, was pointed out by Tholen [22] . Ad6mek [1 ] exhibits a

monadic functor A ; B , where B is the category of graphs, such that
A does not admit coequalizers. Since B has a strong generator, so
has A . Moreover B , being locally finitely presentable, is total (as
we shall see below) and hence compact. The compactness of B and
the monadicity of A -&#x3E; B imply, as was shown by Rattray [15], the
compactness of A . (ii) Adgmek has communicated to the author the

following example of a hypercomplete A with a strong generator that
is not compact. P : Set +Set is the functor sending A to its set of

non-empty subsets, and an object of A is a set A with an action
a : PA -&#x3E; A satisfying o({a}) = a . (iii) The dual Grp°p of the category
of small groups is complete and (being wellpowered) admits all intersec-
tions of monomorphisms, but is not hypercomplete. Let T : K -&#x3E; Grp’p
be the inclusion of the discrete subcategory of all simple groups, and
let J = Al : K -+ Set. Then (5.2) is the set of inductive cones over T
in Grp with vertex A, which is clearly a small set; yet IJ, T}, which
would be the coproduct EK,KK in Grp, does not exist. (iv) If - is the
inaccessible cardinal associated to our universe, seen as the ordered
set (and hence the category) of all small ordinals, -PP is complete but
does not admit arbitrary intersections of monomorphisms.

Remark 5.8. When V = Set , the Rattray-Adamek-Tholen result of
Remark 5.7 shows that a compact category, unlike a total one,
need not be even finitely cocomplete. Isbell gives an example in 2.8
of [11] of a compact category that is cocomplete but lacks large co-
intersections even of strong epimorphisms.

Remark 5.9. A total category need not be hypercocomplete, even when
it has a small dense subcategory; for we shall see below that Grp ,
which by Remark 5.7 is not hypercocomplete, is total. The author does
not know whether a total category need admit arbitrary cointersections
of epimorphisms, or even of strong ones.

6. SUFFICIENT CONDITIONS FOR TOTALITY.

In accordance with the notation of [12], given T : K -+A we

write T : A -+ [K°P, V ] for the functor given by TA = A (T-, A).

Theorem 6.1. The V-ca tegory A is total i f and only i f, for some V-

category B and some extension V’ of V (in the sense of Section
3 above) such that [B°p , V ] exists as a V‘-category, A is equivalent to
a full reflective subcategory of [B op, V I .

Proof. "Only if" being immediate from Theorem 5.2, we turn to the
converse. Replace V’ if necessary by a further extension of V’
such that [Aop , V ] too exists as a V’ -category. We have a fully-faithful
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P : A -+ [Bop, V] with a left adjoint Q. Write y : B -+ [BOP, V
for the Yoneda embedding of B , retaining Y : A -[AOP , V] for

that of A, and set G - Q y: B -&#x3E; A . Then

so that

is given by
(BU)

Now we have

so that P has the left adjoint [G°p, 1]. Since both P and P have left
adjoints, so does PP ; but PP = Y since P is fully faithful, so that Y

has a left adjoint and A is total. 0

Corollary 6.2. (See Walters [23].) Any full reflective subcategory of
a total category is total. 0

Corollary 6.3. If A is total, so is [C, A ] for any small C.

Prflof. [ C, A ] is a full reflective subcategory of

Corollary 6.4. The V-category V is total.

Proof. Take A = [B°p , V ] in Theorem 6.1 where B is the unit V -cat-

egory I , so that [1°p, V ] = V . 0

Corollary 6.5. A cocomplete A with a small dense subcategory 8 is

total.

Proof. If K : B -&#x3E; A is the inclusion, K : A -&#x3E; BOP , V ] is fully faithful
since K is dense, and has the left adjoint - *K. 0

Remark 6.6. Those total categories that are full reflective subcategories
of some [B°p , V ] with B small are, by Propositions 5.15 and 5.11
of [12], precisely the cocomplete categories that have a small dense

subcategory. Since all locally-presentable categories satisfy these cond-
itions, both (see [8]) when V = Set and (see [13J) when V is locally
finitely presentable as a closed category, such categories are total.

Certainly all categories of finitary algebras, such as Grp, are total.
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There are of course reflective full subcategories of iB°P, Set],
with B small, that are not locally presentable: see Example 5.2.3 of

[7].

