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ABSTRACT

A theory of smooth manifolds and vector bundles, where smooth

curves take the place of charts and atlases, which is cartesian closed, is

developped. In the finite dimensional case the manifolds turn out to be the

usual ones.

CONTENTS 

Introduction.

1. Kriegl’s convenient setting for differential calculus on locally vector

convex vector spaces

2. Premanifolds and pre-vector bundles

3. Smooth mappings
4. Smoothness of certain structure mappings
5. Pre-vector bundles in more detail

6. First steps towards cartesian closedness

7. Manifolds, vector bundles and cartesian closedness

8. Miscellany
References

Sections 5- 8 will be published in Volume XXV- 2.



64

INTRODUCTION 

This paper contains a theory of smooth manifolds and vector bun-

dles, -,vhich coincides with the existing theories in the finite dimensional

case. The whole theory aims at cartesian closedness from the beginning,
so S (M, N ), the space of smooth mappings from a manifold M to a mani-

fold N is again a manifold and the equation

holds in general.
The general ideas are the following ones :

1. We forget about charts and atlases. There are at least two reasons

for this : In Michor [ 1, 11.91 it is shown that the natural chart construction

on spaces of smooth mappings does not allow cartesian closedness in gen-
eral. The (topological) theory of manifolds modelled on Frechet spaces

shows that these are open subsets of the modelling spaces in the most im-

portant cases, so they are rather simple objects.
2. We take the structure of smooth curves in a manifold as the basic

notion, instead of charts. Another possible choice would be the structure

of smooth real valued functions, which has been investigated via sheaf

theory, schemes, etc, or a combination of both as Fr6licher [2] proposes.
The smooth curves alone are a « thin » structure, so we need a lot of other

data as well: tangent spaces, differential operators for curves.

3. In view of 2, for vector bundles we do not require local triviality
over open sets, but only triviality along sm,ooth curves. The trivialisation

we require to have some structure, they should be parallel transports along

any smooth curve, depending smoothly on the curve too.

4. Lastly we require a geodesic structure on each manifold. This is

a section for the differential operator for smooth curves in particular.

Our aim has been to construct a class of manifolds as small as

possible such that we get cartesian closedness and get the usual theory
in finite dimensions.

So a manifold Al is a set of data ( M1 ) - ( M8 ) as follows :

( M1 ) Two sets M , 7BAL and a mapping iiM: T M -&#x3E; M such that each

fibre is a locally convex space of a certain type (described in 1).
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( M2 ) A set S (R , M ) of curves in M , closed under C°°-reparametriza- 
_

tions and containing all constants.

(M3) For each t E R a mapping St: S ( R , M ) -&#x3E; T’ M such that

(M4) A mapping such that:

is linear and continuous,

( M6 ) A mapping Geo M = Geo : T M -&#x3E; S ( R, M ) such that

A set of data like this is called a premanifold. Vle can show that

T M is again a premanifold, so we have the whole tower of iterated tan-

gent bundles and use them to define smooth mappings between premanifolds:
they should map smooth curves to smooth curves and with a, differentiation

factor over to a tangent mapping, which should satisfy the same conditions,

etc. We have to develop a lot of theory before we can formulate the next

conditions :

(M7) Pt: S(R, M) X R -&#x3E; L ( T M , T’M) is smooth.

( M8 ) Geo : T M -&#x3E; S ( R, M) is smooth.

The category of these objects f manifolds) and smooth mappings
turns out to be cartesian closed (7.14). In 8.4 it is shown that the differen-

tiable structure of a manifold does not change if we change the parallel

transport to another one which is smooth and has a connection.

A manifold is called regular if the smooth real valued functions

separate points (in a stronger sense, 8.7) on it. Regular manifolds with

finite dimensional fibres for the tangent bundle turn out to be usual finite

dimensional C"’-manifolds (with charts), and conversely.

The theory developped here gives a cartesian closed (convenient)
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category of manifolds containing all finite dimensional ones and some of

the usual infinite dimensional ones (e. g. Llilbert manifolds); and all mani-

folds in there have a lot of geometric structure (parallel transport, covariant

derivative, geodesics, connections). By cartesian closedness it seems to

be a good setting for variational calculus. Some of its drawbacks are : no

chance for an Implicit Function Theorem. Not a good setting for infinite

dimensional Lie groups (the general linear group of a locally convex space
is not a smooth group in general). But the theory of principal fibre bundles

might work, where the (smooth) monoid of all continuous endomorphisms
takes the role of the group of isomorphisms. We do not go into this here.

We also leave out the de Rham cohomology of manifolds and curvature.

In comparison with Synthetic Differential Geometry (see Kock, e. g.)
there are no infinitesimal manifolds and we do not have a topos (no sub-

object classifier). On the other hand our manifolds are sets with structure

mappings on them and not sheafs on categories of C--algebras.

Let t us now give a short description of the contents of all sections:

1 is an exposition of Kriegl [2, 3], of a convenient setting for differential

calculus on locally convex spaces. The results later depend heavily on

its special features. Most of the theory later on would remain valid if we

take the only other cartesian closed setting for calculus in the literat1Jre,
Seip [1]. The whole content of 1 is due to Kriegl.

2 defines premanifolds and pre-vector bundles and shows that the total

space of a pro-vector bundle is a premanifold again. Using this, in 3 we

can define smooch ’mappings between premanifolds and we show (3-5, 3.6 )
that the smooth mappíl1 gs R -&#x3E; M are exactly those in S ( R , M ) (with a

surprisingly difficult proof;,
In 4 Yie show that certain structure mappings (like iiM ) are smooth

and treat pullbacks of pre-vector bundles. In 5, the main result is that

smooth sections of a pre-vector bundle form a convenient l.c.s. in the

sense of 1, which is needed later to show that S(M, N ) is again a pre-

manifold. In the course of the proof, we need the covariant derivative, so

it is constructed and investigated before.

