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STRONG INFINITESIMAL LINEARITY, WITH APPLICATIONS TO
STRONG DIFFERENCE AND AFFINE CONNECTIONS

by A. KOCK and R. LA VENDHOMME

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXV-3 (1984)

Resume. Nous présentons ici diverses notions et constructions

appartenant à la theorie axiomatique de la G6om6trie Differen-
tielle Synthétique ; nous montrons qu’elles fournissent des demons-
trations simples et completement indépendantes des coordonn6es
de certaines égalités pour les connexions affines, et qu’elles per-
mettent de trouver un lien manquant pour relier ces connexions
aux "sprays".

1. The strong notion of infinitesimal linearity.

We work over a field k of characteristic 0, for simplicity. Recall
(from [4] Appendix A, say) that if R is a commutative k-algebra object
in a category E with finite inverse limits, then there exists a functor

(where FPk is the category of finitely presented commutative k -alge-
bras), which preserves finite inverse limits and takes k[X] to R ; these
two properties determine the functor up to an isomorphism. Since we
shall keep R fixed, we write Spec for Spec R .

Let W C FP k be the full subcategory consisting of Weil algebras
over k (cf. [4] 1 § 16, say). By an inverse limit of Weil Algebras, we
understand an inverse limit diagram in FP k , consisting of Weil algebras ;
or, equivalently, an inverse limit diagram in W, which is’ preserved by the
inclusion W C FP k (or equivalently, is preserved by the forgetful functor
from W to Sets, or to k-Vect , the category of vector spaces over k).

The contravariant functor Spec takes finite colimit diagrams to
limit diagrams, but not limits to colimits. However, it will be convenient
to make the following

Definition 1.1. A diagram in E that appears as Spec (= Spec R ) applied
to a finite inverse limit diagram of Weil algebras is called a quasi-co-
limit in E (relative to R).

The motivation for this definition is that if E is Cartesian closed
(which we henceforth assume) and if E , R satisfies the (Kock-Lawvere)
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Axiom ] W (cf. [4J I § 16), then R "perceives any quasi-colimit diagram
to be an actual colimit diagram" ; more precisely

Proposition 1.2. Suppose R satisfies Axiom lW. Then the contravariant
functor R’-’ : E + E takes quasi-colimit diagrams into limit diagrams.
And conversely, if a diagram of objects Spec(W) (W E W) is taken into a
limit diaram by R (-), then the diagram is a quasi-colimit, provided ,
r (R) = k.

(Here r: E -&#x3E; Sets denotes the global sections functor homE (1, -).)

Proof. The composite (covariant) functor

is, by Axiom 1 W, isomorphic to the functor Ra- ; this is the functor which
takes kn , with a k-algebra structure with structure constants Ypq £ k , 
into Rn E E, with k-algebra structure given by the same structure cons-
tants. This functor is easily seen to preserve those finite limits which
are preserved by Vli C FPk ; in fact, RI8- can be defined as an additive
functor from k-vect (= finite dimensional vector spaces over k ) to
the category of R-modules in E, and it is exact since short sequences of
vector spaces are split exact and thus remain exact upon application of
any additive functor.

To prove the converse, consider the composite functor

We have, for W E W, by Axiom lw and definition of Rl8I-, that

(using r(R) = k). Now let D be a diagram in W such that F-, ,5pec D is a
limit diagram. Then, since r preserves limits, r(RSpecD) is a limit in

Sets , and hence so is D itself, by (1.1). So D is a limit diagram of Weil
algebras, thus Spec(D) is a quasi-colimit. 0

Let us remark we do not have a converse Proposition : from "R( )
converts quasi-colimits into limits", we cannot conclude "R satisfies
Axiom 1W ". In fact, any reduced ring (= nilpotent free) in Sets will have
the former property.

The following general notion of infinitesimal linearity is essen-

tially the one first proposed by Bergeron [1 J, although we have simplified
his formulation. It is a strengthening of the notion "infinitesimal linear-
ity" first considered in [13] and [6]. It also implies the Wraith condition
("condition (8)" in D3], called Property W in [4], and thus also the Mi-
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crolinearity of [1] J. And it implies the Symmetric Function Property
(cf. [4J), the Iterated Tangent Bundle Property (cf. [2]), and many other
properties, one of which will be essential in § 2.

Definition 1.3. An object M e E is called infinitesimally linear (in the

strong sense) if the contravariant functor M"’ : E - E takes quasi-colim-
it diagrams into limit diagrams. ("M perceives quasi-colimits as actual
colimits".)

