CAHIERS DE
TOPOLOGIE ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

DAVID B. LEVER
Continuous families : categorical aspects

Cahiers de topologie et géométrie différentielle catégoriques, tome
24,n°4 (1983), p. 393-432

<http://www.numdam.org/item?id=CTGDC_1983__24 4_393 0>

© Andrée C. Ehresmann et les auteurs, 1983, tous droits réservés.

L’acces aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique I’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CTGDC_1983__24_4_393_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

CAHIERS DE TOPOLOGIE Vol. XXIV-4 (1983)
ET GEOMETRIE DIFFERENTIELLE

CONTINUOUS FAMILIES : CATEGORICAL ASPECTS
by David B. LEVER

CONTENTS.

0. Introduction

1. Continuous families

2. Topological categories

3. Associated sheaf functor

4. Main result

5. Sheaves of finitary algebras

References

0. INTRODUCTION.

Let Top denote the category of topological spaces and continuous
functions, Set denote the category of sets and functions, and SET denote
the Top-indexed category of sheaves of sets (see Section 1 for the defini-
tion of SET or see [16] for the theory of indexed categories). Although
SET has an extensive history [8] its properties as an indexed category
have been neglected until now. Accepting the view of the working mathema-
tician [9, 11] that a sheaf of sets on a topological space X is a local
homeomorphism whose fibers form a family of sets varying continuously
over the space, the theory of indexed categories provides a language in
which SET is Set suitably topologized, in that we have specified a «con-
tinuous function» X » SET to be a sheaf of sets on X. When Set is iden-
tified with the category of discrete topological spaces, we get SET! = Set.
Guided by our view that SET is the «category of sets» of the Top-indexed
world, this paper investigates some of the category theory of this Top-
indexed category.

The importance of the category SETX of sheaves of sets on a top-

ological space X was emphasized by Grothendieck [2]. Later, Lawvere-
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D.B. LEVER 2

Tietney topos theory discovered the relationship between geometry and
logic [18]. In the wake of the methods of topos theory, the last decade
has seen considerable interest in categorical topology, a subject arising
out of the older wish to have universal function spaces [17], while in [14]
Niefield has characterized the admissibility of the exponent of a relative
function space and she has shown local homeomorphisms fit into the pic-
ture. If SET is to be a convenient setting for mathematics, analogous to
the discrete case, the category SETC of continuous functors [13] on a
topological category C (category object in Top [1,6, 7]) should be a
Grothendieck topos. This has been established in [12].

Below, we see SET is well-powered, cowell-powered, and has
small homs. If C is a finite topological category, SETC is shown to be
equivalent to a presheaf category over Set. Our main result characterizes
the Top-indexed functors SET T - SETD in terms of the preservation of
filtered colimits at 1 when T is a topological space and D is a topologic-
al category. In particular, if a «continuous functor» Set > Set is taken to
be a Top-indexed functor SET - SET, it is just an ordinary functor
Set » Set preserving filtered colimits. Also, it follows the Top-indexed al-

gebras of triples on SET are the same as the finitary algebras on Set.

1. CONTINUOUS FAMILIES.
The following is well known and easily established.

PROP OSITION 1.1. ( 1) All homeomorphisms are local homeomorphisms.

(2) If a and B are local homeomorphisms and composable, Ba is a
local homeomorphism.

(3)If a and B are local homeomorphisms and a = B8, & is a local
homeomorphism.

(4) 1f $- X is a local homeomorphism, for all continuous functions
f:Y > X, the pullback f*S > Y is a local homeomorphism.

(5) §-1 is alocal homeomorphism iff S is a set (we identify Set
with the category of discrete topological spaces).

(6) The image factorization of a local homeomorphism results in two
local homeomorphisms.