6 leaves the realm of premanifolds and gives a sort of differentiable
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structure on S ( M , N ) and the minimum of lemnas and concepts necessary

for 7 where we introduce manifolds and vector bundles and prove carte-

sian closedness. The most difficult part of this is the construction of the

flip mapping KM : .- T2 M , T2 M in 7.7.

8 completes the whole set up and shows the relations to the usual

notions of manifolds.

Some remarks to the history of the ideas represented here : The use

of smooth curves instead of charts is due to Seip [2] who treats subsets

of sequentially complete l.c.s. and emplois a sort of weak geodesic struc-

ture to define manifolds and get cartesian closedness. In 1979- 81 Kriegl
and the author worked through Seip’s paper and discussed the ideas of us-

ing parallel transports, geodesic structure, and the C°°-curve final topo-

logy. In his dissertation Kriegl [1] improved Seip’s setting with these

ideas, treating subsets of locally convex spaces. A revised version of

Kriegl [1] is to appear in Springer Lecture Notes.This paper contains the

(one ?) embedding free approach which succeeded only after Kriegl [2, 3] 

developped the convenient setting for calculus as basis for it.

The main parts of this paper were presented in a lecture course

in 1981/82 in Vienna. I want to thank the audience of this course, Mr. G.

Kainz and A. Kriegl for the very stimulating cooperation and lots of discus-

sion.

1. KRIEGL’S CONVE NIENT SETT!NG FOR DIFFERENTIAL CALCULUS

ON LOCALLY CONVEX SPACES.

In this chapter we give a somewhat streamlined account of the set-

ting for differential calculus developped by Kriegl [2, 3 ) . We leave out

all counterexamples and we only comment on the connections to existing

settings like Keller. For the missing proofs, we refer to Kriegl.

l.l. Rornological locally convex vector spaces.
Let E be a real locally convex vector space (lcs). Let B be an

absolutely convex bounded set in E . Then by EB we mean the linear

span of B in E , equipped with the Minkowski functional pB of B as

norm, i. e.
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This is a normed space.

Recall that b E , the bornologicalization o f E , is given as the loc-

ally convex limit of all the spaces EB , where EB -’» EB, is a contraction

if B C BB

Clearly b is a functor from the category lcs of locally convex spaces and

linear continuous maps into the full subcategory blcs of bornological lcs.
(In fact blcs is monoreflexive in lcs in the sense of Herrlich-Strecker. )

1.2. LEMMA. Let (xn) be a sequence in a locally convex space E . Then

the following properties are equivalent :
1. There is some B in E with xn -&#x3E; x in EB (i. e. pB (xn - x) -+ 0 ).
2. There is a sequence (fln) in R, 03BCn -&#x3E; oo , such that

is bounded in E .

3. There is a strictly increasing sequence ( 71n ) in R , qn &#x3E; 0 , nn -&#x3E; oo , 
such that { n ( xn - x ) } is bounded in E .

DEFINITION. A sequence satisfying these equivalent conditions is called

Mackey convergent to x . If we want to emphasize the particular sequence

( nn ) in 3, we call ( xn ) q-falling to x . If x is not relevant, we call ( xn )
a !B1ackey sequence, or rr falling.

1.3. LEMMA. Let xn I x in E’, let (tn) be a sequence in R with tn | 0
strictly such that

is bounded for all k . Then there is a Coo-curve c : R -&#x3E; E with c ( tn ) = xn , 
c ( 0 ) = x , such that c’ is --flat at each tn and at 0 .

c’ is 3o-flat at r means : the infinite Taylor development of c’

about r is the zero series. A mapping f : Rm -&#x3E; E is called C°° iff all

partial derivatives exist and are continuous - this is a concept without

problems.
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For the proof, let o : R -&#x3E; R be a Coo-mapping, o = 0 locally ab-
out 0 and 0 =-: 7 locally about 1 , 0’:; o  1 elsewhere. Then put

for tn+1  t  tn.
2

1.4. COROLLARY. li q &#x3E; 1 and (xn) is cf -falling to x , then there is a

Coo-curve c u)ith c ( q-n ) = x n and c ( 0 ) = x .

1.5. D EF IN ITI 0 N. Let c oo E denote the lc s E equipped with the final
topology with respect to all C"’-curves R -&#x3E; E.

1.6. A curve c : R -&#x3E; F is said to be a Lipschitz curve if the set

is bounded in E. Let N- denote the one-point compactification of N.

With these notions, we have :

LEMMA. Tor finczl topologz’es with respec-t to the following sets o f map-

Pings into F coincide :

C oo (R, E ), Lipschitz c urves, .Bfackey sequences (considered as

mappings No. 4 E ) , q-iallztig sequences ( for any fixed n ) ,

{ E B -&#x3E; E, B bounded absolutely conve x in If },

So, in particular, c oo E is the topological direct limit of all the

spaces E B .
The proof consists of showing that the adherence of a set A in E

is the same for all these mapping classes.

1.7. A circled set U ( i. e. x E U implies [ -1, 1 ]. x C tl) in E is called

bornivorous if U absorbs each bounded set (i. e. each B C L . U for some L).

LEMMA. Let U in E he circled. Then the following properties are equi--
valent :

1. tl is bornivorous.
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2. For all B (as in 1. 1) U C EB is a zero-neighborhofld in EB .
3. U absorbs each compact set in E.