Whether a total category need have a generator seems to

be unknown; even for a lex-total category when V = Set (see E 171).
At any rate, we now turn to sufficient conditions for totality involving
the existence of a generator. First, Proposition 4.4 gives :

Proposition 6.7. A cocomplete category that admits arbitrary cointer-
sections of epimorphisms and has a generator is compact. 0

Whether such a category need be total is unknown; we do, however,
get totality if we strengthen the cocompleteness conditions to hyper-
cocompleteness, provided that Vo is hypercomplete. First:

Lemma 6.8. For any U : A OP - V and B E A, the set [,4)P, V ] o (U, YB)
is small if A has a generator G.

Proof. If a: U -&#x3E; YB is a V-natural transformation, write

for the composite of its component cxA : UA +A(A, B) with the mono-

morphism (p of (4.2), and

for the G-component of B A, noting that BGA is still V -natural in A.

To give the V-natural BG is equivalently to give maps

V -natural in A, and hence by Yoneda to give a map 6G : UG -+ A (G, B) .
Since Vo is locally small, there is only a small set of possibilities for
6G and hence for (BG ; since G is small there is only a small set of

possibilities for (3 ; since (p is monomorphic, oc is determined by (3,
and there is only a small set of possibilities for a . 0

Theorem 6.9. A hypercomplete category with a generator is total,
provided that Vo is hypercomplete.
Proof. By Definition 5.1, we need the existence in A of U * lA for

each U : A op -+ V; since A is hypercomplete, we have this if each

[A °p , V] ( U, YB) exists in V ; which is to say that the end
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exists in V.. By Section 2.1 of [12], this end is just a (large but loc-
ally small) classical limit in V 0’ representing the set of V-natural
transformations

so that, by the hypercompleteness of V 0’ it does exist if this set is
small for each X E V . But to give p is equally to give a V-natural

or an element a of [A°p , Vl.(X o U, YB) - which by Lemma 6.8 is
a small set. 0

Remark 6.10. For V = Set , this was observed by Tholen [22], but with
"cocompact" rather than "hypercocomplete". The hypercompleteness
of V 0 seems to be no real restriction in practice: we observed in Re-
mark 4.3 that Vo admits a generator in the cases of practical interest
and since it also admits in these cases all cointersections of epimorph-
isms, it is compact by Proposition 6.7. In fact, as we shall observe

below, we know of no practical case where V. is not total.

In the case V = Set , various partial versions of the following
go back to Isbell [11], B6rger et al. [2], and Tholen [22J :

Theorem 6.11. Let V 0 be hypercomplete. Then if a complete A admits
all intersections of monomorphisms and has both a generator and a

cogenerator, it is total and cototal.

Proof. Proposition 6.7 shows A to be cocompact; then Theorem 5.6
shows it to be hypercocomplete, and thus Theorem 6.9 shows it to be
total. Now Theorem 5.6 shows it to be hypercomplete, and so Theorem
6.9 shows it to be cototal. 0

Remark 6.12. This theorem provides us with many more examples of
total categories, going beyond those of Remark 6.6 where there
was a small dense subcategory. If V = Set and A is the category of
sets, or of topological spaces, or of compactly-generated topological
spaces (with no separation axioms), or of Spanier’s quasi-topological
spaces, 1 is a generator and 2, with its chaotic structure, is a cogener-
ator ; so that both A and A°p are total. The category of Hausdorff

spaces has no cogenerator, but is total by Corollary 6.2, being reflective
in the category of topological spaces. Again, the category of compact
Hausdorff spaces has a generator and a cogenerator, as does that of
Banach spaces and norm-decreasing maps, so that these too are

total and cototal. So is the category of pointed compactly-generated
topological spaces; here the discrete 2 is a generator, while the disjoint
sum of 1 (as base-point) and the chaotic 2 is a cogenerator. Moreover,
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any complete lattice (large or small, but if large admitting large
infima) is total : the empty G is both a generator and a cogenerator.

Taking V = Set , recall that a topological functor P : A -+ B is a

faithful one that admits initial structures in the following sense.