39%



CONTINUOUS FAMILIES: CATEGORICAL ASPECTS 3

(7)1f

is a commutative diagram in Top with a a local homeomorphism, a is an
isomorphism (monomorphism, epimorpbism) iff for each point x: 1> X the
fiber x*a: x*S > x*S' of a over x is an isomorphism (monomorphism,

epimorphism). O

Benabou [3] has defined the notion of a calibration on a category
in order to formalize the notion of relative smallness. The first four pro-

perties stated in 1.1 assert

PROPOSITION 12. The class of local homeomorphisms calibrates Top. U

D EFINITION, The Top-indexed category SET is given at X ¢ Top by tak-
ing SETX to be the comma category of local homeomorphisms with co-
domain X, i.e. sheaves on X, and by taking substitution along f: Y » X

to be the pullback functor [ *: SETX 5 SETY.

PROPOSITION 1.3. SET has stable monomorphisms, stable subobjects,
stable epimorphisms, stable quotients, stable equivalence relations, stable

finite limits and stable colimits.

PROOF. By stable monomorphisms we mean: if §'>- S is a monomor-
phism in SETX and if f: Y-+ X is a continuous function then f*S$' » f*§
is a monomorphism. The other stability properties are defined in the same

way [16]. These stability properties are well-known [2]. O

DEFINITION. The Sierpinski two-point space 2 has underlying set {1, 0}
and topology of {1} open but not closed.

D EFINITION. For X ¢ Top, 2y~ X is proj: 2XX » X, and ty: X » 2y is
IXX:X-»2X%XX.

PROPOSITION L4. ty: X > 25 is an open inclusion, so it is a subobject
of 1in SETX. O
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D.B. LEVER 4

PROPOSITION 1.5. For a local homeomorphism S » X and continuous

function {: Y > X, there are bijections

s§y_._<_‘2_.2x
X = X

subobject U> f*S in SETY.
These bijections are natural in the variables S > X and f: Y X. 0O

Recall from [14] a continuous function C » X is cartesian if for

each continuous function Z » X there is a continuous function ZC » X and

bijection
Y zC
X = X
YXC Z
| |
X = X

which is natural in the variables Y > X and Z » X. In [ 14], it is shown

C » X is cartesian iff there is a continuous function 2% -» X and bijection

c
Y 2%
X = X

YXC 2
X 1"
X = X

which is natural in the variable Y » X.
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CONTINUOUS FAMILIES: CATEGORICAL ASPECTS 5

Additionally, in [14] it is shown every local homeomorphism is
cartesian.

Recall from [16] the Top-indexed category SET is well-powered
if for each X ¢ Top and S ¢ SET X there is a continuous function subX §-X

and bijection

Y <U> subXs

X bl X

stable subobject U > [*§ in SETY
which is natural in the variable f: Y » X.

PROPOSITION 1.6. SET is well-powered.

PROOF. An object of SETX is a local homeomorphism § » X, which as
we have noted is a cartesian function. Therefore if S ¢ SETX , we have the

natural bijection B

x = -~
—

= X

YXS 2
X 1"
X = X

This in combination with Proposition 1.5 gives the natural bijection

<U> S
X = X

subobject U > [*S in SET Y.

Therefore, SET is well-powered. (]

Recall from [16] the definitions of cowell-poweredness and small

homs.
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D.B. LEVER 6

PROPOSITION 1.7. SET has small homs and is cowell-powered.
PROOF. SET is well-powered by Proposition 1.6 and has finite stable
limits by Proposition 1.3.

Let a: S-S’ be a morphism in SETX, X ¢ Top . Let Ma > X be
the equalizer of

<(a2a)>
X

e
<lgx g>
S'

subX(SsX'S) .

Then f: Y » X factors through M > X iff f*4: f*S§> [*§"is a mono-
morphism. Let I >-»> M be the equalizer of

<]* >
MaS

M
M sub a(M;S').

a

= M ¥
\IMaa>
Then /: Y > X factors through I > X iff f*a:f*S > [*$" is an iso-
morphism.

Now let § and S§' be any two objects of SETX, XeTop. Let
P > (subX Sx§')*SxS*
in SETSub 5% 5" bo e generic subobject of $X ', and let
p:P—s (subXsxs')*s

be the projection. We have natural bijections

la>
Y Ip
A‘q
p
f '
subX(SXS')
_ |
X = : X

subobject <g>*P > f¥/Sx §')Zs [*Sxf* S in SETY

such that proj: <g>*P - f*S is an isomorphism

Morphism a. [*S - [*S' in SETY.