4. U absorbs !B1ackey sequences.

5. U absorbs n-falling sequences (any fixed n).
6. U absorbs c([ -1 , 1] ) for all Lipscbitz curves c .

7. U absorbs c([ 1 -, 1]) for all Coo-curves c.

1.8. COROLLARY. Let f : Ek -&#x3E; F be a k-linear mapping between lcs. Then

the following properties of f are equivalent:
1. f is bounded (i. e. maps bounded sets to bounded sets).

2. For all B in E the mapping EB -&#x3E; k Ek 1 F is continuous. 

3. f maps compact sets to bounded ones.

4. f maps !B1ackey sequences to bounded sets.

5. f maps n- falling sequences to bounded sets.
6. f maps compact pieces of Lipscbitz curves to bounded sets.

7. f maps compact pieces of C’-curves to bounded sets.
8. f maps Mackey sequences to Mackey sequences.
. f maps n- falling sequences to n- falling sequences.

10. f maps Lipscbitz curves to local Lipschitz curves.
11. f ma ps Coo- curves to C’-curves.

1.9. COROLLARY. The bornologicalization b E bears the finest locally con-

vex topology with one (hence all) of the following equivalent properties:
I. It has the same bounded sets as E.

2. It has the same Mackey sequences as E .

3. It has the same n- falling sequences as E .

4. It has the same Lipschitz curves as E .

5. It bas the same Coo-curves as E .

6. It has the same bounded linear mappings into arbitrary lcs.

7. It has the same continuous linear mappings from rtormed spaces to E .

1. 10. TH EOREM. The category blcs o f bomological lcs an d continuous

linear mappings is a symrnetr ic monoidal closed category with unit R ,

i. e. L (E, F) witb a bornological topology described below satis fies:
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where E 0 F is the tensor product, suitably topologized.

L ( E , F ) is the space of all continuous ( = bounded) linear map-

pings from E into F , equipped with the bornologicalization of the top-

ology of uniform convergence on compact pieces of C°°-curves. On E @ F

we put the following topology : consider C’°-curves cl : R -&#x3E; E , c2 : R - F ;

this gives a curve R -&#x3E; E @ F . Each absolutely convex set in E @ F absorb-

ing compact pieces of such curves is then a zero neighborhood. This gives
a bornological space, and all the properties hold.

1.11. DEFINITION. A sequence ( xn) in E is called a Mackey Cauchy
sequence if there is some bounded set B c E such that ( xn ) is a Cauchy

sequence in the normed space EB , 
LEMMA. L et ( xn ) be a sequence in a lcs E . Then the following proper-
ties are equivalent :

I. ( xn ) is a Mackey Cauchy sequence.
2. There is a double sequence ( tmn ) in R, tmn A 0, tmn -&#x3E; 0, such

that (x - xn ) / tmn is bound ed.
3. ( xm - xn )mn is Mackey convergent to 0 .

1.12. DEFINITION. A lcs E is called Coo-complete if each Mackey Cau-

chy sequence has a limit in E .

1.13. THEOREM. The following properties of a lcs E are equivalent :
I. E is C oo-complete.
2. 1 f ( xn ) is bounded in E and k kn) f 11 , then the series ELnxn

converges in E .

3, 1 f B is bounded, closed, absolutely convex, then EB is a Banach

space.

4. For any B there is a B’ such that B : B’ and Ea’ is a Banach
space.

5. Any continuous linear mapping from a normed space N into E has

a continuous extension to the completion F4 of N .

6. The closed absolutely convex bull of a A1ackey sequence converg-
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ing to 0 is compact.

7. Any Lipschitz curve in E is loc-ally Riemann 7’ntegr(ible.
8. For any c E C oo ( R, E ) there is a d E C oo ( R, E ) with d’ = c.

(1-’xistcn(-e 01 anti derivatives)

0. I/ E is a topological linear suhspacp of F, then E is closed in

c’° F (cl. 1. 5, 1. ()).

10. E is a c oo-closed linear subspace of a C oo - complete les.

1.14. RE MARKS. 1. Any sequentially complete lcs is C--complete (cf.

1.12), but not conversely.
2. F is C oo-complete iff its bornologicalization h E is Coo-complete, 

since this property depends only on the bounded sets.

3. If E is C’°-complete, then hE is barreled (for it is a direct limit

of Banach spaces then). Then even ( E , o ( E , E ’ ) ) , i. e. E with the weak

topology, is C°°-complete, since in barreled spaces weakly bounded sets

are bounded and so b ( E , o ( E , E’ ) ) = b E. Now use 2.

4. The full subcategory of Coo-complete lcs is epireflexive in lcs and

closed under formation of direct sums and strict inductive limits. The C°°-

completion of F’ is the closure of E in COO E ) .

5. If F; is bornological, then its C"-completion is bornological too.

1.15. THEOREM. Let E be a lcs. Then the following properties are Pquiv -
al en t : 

1. E is Coo-complete.
?. I f /.- Rn -&#x3E; E is scalarwise C , the n i is C, for k &#x3E; I .

3. I f c : R -&#x3E; E is scalarwise C’° then c is differentiable at 0.

Here a mapping f : R n -&#x3E; F is called C k- if all partial derivatives

up to order k - 1 exist and are locally Lipschitz. f scalarwise C’x means

that k o f is a C6-function Rn , R for all X c E’.

1.16. DEFINITION. Let F, F be lcs. A mapping f : F’ - F is called C 00

if f o c E CXJ(R, F ) for each c E Coo (R, E), i.e. if

makes sense.



73

Let Coo ( E, F ) denote the space of all Coo-mappings from E to F.

