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ON THE CATEGORY OF TOPOLOGICAL TOPOLOGIES

by Maria Cristina PEDICCHIO

CAHIERS DE TOPOLOGIE

ET GÉOMÉTR1E D1FFÉRENT1ELLE

CATÉGOR1QUES

Vol. XXV - 1 (1984)

SUMMARY. 

We study the main properties of the category 9 of all pairs ( Y, Y* )
with Y a topological space and Y4’ a topological topology on the lattice

of open sets of Y . By q, it is possible to classify monoidal closed and
monoidal biclosed structures on Top . 

INTRO DUCTION. 

Isbell in [8] gave the following classification for adjoint endofunc-
tors of the category Top of topological spaces. A pair F -1 G : Top ~ TQp
is completely determined by a pair ( Y, Y*) of topological spaces where

with 2 a Sierpinski space ; furthermore the set underlying Y * is, up to iso-

morphism, just the lattice of open sets of Y , and the topology of Y * is a

topological topology, that is, it makes finite intersection and arbitrary un-

ion continuous operations.
It is natural then to define a category 9 whose objects are all pairs

( Y , Y*) , and whose morphisms are all continuous maps f : X - Y , such

that f-1 : Y* ~ X" is continuous too.

Our aim is to study the main properties of such a category 9 .
Section 1 is completely devoted to recall definitions and properties

about topological functors and initially complete categories drawing mainly
on Herrlich [6, 7 1.

In Section 2, first we prove that ! is a small-fibred, initially com-

plete category on Top , in order to apply the previous results; then we

construct a monoidal closed (also biclosed) structure on 9 .
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Section 3 is devoted to the problem of classification of monoidal

closed structures on the category of topological spaces [2, 3]). As a gen-
eralization of our results about structures induced by adjoining systems
of filters [10], we give a complete description both of all monoidal closed

structures and of all monoidal biclosed structures on Top, relating them

to opportune functors from -1 to Top . The author is greatly indebted to

G. M. Kelly for many helpful conversations and advices.

1. For a concrete categor y over a base category X, we mean a pair

A , 11 where U: A - X is a forgetful functor, that is, a faithful, amnestic

and transportable functor.

A X-morphism c : X ~ Y is said to be a constant morphism provided

th at, for each Z in X and for all u , v E X ( Z , .Y ) , c . u = c . v . If X is

Set or Top this definition is just the classical one.

D EF INITION 1.1. A concrete category ( A , 11 ) over X is called a topolo-

gical category iff the following hold :

( i ) U : A - X is a topological functor in the sense of [6 ;
( ii) A is small-fibred;

( iii) every constant morphism U ( A ) --&#x3E; U ( B) underlies some A-mor -

phism A--&#x3E; B .

If the base category X is Set or Top then condition ( iii ) is equi-
valent to the following

( iv ) For any X with cardinality one, the fibre (J’  ( X ) is a singleton.

We shall say that a concrete category is a small- fibred, initially

completes category iff it verifies (i) and (11) of Definition 1.1 (see [1, 11] ).

If ( A , U ) and (B,V) are concrete categories over X , for a func-
tor F over X , F ( A, U ) --7 ( B , V ) , we mean any functor F i A - B with

V.F = 11 ,

D EF INITION 1.2. A functor F over X, F: (A, U) --&#x3E; (B, V), is called

an extension (of ( A , U )) if F is full and faithful.

DEFINITION 1.3. An extension E: ( A, U ) --&#x3E; (B, V ) is called a small-
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fibred, initial completion (o f ( A , U ) ) if (B, V) is small-fibred and ini -

tially complete.

The following list exhibits some properties of small-fibred, initially

complete categories over the category Top of topological spaces ; the same

results are well known for topological categories over Set [7].

PROPOSITION 1.4. I f ( A, U ) is a small- fihred, initially complete category
over Top, then the following hold :

( 1 ) A is finally complete ;

( 2 ) A is complete and cocomplete and U : A 4 Top preserves limits

and colimits ; 

( 3 ) An A-morphism is a monomorphism (epimorpbism) iff it is injec-
tive (surjective),’

( 4) A is wellpowered and cowellpowered;

( 5) U: A --+ Top has a full and faithful left adjoint D ( = discrete

structure) ; 

( 6 ) U : A 4 Top has a full and faith ful right adjoint K ( = indiscrete

structure) ,

( 7) For any A-morphism f, f is arz embedding i f f f is an extremal

monomorphism i f f f is a regular monomorphism , f is a quotient map iff

f is an extremal epimorphism i f f f is a regular epimorphism ;

( 8 ) For any topological space X , the fibre U -1 ( X ) of X is a small

complete lattice ; 
. ( 9 ) Any A-object A , with U A 1:- ø and A = D U A, is a separator;

( 10 ) An A-object A is a coseparator iff there exists an embedding
of an indiscrete object with two points into A ;

( 11 ) An A-object A is projective i f f A = D U A , 

( 12 ) An A-object A is injective iff U A A O and A = K U A .