Therefore, IP > X serves as the object of morphisms § - §'. Hence, the
Top-indexed category SET has small homs.
For cowell-poweredness, let S ¢ SETX and R >— (subXSX S)¥SXS
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CONTINUOUS FAMILIES: CATEGORICAL ASPECTS 7

be the generic subobject of $XS. Let (subX SXS)* S — Q be the co-
equalizer of the pair of projections R ____ (subX §x5)* S, and let
K T (subX$XS)*S be the kernel pair of (subXSX§)*S—» Q. We
have the comparison

—_—

R~ (subXsx$)*s

|:

(subXSx§)* s

0

—————

K

making the corresponding squares commute. As above, or as in [15], let
Ig > subX SX S be the subobject in Top such that <U>: Y » subX §x§
factors through Ig >— subX §X S iff <US*Q is an isomorphism. We have

natural bijections

X ——=— X in Top

kernel pair R—_f*S in SET Y

quotient [* S— ({*S)/R in SETY.
Therefore, Iy > X will serve as epiXS » X. So SET is cowell-powered. O
Let C > X be cartesian. Taking a point x: I » X, we get a bijec-

tion

open subset U C x*C.

Therefore, the underlying set of the fiber of 2)0( > X over the point x is

isomorphic to {open UC x* C}. In [14], a description of a topology on
Il { open UC x*C}
xeX

making
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D.B. LEVER 8
proj: Il {openUC x*C} — X
xeX

isomorphic to 2§ > X in TOPX s given (TOP denotes the indexing of
Top by itself). When X = 1, this topology is called the Scott-topology;
for general C » X, we will call this topology the Niefield- Scott topology,
signaling its appearance by the notation §(C) > X. In [14] a subbasic
open HC §(C) is given by the requirement that it be saturated, binding,

and have fup - saturated means if x ¢ X then
Uex*H and UCVCx*C imply Vex*H,

binding means if UC C is open then {x | x* Ue x*H} is an open subset

of X, and fup means if x ¢ X then

(v Ua)ex*H implies ( U U, ) e x*H for some finite subset F of A .
acA aeF

Let §$ > X be a local homeomorphism. If

W—3S ¢

]

W S ogen X

is a local section of § » X, let the subset H_ C 6(S§) be defined at x ¢ X
by

* _
st_

[Q if x*W
fUCx*S | s(x)eU} if xeW.

Clearly H is saturated and has fup. It is binding because if UC § is
open, then

{x | x*Uex*H } = s71U.
Therefore, H, is a subbasic open of O(S) for each local section s of
§ > X. Conversely, let HC 0(S) be saturated, binding, and have fup.If

Uex*H is non empty, then by the three given properties we can choose

a finite set of local sections

W, >—Les, ., W o—B =g
= | |
W s open X w Oopen X
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such that

Si(x)e U foreach i =1,...,n and Hslr‘\...mHS C H.
n
On the other hand, if x ¢ X then the only neighborhoods of @ in 8(S§) over
x are (6(S)»> X)IW for neighborhoods W of x. Therefore, together
with the inverse images of opens of X along 6(S)-» X, a subbasis of

6(S) may be taken to be subsets H C §(S) defined by local sections
s of §- X.

THEOREM L. L If X ¢ Top and S ¢ SETX, subX§ > X is
1. an open function,
2. a closed function, and

3. a cartesian function.

PROOF. Because A(S)-> X and subX § > X are TOP X homemorphic, we
may work with the former of these,.

1. To see G(S)~> X is an open function, it is enough to see the image
of a basic open is open. So let H = Hn..nH where H,...,H C 6(s)
are saturated, binding and have fup. Let x¢ X and V, ¢ x*H. Then V,
is an open subset of S, and we can find an open subset V of § such that
x*V = V_. By the binding property,

W=1{x"]| x*Vex'*H}
={x" | x*Vex*H In..olx' | x'*V ex'*H }

is an open subset of X. But x¢ W and W is a subset of the image of
H > X. Therefore, §(S)» X is an open function.