Thus, by Proposition 1.2, Axiom lw implies that R is infinitesimally
linear in the strong sense. Also, the class L of objects in E which are

infinitesimally linear in the strong sense is closed under all inverse limits,
and if X E E and M E L, then M E L . In particular, any "affine scheme"
Spec(A) (with A E FP k) will be in L . In any well-adapted model
for synthetic differential geometry, any manifold will be in L . For

R, this follows from Axiom lw and Proposition 1.2, and for other mani-
folds, the argument is then the same as the one given in [3], Theorem 4.
Finally, the proof of [6] of "6tale descent of infinitesimal linearity" goes
through for the strong notion.

In general, L will not be closed under formation of subobjects
in E . Even if E is a Grothendieck topos, we do not know whether L C E
is a reflexive subcategory.

2. The notion of strong difference.

As a first application, we shall introduce the notion of strong
difference, which in classical differential geometry was considered by
I. Kolar [9, 10], and E. White [14] (Theorem 2.7). All our considerations
are in a topos E with a commutative k-algebra object R, which
satisfies Axiom lw . We freely make use of the "set theoretic" way of

speaking about E (see e.g. [4], Chapter 2, for a justification), and also
of some of the standard notation of SDG. In particular, maps D -&#x3E; M
are called tangents, and maps DxD - M 2-tangents, cf. [8]. (They cor-
respond to the 2-sectors of [14].)

Let (DxD)VD C R3 denote the subobject

Then we have a commutative diagram



314

where D(2) and DxD are the usual objects with this name (cf. [4]
I § 6, say), and the un-named maps the inclusion ; cp and Y are given by:

The diagram (2.1) is actually a quasi-pushout : it suffices by the second
clause in Proposition 1.2 to test with R. By Axiom 1W, maps

are of the form

f(dl, d2, e) = a + b1 ,di 1 + b2.d2 + b.e + c.dl.d2 .

Using also Axiom lw to get standard form for maps

the result follows trivially.

Consider also the map

We consider in what follows an object M which is infinitesimally
linear in the strong sense. It therefore perceives (2.1) as a pushout. Thus
if t1, T2 : DxD -&#x3E; M are two 2-tangents which coincide on D(2) C DxD,
we get a unique

Definition 2.1. The strong difference of Tz and T2 denoted T2 *- Tj is the

tangent vector 1 o E: D -&#x3E; M.

Just as easily as for (2.1), one sees that the following diagram
(2.2) is a quasi-pushout

(with cp and E as above, and the un-named maps being given by 0). Thus,
if T : DxD -&#x3E; M and t : D -&#x3E; M have T (0, 0) = t (0), there exists a unique

u : (DxD)VD -&#x3E; M with uo cp - T and u o E = t.

Definition 2.2. The (translation - ) sum of t and T , denoted t + T , is the
2-tanaent uo Y : DxD -&#x3E; M.
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To state succintly the algebraic structur’e provided by : and +,
we remind the reader that if (V, +, 0) is an abelian group and A is a

non-empty (better "inhabited") set, then to give A the structure of a

translation space, or affine space, or torsor, over V means to give maps

satisfying equations (a)-(d) below, for any Ti E A, tj E V. Any fixed

To E A gives rise to an identification of V with A, via t -&#x3E; t + to, in such
a way that + becomes + and t becomes -. It follows that when testing
a meaningful equation involving +, .:, + and -, it suffices to replace + by
+ and -* by -, and test whether the result is an identity of the theory of
abelian groups.

We can now state

Proposition 2.3. The fibres of the restriction morphisms

(for x 6 M arbitrary) have a natural structure of translation space
over (MD)x .
Proof. It suffices to verify the identities

The three first follow easily from the definitions of - and +. The fourth
is proved using the easily verified fact that the following diagram is a

quasi-pushout

where

and

One then considers u : (DxD)VD -&#x3E; M characterized by

and next v : (DXD)VD + M characterized by
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and finally w : DxDVD(2) -&#x3E; M characterized by

One sees easily that

So it just remains to be verified that one also has

To do this, let us put

We have

and, because

and

we have

Thus

which is the desired result.