Then we have

since the C°°-curves depend only on the bounded sets (cf. 1.9.5). Cons-

tant maps are C°° ; multilinear mappings are C°° iff they are bounded by
1.8. Clearly composition of C’°-mappings gives again a Coo-mapping. For 

E = Rn we get the usual Coo-mappings as is shown by the following lem-

ma. Later on, we will see that the differential operator

exists and is linear and bounded. But C °°-mappings need not be contin-
uous (they are continuous in the c ’-topologies).

1.17. LEMMA. Let f : Rn a F, where F is Coo-complete. f is C°° i f f all

partial derivatives d|a|f dxa : n -&#x3E; F exist and are continuous.

This is true if F is not Coo-complete, with a more intricate proof.

PROOF. If f : Rn -&#x3E; F maps smooth curves to smooth curves, then for all

À (F’ the function X o f : Rn -&#x3E; R maps C’°-curves to Coo-curves. By the

beautiful theorem of Boman this suffices to see that X o f is a C’°-map-

ping in the usual sense. So f : Rn 4 F is scalarwise Coo , hence C’° in

the usual sense by 1.15.2.

. 1.18. Topology on C XI ( E , F ) .

We equip the space C ’ (R, F ) with the bornologicalization of the

topology of uniform convergence on compact sets, in all derivatives separ-

ately. Then we equip the space Coo ( E , F ) with the bornologicalization
of the initial topology with respect to all mappings

l.19. LEMMA. If F is Coo - complete, then CX) ( E, F ) is C’°-complete too.

The proof is decomposed in the following steps :
1. Let X be a set, let B ( X , F ) be the linear space of all bounded

mappings X - F (i.e. f ( X ) is bounded), equipped with the topology of



74

uniform convergence on X. Then B (X, F ) is a C ’-complete Ics.

2. Any product of C°°-complete spaces is C’°-complete.

3. C ( R , F ) , the space of all continuous mappings from R to F, is

a closed linear subspace of the product II B ( [ -n , n ] , F ) .
n

4. Coo ( R , F ) is a closed linear subspace in II C ( R , F ) , via

5. C°° (E , F ) is a closed linear subspace of

1.20. L EMMA. Let E , F be bornological spaces. Then we have : 

1. L ( E, F ), with the topology defined in the proof of 1.10, is a clos-

ed linear subspace of Coo ( E, F ), bornologicalized.
2. I f F is Coo-complete, then L ( E , F ) is C’-complete.
3. 1 f E is Coo-complete, then a curve c : R -7 L ( E , F ) is C° iff

t 1-+ c ( t ) ( x ) is a Coo-curve in F for all x c E .

1.21. THEOREM. The category of all C’°-complete bornological lcs and

C’-mappings is cartesian closed, i. e. we have a natural bijection :

PROOF. The natural bijection is defined as follows :
v

where

This is clearly natural and we have to show that it makes sense. It is first

proved in the case E = R = F . Using this result, the theorem is proved as

follows :

Let Then for all c E E Coo ( R , E ) we have

For all c FE Coo ( R, F ) , the mapping

is linear and continuous by the construction of the topology on Coo ( F, G ).

so C*F o foe E : R -&#x3E; Coo (R , G) is Coo. Using the above result, we see that

the mapping
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is C°° . Each c E Coo (R, E X F ) is of the form

so we conclude that f : E X F -&#x3E; G is Coo.
On the other hand let g F Coo ( E X F , G ) . Then for any eEl Coo ( R, E ) and

any cp : Coo (R , F) we have g o ( cE X cF ) E Coo ( R2, G ) , so by the above
result :

So .the mapping

is C°° and has values in the closed linear subspace C °° ( F, G ) (see 1.19).

So g ocE: R -&#x3E; C 00 ( F , G) is COO, hence g E Coo ( E , Coo ( F, G ) ) .

1.22. COROLLARY. Let all spaces be Coo-complete bornological lcs. Then
the following natural mappings are Coo:

1.23. COROLLARY.

is a linear isomorphism of topological vector spaces.

1.24. REMARK. The (born ologicalized) topology on Coo ( E, F ) is uniquely
determined if cartesian closedness is asked for: Let CooT ( E , F ) be equip-
ped with any locally convex topology such that
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as sets, then For we have

so CooT ( E , F ) and C - ( E , F ) have the same Coo-curves and thus the same

bornologicalizations by 1.9.

1.25. THEOREM. Let E, F be C’-complete bornological lcs. Then the

di f ferential operator d : Coo ( E, F ) 4 C °° ( F , L ( E, F ) ) exists and is lin-

ear and bounded (so continuous), where

PROOF. Consider , given by

which is well defined.

1. It is first proved that d" " is C’° . Hence, by cartesian closedness :

is Coo.

2. d ( f , x ) : E -&#x3E; F is linear for all f c C ’ ( E, F ) , x E E . To prove

this, for i), w c E consider the Coo-mapping:

and use 1.17 to compute

So d ( f, x ) E L ( E , F) since it is continuous by 1.8.11.

3. L ( E , F) is a closed subspace in Coo ( E , F ) by 1.20.1.
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L ( F , F) is the bornologized subspace topology from Coo ( E , F ) . Then by
cartesian closedness again d : Coo ( E , F ) -&#x3E; Coo ( E , L ( E , F ) ) is Coo.

1.26. P ROPO SITION (Chain rule). Let f: E -&#x3E; F , g : F -&#x3E; G he CX)-map-
pings between C’-complete bornological lcs. Then g 0 f is Coo and

The proof twice uses the following

SUBLEMMA. 1 f c c C’ (R, E ) , then for erzeh f E Coo ( E, F ) we have

PROOF. I n general we have

which is Coo as a function of t . So the curve

is C°° by 1.8.10.