2. Let CZ 6(S) be a closed subset and let V be the complement of
C.If @C S is the empty subset of S then from the pullback

] |

<P>*vy 1%

we see x¢<@>*V iff the fiber x* V contains <@®>(x) as an element.
Now x*V is an open subset of x* ( S) ; therefore, all of x*9(S) if and

only if x¢ <@>* V. Therefore, the image of C > X is the complement of

%04



D.B.LEVER 10

the open subset <P>*V of X. Hence, §(S) - X is a closed function.
3. In [14], it is shown that a continuous function Y » X is cartesian
if for each
xoe X, open U

ISV J
x, C %% Y, and yeUxa

there is HCO(Y) such that U, ¢H and H is saturated, binding, has
0

fup, and ~HC Y is a (not necessarily open) neighborhood of y ; here,

NH is defined at x ¢ X by

x¥*nH =

[x*Y if x*H:Q

AV if x*H#ZO.
Vex*H

We will apply this to show 6(S) - X is cartesian. For purposes of nota-
tion, let Y > X be 6(S)~» X. Fix

xoeX, open U, Cx3 Y, and yeU, .
[ []

Now y is a subset of x¥ §. First suppose y is the empty subset of x¥§.
Then U"a isall of x¥ Y. Define HC O(Y) by x*H ={x*Y}, x¢ X, so
x*H is a singleton for each x ¢ X. Then U"a ex¥H. Also nH =Y is a
neighborhood of y. H is saturated because x* H is the maximal subset
of x*Y for each x¢ X. H has fup because x*Y is compact for each
x¢ X. To see H is binding it is enough to see if W is a basic open of Y

then {x | x*Wex*H} is open. But if W:Hsln...mHs for local sec-
n

tions Spieeas of §- X then

n
{x| x*Wex*H} = {x | x*W=x*Y}=0
because for each xe¢ X, <O>(x)ex*Y while <P>(x)¢x*W, and if
W:(Y»X)'IV for some V C X then
V=1{x]| x*W;x*H }.
Therefore, H is binding. Now suppose y is not the empty subset of S.

Then there are local sections

S
L B SN S

V] > Ogeﬂ X Vn open X

302
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such that

xo€V;Nn...AV,, and yex¥ (Hslr\...mHs )Jcu

Let H C 6(Y) be defined at each x¢ X by

@ if x#Vlﬂ.. mV"

H, =
x
tw, ogen"*y‘ x¥(H,mo. nH )CW }if xeVyn...nV .
Then Hslm... mHsn C AH and since nyslﬁ ann, ~H is aneigh-

borhood of y. Clearly H is saturated. For fup, note x*(Hsln .nH_ )
n

is compact for each x ¢ X because either it is emptyor if x ¢ V; n... NV,

then x*(H;~... "H_) is homeomorphic to the Scott-space of
(x*S) ={s (x),....s,(x)}.

For binding, let WC Y be open. It is sufficient to assume W is a basic
open. If W = (Y > X)"1V for some open VC X then {x | x*Wex*H} is

VnVI M... mV_ which is open, and if W=H_, ... "H_, for some local
n SI S

m
sections
s’ s’
V; >—21—5 V! >——B—t§
Vll: Ogeﬂll V' o> o{gen X
m
then

fx | x*Wex*H} = {x| xe(Vin..av,nv,n..nv )

and
Usj(x)ousi(x)l Clsp(x), s, ()1,

which is open. Therefore, H is binding. Hence, §(§) > X is cartesian. O
Recall from [4] a continuous function P » X is proper if for every

continuous function f: Y+ X, f*P » Y is a closed function; also, it is

proper iff it is closed and has compact fibers.

COROLLARY. For each X e Top and Se¢ SETX, subXssX is a proper

function.

PROOF. If f: Y~ X is a continuous function then we have a pullback

%08



D.B. LEVER 12

subY/"‘ s . subXs

|

y [ .x.