P ROO F. ( 1 ), ( 2 ) and ( 3 ) follow from [6 ], Sections 5 and 6.

( 4 ) is true for Top is well- and cowellpowered.
( 5 ) and ( 6 ) follow by Th eorem 7.1 of [6 ] . 

( 7 ) follows easily by the definition of regular and extremal morphism.

( R) For any pair Ax , Ax of objects in U-1 ( X ) , let us put
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A x l1x iff there is a A-morphism g: A x ,7C’ with U(g) = IX ;

with this order relation, U-1 (X) forms a small complete lattice and, for

any family ( Ai x )i E in the fibre, inf ( A ix ) is the 11-initial lifting of the

source

( 9 ), ( 10 ), ( 11 ) and 12 ) follow by properties of discrete and indiscrete

structures. 0

2. Let us recall the following definition from [8]. 
A topology 7’ on the lattice 0 Y of the open sets of a topological

space Y is a topological topology iff it makes finite intersection and ar-

bitrary union continuous maps (we use the symbol Y" for the set O Y top-

ologized by T ). Isbell [8, 12 ] has proved that any pair of adjoint endo-

functors F j G of Top is determined (up to functorial isomorphism) by a

pair ( Y, Y*,), where Y = F ( { * }) and Y*=G(2),with 2 aSierpinski

space ; furthermore G(2) has, as underlying set, just O Y (up to bijec-

tion) and Y* is a topological topology on this lattice.

We define a category 9 t = Isbell category) as follows :

Objects of 9 are all pairs (X, X*), with X c Top and X * a topological

topology on OX. An g-morphism f : (X, X * )--+ ( Y , Y *) is a continuous

map f : X--+ Y such that f-1 : 0 Y --&#x3E; OX is continuous from Y * to X * (we

shall write f * for f-1 ). We call V the forgetful functor V : 9--+ Topo def-

ined by

and we call U the forgetful functor U:9--+ Top defined by

Then, if Adj denotes the category whose objects are the pairs F U CT of

adjoint endofunctors of Top , and whose morphisms are the pairs of nat-

ural transformations

(a,B ): ( F, G)--&#x3E; ( F’ G ’ ) , with a: F % F’ and B: G’ --&#x3E;G

Isbell’s result implies the following theorem : 

THEOREM 2.1. T’he categories Adj and 9 are equivalent.
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P ROP OSITION 2.2. ( 9, LI ) is a stitall-libred, initially complete cat-

egory over Top .

P ROO F. If ( Xi , X*i) is a family of I-objects and

is a sink in Top , we denote by X* the set OX with the initial topology
with respect to ( f*i )i E I . To show that X* is a topological topology, it

suffices to consider the following commutative diagram

and to apply properties of the initial topology to the continuous composite

r i X f*i ) (the same applies to the union map).. Since, for any

h *: Y* -&#x3E; X* is continuous iff f*i . h * is continuous for any i , then h is

an 9-morphism iff h. fi is an q-morphism (for any i ). This shows that (X, X*)
is the q-final structure on X with respect to (fi)i E I .

Any finally complete category is initially complete ; if

is a source in Top and 4) denotes the following set:

is a topological topology on 0.B, and

is an 4-morphism for any i }

then the 9-initial structure on X with respect to ( gi )i E I is the 4-final

structure on X with respect to all the functions 1 : (X, X*)--&#x3E; X, X*E O.

0

REMARK 2.3. If S is an open set of a topological topology X* and r, s,

are objects of X * such that r ( Sand s 2 r , then s c s . Consider the cont-

inuous map ; since U-1 ( S ) is open in the topological

product , then there ex-
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ists a neighborhood U c U-1 ( S) of ( rn ) with

and 7"7 , 15.;:; h open sets of X* containing r. The sequence

n E N’ with tn = r if n = l1 , l2 , ... , lh and tn = s otherwise
is in U r ’ so 5 is in S.

Note that a construction of 9-initial structures by Top-final struc-

tures generally fails.

As an example, consider a constant map k : 2 --+ U ( X , XI), with

 (X,X*)E g, and denote by 3 = 0 , 1, 2} the ordered set O 2 . Since the

set 10, 2 is open in the final topology 2 *f on 3 with re spect to the map

k t: X--+ 3 , it follows, by Remark 2.3, that 2 *f is not a topological topol-

ogy, so, if (2,2*) is the g-initial structure with respect to k , 2*  2f* .

By Theorem 2.2, Proposition 1.4 can be applied, hence complete-
ness and cocompleteness of q follow, where limits and colimits are ob-

tained from limits and colimits in Top by q-initial and g-final structures

respectively, with respect to the maps of the limit (or colimit) cone of Top.