Note that th e last expression is in C °° (R2 , F ) as a function of ( s, t ),

for it may be written as

and clearly í f COO (R2, F ). So the double limit of the expression above

can be computed along any curve in R going to 0 . We compute it along
( t, t ) for t -&#x3E; 0 , and we find that it is equal to
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1.27. REMARKS. 1. In general a C’°-mapping f : E -&#x3E; F is not continuous.

This cannot be avoided if one wants cartesian closedness. But clearly

f : c oo E -&#x3E; c oo F is continuous, so f : E + F is continuous if c °° E = F

(e. g. if E is a Frechet space, or has the property that any sequentially
closed set is closed (sequentially determined) ).

2. The notion of differentiability C oo of Kriegl is weaker than the no-

tion Cooc of Keller. Since Cooc is the weakest notion with a chain rule, am-

ong all notions that can be described with the use of limit structures, the

notion of Kriegl cannot be described with the use of convergence struc-

tures. But again if c’° F = E, then f : E - F is Coo iff Cooo iff Coob in the

sense of Keller.

3. The exposition of Kriegl’s theory given here follows Kriegl 2; 3 ]

closely, with a special emphasis on the results needed later, leaves out

all counterexamples and gives some results only in specialized settings
(we have assumed Coo-complete bornological whenever it simplified proofs).

2. PREMANIFOLDS AND PRE-VECTOR BUNDLES.

2.1. DEFINITION. A premanifold M is a set of data as follows :

( M I ) Two sets M , T M and a mapping riM .’ T M -&#x3E; o such that

is a C--complete bornological lcs for each x c M . It follows that T7M is

surj ective since 0 x E x A4 for each x in M.

(M2) A subset S ( R, M ) of MR = Set ( R, M ) such that c o f E S(R, M)
for each c E S (R , M) and f E C oo ( R , R), containing all constant map-

pings R -&#x3E; M. Elements of S (R, M ) are called smooth curves in M.

( M 3 ) For each t c R , a mapping 5t" S(R, M ) -&#x3E; T M such that :

dt ( c ) = 0c (t) for all t implie s that c is constant.

d t ( c ) is called the differential rzt t of the smooth curve c .

( M 4 ) A mapping
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such that

for all smooth curves c and all t in R ,

for all smooth curves c,

Here denotes the space of all continuous linear mappings
The mapping Pt is called parallel transport. It follows that

is a topological linear isomorphism with in-

verse

( M 5 ) (Soldering) For each c E S ( R, M ) the mapping g

is a C°°-curve in the bornological Ics Tc(0) M .
(M6) A mapping GeoM:TM -&#x3E; S( R , M ) such that:

REMARK. (M6) implies that 0 : S(R, M ) -&#x3E; TM is surjective, since

2.2. Let M be a premanifold. The natural topology on M is th e final top-

ology with respect to all smooth curves

i. e. the finest topology such that all c are continuous. In general, this

topology is not Hausdorff.

2.3. EXAMPLES. Any paracompact smooth finite dimensional manifold in

the usual sense is a premanifold. For let "M : : T M -&#x3E; M be the tangent bund-

le, let S ( R, M ) be the space of all smooth curves, let



80

then choose a complete Riemannian metric g on M (which exists by the re-
sult of Nomizu-Ozeki or Morrow), let V denote its Levi - Civita covariant

derivative, let Pt be the induced parallel transport,

Then ( M1 ) - ( M6 ) are satisfied.

2.4. REMARK. Instead of ( M 2 ) consider the following condition:

( M 2’ ) There is a subset S ( R, M) of MR such that c o f E S ( R , M )
for all c c S ( R , M ) and f : R - R any affine mapping (polynomial of de-

gree  1 ).

Adapt ( M 3 ) similarly. This is something to be called a geometric space.

Any complete Riemannian manifold would then be a geometric space, with

S( R , M ) the set of all geodesics.

2.5. DEFINITION. Let M be a premanifold. By a pre-vector bundle (E lP,M)

we mean a set of data as follows :

(VB1) E is a set, p : E -&#x3E; M is a mapping such that p-1 ( x) = : Ex
is a Coo-complete bornological lcs for each x in M .

It follows tha t p is surjective, since 0x E p-1 ( x ) .
( VB 2 ) There is a mapping

such that:

Clearly is a topological linear isomorphism with

inverse

Note that TA1, IIM , 0/I ) is a pre-vector bundle for each manifold M.

2.6. THEOREM. If ( E, p , M ) is a pre-vector bundle over a prernanifold 1B1

then the total space E is itsel f a premanifold in a natural way.
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PROOF. ( 2.7 ) Define

where the union is disjoint this is the set of all « vertical » smooth curves

in F.. Then consider the following pullback in the category Set of sets

and m appin g s :

Use the parallel transport Pt E of the pre-vector bundle E to define

Then the following diagram commutes :

Claim.- : The mapping Cart = Cart E is injective. Suppose

then c 1 = d1 by the diagram above, so

hence c2 ( t ) = d2 ( t ) for all t , since PtE ( c1 , t ) is an isomorphism.

( 2. 9 ) We define S ( R , E) =: image of CartE in Set ( R , E ) .

(The name Cart was chosen in order to indicate that it is a sort of «cart-

es ian » decompo sition of the smooth curves in S ( R , F ) ).

So (M 2 ) holds. (We write Pt instead of PtE when no confusion arises.)
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Consider the following equivalence relation on S ( R, E ) ; .-

( 2. 10 ) We define TE : = S(R,E)/ -. Then we have mappings

Put

Then clearly t7p o 5, = ev, .