We note that we have on MD x D two laws for multiplying by a
scalar he R, defined by

One easily verifies the following proposition :

Proposition 2.4. If L1 and T2 are 2-tangents which coincide on D(2) C DxD
then

One also has, for T a 2-tangent and t a tangent
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Remark. If one is only interested in the "algebra of 2-tangents"
on M, it is not necessary to require M to be infinitesimally linear in
the strong sense. It suffices in fact that M is infinitesimally linear in
the usual sense, and satisfies condition W. Let us just prove this for
the case of strong difference. Let Ti and T2 be 2-tangents which coin-
cide on D(2) C DxD, and denote their (common) restrictions to the two
axes by X and Y. By cartesian adjointness

one may view Ti and T2 as tangent vectors on MD at Y. Because M,
and thus M 0 , is infinitesimally linear in the usual sense, one may con-
sider the difference Q = T2 - Tl in the R-module Ty(M D) . This difference
a : D -+ M 0 takes in fact its values in the space TxM C MD . Now
this R-module V is Euclidean (cf. [ll], i.e. VD = VxV canonically), be-
cause M has the property W. Hence there exists a unique tangent vector
t E TxM such that, for any d £ D, o-(d) = Y + d. t . One then put

(This way of defining -* is a direct paraphrasing of Kolar’s definition,
[9]§4.)

Kolar [10 ], and White [141, Definition 2.17, noted how strong
difference may be used to express the Lie bracket of two vector fields.
We shall state and prove this result in our context. We remind the
reader (confer e. g. [4], 1 § 9) that the Lie bracket [X, Y] of two vector
fields X and Y on M is characterized by

(x£ M). We define also, for x£ M, a 2-tangent (Y.X)x at x by

For convenience, denote the vector field -X by X, and let S : DxD - DxD
denote the twist map (dh d2) l-&#x3E;(d2, d1).

Proposition 2.5. We have

Proof. First note that the two terms on the right are 2-tangents with
some restriction to D(2) because Xdl and Yd2 commute for (d1, d2 ) E D(2)

(generalize Exercise 1.9.1 in [4]). Construct 1 : (DxD)VD -&#x3E; M by

We have
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and

but since X dl cancels Xdl and Yd2 cancels Y-d2 in (2.5), this equals
(X.Y)xo s(d,. d1). qn that 

3. Applications to the theory of affine connections.

Let M, as before, be an object which is infinitesimally linear in
the strong sense. As in [7], with the simplification of [5], an (affine)
connection on M is a map

satisfying the following equational conditions (with tl and t2 tangents at
the same point of M, thus (t1, t2 ) e MDX MD) :

M

for all di E D, a E R. The first condition says that V is a splitting of
the evident map

which sends a 2-tangent T to ( T (., 0), T (0, .)). The second condition is
(in view of [4] Proposition 1.10.2, say) a linearity condition.

We now define the notion of covariant derivation :

Definition 3.1. Let X and Y be vector fields on M. The covariant
derivative of Y with respect to X, denoted pXY, is the vector field

given by

This expression for VxY in terms of strong difference is
without doubt known by Kolar and White, but we could not find a ref-
erence. In the generality we work in here, it is easily seen to coincide
with the definition in [7]. As a first application, we shall prove the
Koszul law, which in [7] could only be proved when TM -&#x3E; M was a loc-

ally trivial bundle (which for the application to classical geometry would
restrict its use to smooth (singularity free) M).
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Proposition 3.2 (Koszul’s law). L et X and Y be vector fields on

M , and f : M -&#x3E; R a function. Then

Proof. Let us calculate the left hand side at a point x e M. We get by
definition that it equals

by Proposition 2.4. From the general principle for calculating in translation
spaces (as stated before Proposition 2.3), we may cancel the second and
fourth term, to get

provided this latter expression makes sense. But the two 2-tangents that
occur here are given by

respectively, which clearly agree when dl = 0 or d2 = 0. Thus the strong
difference (3.1) does make sense. It is calculated by considering the
map I : (DxD)VD -&#x3E; M given by

since putting e = 0 here yields (3.3), and putting e = di.d2 yields, by
definition of the directional derivative X(f),

which is (3.2). Thus, the difference (3.1) itself is 1 (0, 0, -) which
is clearly X(f) .Y(x), as desired. 0

As a second application we shall define the connection-map a3SO-
ciated to the connection V . If T: DxD -&#x3E; M is a 2-tangent at x E M, let
t 1 and t2 be the two tangent vectors at x obtained by restriction of T
along the two axes. The strong difference between T and V(ti, t2)
is another tangent at x which we denote C( T ). Thus we get a map

For instance, the definition of VxY can be written VX Y = C(Y.X). One
defines then the torsion associated to V by
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(where S is the twist map, as above), or substituting also the definition
of C in terms of -’

The proof of the following classical identity will now be almost

pure "translation-space" calculations :

Proposition 3.3. Let V be a connection with torsion T . Then for any
pair of vector fields X, Y we have