Given any family g x: B +PAX of maps in B, there is a family fB : A -+ AB
of maps in A with

with the property that, whenever y : PC -+ B is such that each gX y
is of the form P hB for some hB : C -+ AB , we have y= Px for some
x : C -+ A. Then it is easy to see that P admits final structures

as well, so that Pop : A°P +B°P too is topological; that P admits
left and right adjoints given by the discrete and the chaotic structures;
and that P creates limits and colimits. A category A is said to be

topological if i t admits a topological functor P : A + Set ; the first

four categories mentioned in Remark 6.12 are topological. The following
is a simple proof of a special case of a result of Tholen [22J ; for

the general case see Theorem 6.15 below.

Theorem 6.13. Take V = Set. If P : A -+ B is topological and B is total,
so is A.

Proof. We use the criterion of Theorem 5.5. Let T : K - A be such that
each TT(A/T) is small; we are to show that colim T exists, and it suffices,
since P creates colimits, to show that colim PT exists. Since B is total,
we have only to show that each 7T(B/PT) is small. Consider the family
(g: B -+ PTKg) of all maps with domain B and codomain of the form

PTK. Since P is topological, there are maps

It is clear that, if fg and fh lie in the same component of A/T, then
g and h lie in the same component of B/PT ; so that 9 |-&#x3E; f g induces
an injection TI(B/PT) -+ mAlT), and TI(B/pT) like 7T(A/T) is small. 0

Remark 6.14. This result gives still more examples of totality. The

category of topological groups (with no separation axioms) has neither
a small dense subcategory, nor a cogenerator; yet it is total, since its

forgetful functor to the category of groups is topological. Now
the category of Hausdorff topological groups, as a reflective subcategory,
is also total.

Tholen [2l ] defines the notion of semi-topological functor Q : C + B
and shows in Theorem 8.3 of [21] that Q is semi-topological if and

only if it is the restriction of some topological P : A -+ B to a full
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reflective subcategory C of A . Accordingly Corollary 6.2 combined

with Theorem 6.13 gives the full result of Tholen [22] :

Theorem 6.15. L et V = Set. 1 f Q : C -+ B is semi-topological and B

is total, so is C. 0

Remark 6.16. There is a different generalization of Theorem 6.13 due
to Wood [24], where the semi-topological Q is replaced by what he
calls a "total op-fibration" - a concept which, so far as the author

knows, has not been investigated further. By Example 4.4 of Tholen

[21 ], any monadic Q : A -&#x3E; Set is semi-topological, so that, as Tholen

points out in [22],

Theorem 6.17. The category of algebras for any monad on Set is
total. 0

Remark 6.18. The last result goes beyond Remark 6.6, since the categ-
ory of algebras need not be locally presentable when the monad lacks
a rank (that is, fails for each small regular cardinal a to preserve
a -filtered colimits).

Remark 6.19. Even in the case V = Set , the author does not know

whether, when T is a small finitely-complete category and A is

total, the full subcategory Lex [T, A] ] of [T, A ] given by the left-
exact functors is reflective and hence, by Corollaries 6.2 and 6.3,
total. It is certainly so if A has a small dense full subcategory G,
for then A is a full reflective subcategory of [Gop, Set] , and
we apply the usual arguments (say of [7]) to get reflectivity in

but these arguments seem to need the smallness of T x G°p .

Remark 6.20. For each of the examples of a (symmetric monoidal)
closed category V given in Section 1.1 of [121, Vo is total by Remark
6.6 or by Remark 6.12.

7. THE RELATION BETWEEN TOTALITY OF A AND THAT OF A o .
If the ordinary category A is to be total whenever the V-category

A is so, it follows from Corollary 6.4 that Vo must be total. In fact
this totality of Vo, which by Remark 6.20 is common in practice,
also suffices.

Theorem 7.1. L et V 0 be total. Then A o is total whenever the V-category
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A is total.