( 2.11 ) Claim : There is a canonically given bijective mapping

called decomposition, fitting comnutatively into the following diagram :

Here is given by

This is seen as follows : By the definition of the equivalence relation in

(2.9) we see that the mapping (d 0 X d0 ) o (Cart)-1 factors ove r d0 :
S (R, F ) -&#x3E; T E to an injective mapping Dec = DerE which is surjective
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too. As an immediate application we see that

(via Dec ) is a C°°-complete bornological lcs, as required by ( M 1 ).

By ( 2.11 ) the fibre scalar multiplication in the bundle ( TE , iiE, E ) is

given by 

(2.13) Claim : For f c C°°(R,R) and c c S ( R , E ) we have
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R. Th en c =- constant. Let c = Cart ( c 1 , c2 ). Then

So - for all t, so c1 = const. by (M 3 ) for M , and

so c2 = const. in Ec 1(0), so finally c = const.
All requirements of ( M 3 ) are satisfied now.

( 2.15 ) Define

Claim : PTTE , so defined, satisfies all requirements of ( M 4 ).

is linear and continuous by construction.
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Claim : PTTE satisfies ( M5 ).

by ( 2.12 ).

This is a C°°-curve in the bornological lcs

by ( M 5) for M. 

(2.16) Define Geo = GeoE : TE -&#x3E; S ( R , E ) by the formula

Claim: CTeo , so defined, satisfies all requirements of ( M6 ) .
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where we used the computation above,

2.17. COROLL ARY. For any premarzi fold M the tangent bundle is a pre-

vector bundle ( T M, iiM, M), so T M is itself a premanifold. In turn we

get the whole sequence of iterated tangent bundles :

3. SMOOTH MAPPINGS.

3.1. DEFINITION. Let M , N be premanifolds. A mapping f : M - N is cal-

led smooth if there is a sequence of mappings

such that for each n the following diagram makes sense and commutes :

Note that

by the following commutative diagram ( b ) , in which the two triangles com-

mute by ( M3 ), so that the bottom rectangle commutes since 60 surj ective.
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Note too that for any smooth mapping f : 0/I - N and any 6 R the following

diagram commutes :

Note finally that each Tn f : Tn M -&#x3E; Tn a is uniquely determined

by f (since all 50 are surjective) and are again smooth with

3.2. L E MM A. Any composition of smooth mappings between premanifolds,
is again smooth, each identity mapping is srnootb. So we have a category

whose objects are premanifolds and whose morpbisms are smooth mappings.

This category of premanifolds will be denoted by pM f .

3.3. LEMMA. 1 f f : M -&#x3E; N is smooth, then T x f : T x M -&#x3E; T f (x)N is contin-

uous and linear as a mapping between two (,--complete bornological lcs.

PROOF. Note first that Tx f is homogeneous of degree I :
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Since T f is again smooth the mapping Tx f: TxM -&#x3E; T f(x) N is Coo, by
th e results cited in Section 1. Now the Taylor expansion at 0 of x f re-
duces to the linear term since the mapping is homogeneous, so T f is
linear. Since it maps C’°-curves to Coo-curves, it is bounded, so contin-

uous, since the spaces are bornological. QED

3.4. D EFINITION. Let us denote by S ( M , N ) the space of all smooth map-

pings from M to N , where M , N are premanifolds.

We already introduced the notation 5 (R, M ) in (M 2). That we now

defined the same space is shown by the next lemma.

3.5. LEMMA. L et M be apremanifold. Then thE’ set S ( R , M ) of ( M2 ) is

exactly the space o f all smooth mappings in the sense of Definition 3.1

from the mani fold R (cf Exampl e 2. 3) into M .

PROOF. Let c : R - M be a smooth mapping in the sense of 3.1. Then

makes sense, so c = c o I dR = c* ( Id R) is an element of S ( R, M ) .

Now suppose conversely that c E S ( R, M ) . V/e have to construct a

sequence of mappings c - TO C , T 1 c , T2 c, ... satisfying 3.1. Let / be

in S ( R , R ) = Coo ( R , R ), then c*( f ) = c o f E S(R, M) by ( M2 ) and

So if we define

then the following diagram commutes :

For the next step we need results and notation from Lemma 3.6 below. Sup-

pose th at
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Then the mapping

is in S ( R, T A1) by Lemma 3.6 below, and by the same lemma we have

So if we define ’ M by

then the following diagram commutes :

is in S (R, T 2 M ) by Lemma 3.6 below, and

So we may define by

and continue as above.
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3.6. LEMMA. Let hi he a premanifold. If c E S(R,M) and f c COO(Rk, R)
then the follollling hold :

is in S ( R , T M) and depends only on

is in S ( R, T 2M ) and depends only on

depends only on c, f ( 0 ),

This lemma means the following: If and

P ROOF. ( 1 ) First we put

Then d c = Cart(c, ë). Here and below P t means always ptTM and Cart

is CartTM , and a running variable is indicated by an empty place like in
c ( + t ) instead of c ( . + t) (to avoid confusion with ... ).
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( 3 ) For short we put

Th en is a C°°-mapping. By ( 2 ) we have

So we have proved the first claim of the lemma. We continue :
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Looking at ( 2 ) we see that

Then -mapping and we have by (6 ) :

where P t 2 =p t T2M and where we used Definition ( 2.15 ) for P t 2 . 
But note that

Putting (10) into ( 9 ) we get : 
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Here we have used convention ( 3 ) for to define 

th en mapping. Using this in ( 11 ) we get:



94

which is a smooth curve in the parameter x3 , depending only on c,

So we have proved the second claim of the formula. In the formula above

( 14 ) Now we put down the general recursion formulas :

for 1 = 2 , 3 , ... , k-1, and

Define

Then are all C’-mappings.