Proof. The left hand side is spelled out in (3.4). The right hand side is,
by Definition 3.1:

The first parenthesis here also occurs in (3.4), so it suffices to prove

The left hand side equals -((Y.X) o S = X.Y) because this makes sense,
so that we may calculate as in an abelian group. This in turn equals
-[-Y, X] , by Proposition 2.5, which is -[X, Y]. 0

4. The ray property, and sprays.

We finish by another instance of strong infinitesimal linearity.
In [5] (inspired by [21), the first author proved a synthetic form of the
Ambrose-Palais-Singer Theorem, utilizing a "ray property of order 2
relative to Rn ". We recall the definition :

The object M satisfies the ray property of order r , relative to

Rn, if M "perceives the following diagram as a coequalizer" :

(Precisely : The contravariant functor M(-) : E + E converts (4.1) into
an equalizer.)

Proposition 4.1. If M is infinitesimally linear in the strong sense, M sat-
isfies the ray property of order r relative to Rn (for any r, n).
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Proof. We do the case r = 2 only. We first note that the diagram

is a quasi-coequalizer (with u’, v’, w’ defined with the same formulas
as u, v and w above). In fact, consider

where X = (Xi, ..., Xn) and where the k-algebra homomorphisms are giv-
en by formulas similar to u, v and w :

This is an equalizer diagram in the category of k-algebras, as can be
seen by a consideration of total degrees. Dividing out by relevant
ideals in (4.3) gives a diagram of Weil algebras whose Spec is (4.2), and
this diagram of Weil algebras is an equalizer (this can be seen by obvious
canonical vector space splitting of the dividing-out maps). Consequently
(4.2) is a quasi-coequalizer. Thus M perceives it as a coequalizer.
Consider now the diagram (straight arrows)

ut 

where f o u = f o v. Since M perceives the upper row as a coequalizer,
we get a unique f’ (dotted arrow) with f’ o w’ = foi. It remains to be

proved that f = f’ o w. This results easily from the fact that M

perceives the multiplication D2 x D2-&#x3E; D2 to be surjective (specialize
the quasi-coequalizer (4.2) to n = 1). So we test f = f’ o w on an element
of form (01.0 2’ x) (6i E D2,x E R ). We have

proving the Proposition. 0

We present now some considerations from [ 5 ] on sprays.
According to Smale (cf. [121, Definition 6), a spray on M may be def-
ined as a map
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which splits the restriction map arising from D -- D2, and commutes
with fibrewise multiplication by scalars. Thus, for t E TxM, 8 e D2, we
have Q(t)( 6) E M defined, and

Assume that M is infinitesimally linear in the strong sense, and
that TxM = Rn for each x E M. By Proposition 4.1, M has the ray pro-
perty with respect to Rn, hence with respect to. TxM (the subob ject D2(Tx M)
may be defined as the image of D2(n) under one, or any, isomorphism
TXM=Rn). Using (4.1) with r = 2 and with D2(TXM) instead of Dr (n)
the map o : D2 x TXM -&#x3E; M given by 

coequalizes u and v by (4.5), so we get a map

and which satisfies

by (4.4). The collection of the e,,’s define a map e from a certain subset
D 2(TM) to M, and this map is the 2-jet of the exponential map of the
spray .

A symmetric (= torsion free) connection V may now be associated
to a by putting (for ti tangents at x )

noting that di E D implies that the vector d1.t1 + d2.t2 is actually
in D2(TxM).

In the first author’s proof of the Ambrose-Palais-Singer Theorem
in [5], the ray property (of order 2) for M (with respect to TX M)
was the only property which was not (by then) subsumed under strong
infinitesimal linearity. By the considerations above (based on Proposition
4.1), we can now sharpen the formulation of the Ambrose-Palais-Singer
Theorem of loc. cit. into 

Theorem 4.2. Let M be infinitesimally linear in the strong sense, with
TXM = Rn Vxe M. Then there are natural . bi jective correspondences
between the following three kind of data :

(j) sprays o : MD -&#x3E;MD2, 
V: MD XM MD -&#x3E; MD x D,(ii) symmetric connections V: MD XM MD -&#x3E; MD x 0, 

M(iii) "partial exponential maps", i.e. maps e : D2(MD)-&#x3E; M which sat-
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(The remaining correspondence, from (ii) to (i), is simply that

In particular, applying (i) -&#x3E; (ii) in a fully well-adapted model
for synthetic differential geometry yields the classical Ambrose-Palais-

Singer Theorem for ordinary smooth manifolds. The present proof thus
completes the proofs given in [5] and in the preliminary version of [2].
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