Proof. By Theorem 5.5 we are to show that P : L -+ A o admits a colimit
in A whenever L is a locally-small ordinary category and each

r(A/P) is small. The following argument relies heavily on the ideas in
the last paragraph of Section 2. It more than suffices to show that P

admits a (conical) limit in A . Let K be the free V -category on L ,
and let T : K -+ A and J : K op -+ V correspond respectively to P : L + A 0
and to AI : Lop -+ Vo ; so that the colimit of P in A is the same thing
as J *T, either existing if the other does. By Theorem 5.3, the
existence of J * T follows from that of each J * A(A, T-) : which is
the same thing as the colimit in V of A(A, P-)o : L + V 0 . Since V

is cotensored, the colimit of A (A, P-)o exists in V if it exists in Vo .
Because Vo is total, this colimit does exist in Vo by Theorem 5.5, if

each r(X/ A(A, P-)o) is small. The total and hence cocomplete A

admitting tensor products, to give a map X - A(A, PL) in Vo is to

give a map X o A -+ PL in Ao ; so that r(X/A (A, P-)o) is isomorphic to
1T((X v A)/P), which is small by our hypothesis on P. 0

It is certainly not the case in general that A is total when A o
is so. Let V be the closed category of small categories, so that V-

categories are 2-categories, and take for A the 2-category with two

objects A and B, with just one map f : A -+ B apart from identities,
and with A(A, B)(f, f) the infinite cyclic monoid, all other 2-cells

being identities. Then A o is the category 2 , which as a complete
lattice is total and cototal; yet A is not even complete, since the
cotensor product 2 r/B fails to exist.

It is otherwise when each component cx : FVX +X of the counit of
the adjunction F -f V is a coequalizer in Vo . (To require V to be
conservative is to ask somewhat less, namely that each E X be a

strong epimorphism; but in every example in Section 1.1 of [121
where V is conservative, the EX are in fact coequalizers.)

We use the following "adjoint-triangle Theorem", due indepen-
dently to Dubuc [5 ] and Huq [9] ; we provide a proof because the

published ones (see also Theorem 21.5.3 of Schubert [L6] and Corollary
7 of Tholen [20]) seem to be either unnecessarily complicated or

incomplete.

Lemma 7.2. Let P, Q, R be ordinary categories and W : P -+ Q and

V : Q -+R functors such that V has a left adjoint F , each component
c Q : FVQ -+ Q of the counit for which is a coequalizer, and such that
VW has a left adjoint G . Then W has a left adjoint if P admits co-

equalizers.

Proof. Write Q’ for the full subcategory of Q determined by the FR
for R E R . Then Q is the closure of Q’ under coequalizers, in the
sense of Section 3.5 of [12], since for any Q E Q the map EQ : FVQ -+ Q
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is the coequalizer of some pair x, y : S - FVQ and hence of

The functor

(where Set’ is the category of sets in a suitably large universe) is re-

presentable, since

Hence each Q (Q, W-) is representable, by Propositions 3.36 and 3.37
of [12], if P admits coequalizers. 0

Theorem 7.3. If each cx : FVX -+ X is a coequalizer in V 0 the V-cat-

egory A is total whenever A,, is so.

Proof. Write W : A 0 -+ [ A oop , V.] for the functor given by

By Section 1.6 of [12], the composite of W with

is the Yoneda embedding y : A 0 -+ [A°po , Set], which has a left adjoint
by hypothesis. Moreover [1, V] has the left adjoint

with counit [l,e]. The component of [1, E] at N : AgP -+ Vo is e N :
FVN -+ N. Since small limits and colimits in [A oop, Vo] are formed point-
wise, eN is the coequalizer of its kernel-pair; for the same is true of
each (EN) A = ENA. So, by Lemma 7.2, W has a left adjoint H, and we
have an isomorphism

natural in A. Now take N = Uo where U : AOP -+ V . Since each ex
is epimorphic, V is faithful; so that, by Section 1.3 of [12J, a V -natural
a : U -YA is the same thing as a natural a : Uo -+ (YA)o, giving

Recalling that Y. : Ao -&#x3E; [A°p , V 1 has YoA = YA, we see that we

have an isomorphism
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natural in A ; that is, that Yo has a left adjoint. Since V is conservative,
it now follows from Section 1.11 of [12] that Y : A -&#x3E; [A°P, V]
has a left adjoint, as desired. 0

Among examples of such V are pointed sets, abelian groups,
R-modules, and Banach spaces. The assertion of the Introduction,
that an additive A is total precisely when Ao is so, now follows from
Theorems 7.1 and 7.3.
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