( 15 ) Claim : With the formulas of ( 14 ) we have
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This claim proves inductively the lemma (by ( 3 ) the expression involving

Ptij+2, k depends only on the terms indicated in th.e lemma). The claim it-

self may be proved by induction. The proof of the induction step is essen-

tially the same as the proof of the second step ( ( 6 )- ( 13 ) ). QED

4. SMOOTHNESS OF CERTAIN STRUCTURE MAPPINGS.

4.1. THEOREM. Let (M a )a E A be a family of premanifolds, then 11 Ma

is a premanifold in a natural way,

and each projection is smooth. Furthermore the couple

( II Ma , pra ) is a product in the category PMI.

PROOF. ( M 1 ) Define

Then

is a C°°-complete bornological lcs (at least if card ( A ) is smaller than

the least inaccessible cardinal number by Section 1 and the theorem of

Mackey-Ulam ; if not, one has to take first the bornological locally con-

vex topology on the product).
( M 2 ) Define as the set
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R -&#x3E; IIa M a is in S ( R , ii M a ) iff each coordinate Ca. is in S ( R , M a ).
If i is in Coo ( R , R ) , then

i s in S (R, II Ma) again .

( M 3 ) Define

Then we have for c and f as above :

if 5 tc = 0 c () t for all t, then 61 Ca - 0 for all t, a , so each ca= const

hence c = constant.

(M4) Define

This mapping is continuous and linear. The functional equations of ( M 4 )

are easily seen to be satisfied.

(M 5 ) This can be checked component-wise.

then

11M
The functional equations for Geo lima can be checked component-wise.

So TI M is a premanifold in a natural way.



97

Claim : pre: II.Ma -&#x3E; MB is smooth.

So T (prB ) K = » prB and we may iterate.
Claim : (n M a ’ pro ) is a product in pMf.

Consider smooth mappings I a : P -&#x3E; M a , where P is a premanifold.

Since ( II Ma’ pr J is a product in Set , there is a mapping ( f a : P -&#x3E; II M a, 
such that prp o ( fa ) = f B . We have to check whether ( fa ) is smooth.

To see this we use the following diagram:

So T (( fa )) «( =» » ( T fa ) and we may iterate to get the whole sequence

Tn((f a )). QED

4.2. PROPOSITION. Let M be a premanifold, let ( Ei , pi , M ) be pre-vector
bundles over M for i = 1 , 2 . T’hen the fibre product E1 XM E2 is a pre-

vector bundle over M in a canonical way.

R E,1%4ARK. We are not yet in a position to show that pri: El XM E2 -&#x3E; Ei is
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smooth.

PROOF. ( VB 1 )

is a C’°-eornplete bornological lc s.

which is continuous and linear. The functional equations are easily check-

ed. QE D

4.3. P ROPOSITION. Let ( E, p, M ) be a pre-vector bundle and let N be an-

other premanifold, let f: M , N be a smooth mapping. Then the pullbacks

(f * E , f ’4p, N ) is a pre-vector bundle over N in a canonical way.

PROOF.(VB1)

is a C’°-complete bornological lcs.

(VB 2 ) Put

This is linear and continuous, and the functional equations are easily
checked. QED

4.4. Note that yet we do not know whether certain canonical mappings like

the projection p : E -&#x3E; M of a pre-vector bundle or Dec are smooth -a scan-

dal ! It is not so easy to show that these are smooth without a circle con-

clusion, since they are interwoven into the differentiable structure them-
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selves. In order to treat this rigourously we give the following definition :

DEFINITION. Let M, N be premanifolds, let f : M -&#x3E; N be a mapping. We

say that f is o f class S1 if f* : S ( R , M ) -&#x3E; S ( R, iN’ ) makes sense and if

there i s a m appin g T f : T M , 7’ N su ch that d0 0 f* = Tf o d0.
Note that any Si-mapping is continuous in the natural topologies

of the premanifolds and that T f is uniquely determined by f and is homo-

geneous on each fibre (to conclude that it is linear as in 3.1 we need mo-

re). Furthermore for any 51-mapping f and any t in R we have

This can be proved as the same assertions in 3.1.

Let us say inductively that!: M -&#x3E; N is o f class S2 if f is of class

si and Tf is of class 51 too, and that f zs 5k if f is SI and T f is

5k-l, for each finite k . Let Sk( M, N ) denote the set of all Sk-mappings
of M into N. Clearly composites of Sk-mappings are again Sk , so we have
a category pMf k of premanifolds and Sk-mappings.

Note that S 1 is not an analogue of the usual notion C 1 : an S 1

mapping has to map smooth curves on smooth curves ; on a C°°-complete

bornological lcs a S 1-mapping is already Coo ; it might well be that in gen-
eral 5 1 equals smooth.

4.5. L EMMA. 1 f (Ei, pi, M ) are pre-vector bundles over the premani fold
M, then p r. : El XM E2 -&#x3E; E is 0 f class S1 for i = 1 , 2 .

PROOF.
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This diagram commutes :
1 2

The rest is clear. So pr 1 is S 1. The same for pr2’ QED

4.6. LEMMA. If ( E, p, M ) is a pre-vector bundle, then p : E -&#x3E; M is Sl .

PROOF. 

4.7. LEMMA. Let (Ei, pi , M ) be pre-vector bundles over a premanifold M ,

then we have a canonical bijection

given by the following diagram :

Look at the diagram in 4.5 to see that this diagram makes sense.