Again by Proposition 1.4, U: g --+ Top has a left adjoint D and a right ad-

joint K with the following properties :

for any X E Top and ( Y, Y * ) E g. If we denote by ( X , X*D ) the discrete

structure D ( X ) and by (X, X*) the indiscrete structure K ( X ) , then

X* and X4, determine, resp., the coarsest and the finest topological top-D K

ology definable on OX . For X = 1* 1, the fibre

(where 2 denotes an indiscrete space with two objects), hence I is not

topological. Since Top is topological over Set with the forgetful functor

U : Top 7 Set , then I is small-fibred, initially complete over Set with the

forgetful functor W = U . U . We write D and K for the left and right ad-

joints to FJ and D and K for the composite functors D . D and K . K .
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For X , Z E Top and ( Y, Y* ) E g , the symbol X ø Y denotes the

set U ( X ) X U ( Y ) with the topology O ( XO Y ) = Top ( X , Y*), and the

symbol [ Y, Z] denotes the set Top( Y, Z ) with the initial topology with

respect to the maps

defined by

[8, 10]. Furthermore, from now on, we shall use letters A , B , C to de-

note g-objects

J will be the g-object D ({ * }) = ({ *} , 2) and I the g-object

THEOREM 2.4. The category I admits a structure o f monoidal closed

category [4 ] (q, o , 1, {-, -}) with

’wherp [Y, Z * ] is the set t O [ Y, Z I with the final topological topology
with respect to the maps { PS: Z*--+ 0[ Y, Z !SfOY*’ defined by

P ROO F. Since the initial topology on Top( X, Y*) with respect to all the

maps {lS} S E O Y* is a topological topology (see Theorem 2.2), then the

tensor product object is in 9. For g-morphisms f A --+ A’ and g : 9 4 B’

we define

as the product f X g . If r : X’ --&#x3E; Y’4’ is an open set of X’ O Y’ , then

hence f X g: X O Y --+ X’ O Y’ is continuous ; to prove the continuity of

( f X g ) *: [ X’, Y’* ]--&#x3E; [X, Y *] , it suffices to apply properties of the initial 

topology. I = ( { *} 2 ) , so

The associativity of o follows from Proposition 2.3 of []0], for
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As for the internal hom we get the final topological topology [ Y,Z]*as in

Theorem 2.3 and the 4-morphism {f, g}: {B, C}--+ {B’, C’ j } is hom ( f , g ) ,
for any f : B ’ --+ B and g : c » C’ . If B = ( Y , Y*) 6 q , it is known by [8] , 
that

Let us denote by k: X --+ [ Y, Z] the map o ( h ), for any h:X O Y--+ Z.
h * is continuous iff the following composite maps ts

are continuous, for any S E 0 Y" , but, for the commutative diagram

and, by properties of the final topological topology, ts is continuous (for

any S ) iff k * is continuous; hence

and - o B - {B, -} for any R f g, o

We end this section with two further comments on Theorem 2.4.

The tensor o is not symmetric, for there exist non symmetric monoidal

closed structures over Top (for example Greve structures [5 ]), induced by

(g , - o -, I, { -, - }) (see Section 3). A o - preserves coproducts and co-

equalizers for any .4 f g, then by Freyd’s Special Adjoint Functor Theorem,
it has a right adjoint, hence the g-structure is biclosed.

3. Consider Top as a concrete category over Top itself :

PROPOSITION 3. 1 (see also [10}). A monoidal closed structure on Top,
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is equivalent to a functor over Top, F : ( Top , 1 ) --+ (g, U ) such that

PROOF. By [8) ] (or [12 ]) ,

for X, Y, Z f Top . From Proposition 2.3 of [10], ( i ) and ( ii ) are equi-
valen t to monoidality of ( To p , - D -, {*}). 0

Then, for any monoidal closed structure

the associated functor F is strict monoidal and the pair (g, F : Top --+)
is a small-fibred, initial completion of ( Top , 7 ). Further the monoidal

structure (g, - 0 - , I) restricted to the full subcategory F ( Top) = Top ,
is just (ToP, - D-, {*}) .

EXAMPLES. The canonical symmetric monoidal closed structure on Top

(separate continuity and pointwise convergence) is determined by F ( Y ) =

( Y, Y4) where the topology of Y* is generated by the family of all prin-

cipal ultrafilters of open sets. Similarly the a-structures of Booth and Til-

lotson [2 ] and Greve 5] are obtained associating to any Y E Top the top-

ological topology generated by the family

where  h ( X) &#x3E; denotes the set of all open sets of I’ containing h ( X ) .

PROP OSITION 3.2. A monoidal biclosed structure over Top is equivalent
to a pair of functors over Top, ( F, G ): Top--+ g, such that F satisfies

( i ) and ( ii ) of Proposition 3. 1 and V.F -l V °. G °: Top 4 Top ° .

PROOF. If

is a monoidal biclosed structure , F and G are defined by
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Sin c e, for X , Y , Z c Top,

then if Z= 2,

so V . F -l V ° . G ° . Conversely, F determines a monoidal closed structure

and G determines an adjunction -DY -l  Y, - &#x3E;&#x3E; with

V . F -l V ° . G ° implies

Since

and (2,2) is a strong cogenerator of Top , then YDX = YD X, for any

X, hence Y 0- -t «Y,"», for. any Y. 0

Observe that a symmetric monoidal closed structure over Top is

determined by a pair ( F, G ) with G = F.
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