4.8. L EMMA. If (Ei, pi , M ) are pre-vector bundles over a premanifold M, ,
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is a pullback in the category pMf1 o f premanifolds and Sl.mapPings.
PROOF. Note first that ( a ) is a diagram in the category PMf1 by Lemma
4.4 and 4.6. Now let N be a premanifold and consider a diagram of the fol-

lowing form in pMf1 :

Since diagram (a) is a pullback in Set there is a mapping ( f , g ) fitting
commutatively into the diagram. It remains to show that ( f , g ) is Sl .
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Here we used the fact that the innermost square is a pullback by 4.7. Note

that this diagram shows that

holds. QED

4.9. LEMMA. L et (Ei, pi, M) be pre-vector bundles over a premanifold
M , let (F i, qi, N) be pre-vector bundles over N . Let f : M 4 N , g. : Ei -&#x3E; Fi

be Sl-mappings such that 

commutes for i = 1 , 2. Then the mapping

Use Lemmas 4.5 and 4.8 for the mappings

to prove this result.

4. 10. LEMMA. L et ( E , p , M ) be a pre-vector bundle, let N be a premani-

fold and let f: N , M be a 51-mapping (only). Then ( f * E , f*p, N ) is a

pre-vector bundle in a canonical way, and the diagram

is a pullback in the category pM f1 .
P RO OF . First we show that (f * E, f*p, N ) is a pre-vector bundle.

(VB1) ( f*E )n = Ef (n ) is a Coo-complete bornological lc s.
(VB 2) For c E S(R,N) define
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as in 4.3. The functional equations are easily checked.

So by Theorem 2.6, f * E is a premanifold and by 4.6 the projections p and

f *p are 51-mappings. It remains to check that p *f is SI . To see this
look at the following diagram (b):

Now we know that diagram t a ) is in pMf1 . ’We show that it is a pullback
in this category. So let P be another premanifold and consider a diagram
of the following form in pMf1 :

Here g, h are S1-mappings. Since diagram f a ) is a pullback in Set by

construction, there is a mapping ( g, h ) : P -&#x3E; f*E fitting commutatively
into diagram ( c ). We claim that ( g, h ) is 51. Vie use the following dia-

gram ( d ), in which we employ twice the universal property of pullbacks
and we indicate in the diagram why the squares are pullbacks.
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For further reference, we note that

4.11. REMARK. If ( E ,p, M) is a pre-vector bundle, then the mapping

DecE., : T E -&#x3E; TM XM E XM E is an isomorphism between the following two pre-

vector bundles :

In fact we used it to define the vector bundle structure on ( T F, II E , E ) in

the proof of Theorem 2.6. Clearly the following two pre-vector bundles

coincide
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the second pre-vector bundle being given in 4.2. But TM XM E XM E is a pre- .

vector bundle over M too, applying 4.2 twice. We now want to show that

DecE is actually a diffeomorphism between the two premanifolds.

4.12. L E MMA. Consider TM XM E XM E as a pre-vector bundle over M by 4.2,
so it has a canonical premanifold structure by 2.6. Consider on T E the

premanifold structure induced from the pre-vector bundle (TE, 17 E’ E). Then

DecE : T E -&#x3E; TM X E X E is a Sl-dilleomorpbism (isormrpbism in the cat-

egory PMf 1 ). 
M M

PROOF. Look at the diagram on page 44. Most of it is trivially seen to co-

mute (all squares involving d0 or 80 ). It remains to check that the poly-

gon on the left hand side commutes. So let

Then writing

we have

On the other hand we have

4.13. T H EO REM. If ( E, p , M ) is a pre-vector bundle over a premanifold
M , then p : E 7 M is smooth and
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is smooth with smooth inverse.

PROOF. By Lemma 4.12, Dec is S1 and Dec-1 is S1 . Looking at the

diagram in 4.12 we see that

By the Lemmas 4.5, 4.8, 4.9, all the mappings called Iso are 51 and all

Dec’s are 51 too, so T ( Dec ) is 51, so Dec is 52 . The same argument
applies for (Dec )-1 . By Lemma 4.6, p: E - M is SI and Tp = prl o Dec , 

soT pis 51 and p is S2 .
By Lemma 4.5, pr1 .- E’ XM E2 -&#x3E; E is Si and 

which is again Si ( pr 1, 2, 3 is Sl by 4.5 and 4.8 or 4.9), so pr 1 is S2 .
Now consider the situation of Lemma 4.8: if f , g are S2 , then ( f , g ) is

51 and T(/Bg) = ( T f , T g ) via some identifications along Dec and pr
in 4.7; since all these identifications are S2 already we see that T ( f, g)
is S2 . So by Lemma 4.8 itself, (f, g) is S2 . So Lemma 4.8 remains true
for S2, also its Corollary 4.9. But then all components in T ( Dec ) in

4.12 are S2 , so Dec is S3 .
But then p : E 4 M is S3 and we can repeat the argument ad infinitum.

QED

4.14. THEOREM. Let ( E, P, M ( F, q , M ) be pre-vector bundles and let

f : N - M be smooth. Then the following two diagrams are pullbacks in the

category pM f of premanifolds and smooth mappings,

PROOF. This was established in the course of the proof of Theorem 4.13
and can directly be read of the diagrams in the proofs of Lemmas 4.10 and
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4.15. THEOREM. Let (E, p , M ) be a pre-vector bundle. Then ( TE, Tp, TM)
is a pre-vector bundle too and is isomorphic (via DecE ) to the pre-vector

bundl e ( TM XM E XM E , p r 1 , TM) -

PROOF. Pt( TE, Tp, TM) is given, for

with c ( 0 ) = u x by the formula :

This satisfies all requirements.
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