The result follows from Theorem 1.1.2 applied to these pullbacks O

PROPOSITION L8. If X is a topological space and Se¢ SETX then the
/Y

direct image functor SET Stb 5 SETX preserves filtered colimits.

PROOF. For notation, denote subXs > X by 7. Let C be a small filtered

subXs X
category and F: C > SET *% be a functor. In SET*, we have a comp-

arison e: lim m.oF~ n*limF coming from the universal property of
> >

limm > F. We will show ¢ is both epi and mono, so iso.
>

Fix x ¢ X and suppose that

s .
V>*>rr*lsz

| |
v >—oken____ x

is a local section with x ¢ V. By adjunction, we get a local section

alv — 5 .limF
>

| |

n-1V>———-—>subXS
Choose c ¢ C such that §(<0>(x)) is in the image of PR (c):F(c)-»lim F.

Let

W——1L ~F(c)

] |

w >—M>subxs

be a local section such that

pF(C)Ot(<¢)>(x))=§(<Q)>(9‘))'
Let U=Wnr=!y. Since <0>(x)¢ U, we have r~!xC U. Since 7 is

proper, U is an open neighborhood of x. We have the commutative dia-

gram

%0%
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limn oF — €&, g limF
5> ¥ * 5

t

T F(c)

1 s

*
n W

®
l . \
ﬂ*U

~

w

C 1%

Therefore, ¢ is an epimorphism. Next, with x ¢ X fixed, suppose

- Sr
Vv lim ™o F
Sy -

with x ¢V such that eos; =¢o sy. By the filteredness of C we can choose
c € C and local sections

’

S

V'>

>-%'>”*F(C)

Vv open X

such that x ¢ V' C V and the respective squares of

51
Vv limﬂ*F
52 ->
c ' pn'*F(c)
_ %1
V'———T__. 7. F(c)

commute. Because ¢ os; = ¢o s, and because
1 2

limp Fe' €, p limF
> * *

Pﬂ*F(c)I 7L PF(c)
m,F(c)

%05



D.B. LEVER 14

commutes, by adjunction we get the commutative square
ar

S
nlyvr— "L _F(c)

§é PF(c)

Fle)—LELe) L limF .
Since
PF(c)°S1(<P>(x))=pF (o)0 85(<D>(x))
there is a morphism a: ¢ > d in C such that
F(a)0$7(<P>(x)) = F(a)o$4H(<O>(x)).

Therefore there is an open neighborhood U of <@>(x) such that U< nlye

and

ar

c -1y, S1
U>—>= g~V F(c)

-]

iy F(a)

!

F(c) F(a) F(d)
1

commutes. Since z~'xC U and r is proper, n, U is an open neighborhood

of x, and we have a commutative diagram
s .
Vv limpg_ F
52 > *

C Pr F(d)

H*F(a)o.s"lz n*F(a)oSé

a U

« rr*F(a')

Therefore, locally at x, s; = s,. Hence, ¢ is a monomorphism.

Therefore, w, preserves filtered colimits. [

2. TOPOLOGICAL CATEGORIES.

DEFINITION. A topological category is a category object in Top ; that is,
a topological category C has a topological space C, of objects, a top-
ological space C; of morphisms, a continuous function id: C, » C; which

chooses an identity morphism 1, =id(c) for each object ¢ ¢ Co, cont-

%06
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inuous functions 9,: C; » Co and 9;: C; » C, which assign to each mor-
phism f¢ C; its domain g, f¢ Co and its codomain J;fe¢ Co, and a cont-
inuous function o: C, » C; of composition where

L

2 ¢y
c, ! Co

is a pullback in Top, and with o(f, g) written go [, satisfying the com-

/
1/\ fo]c“—:/:lc.o/;

c c

f
_r .
bo
3. g\lg \g\ (hoglof =ho(gol).

Cll -———————-VCIII

b

mutativity condition :

In [1], 2.6, Adams has defined a topological category in the same
way as we have above, but Ehresmann knew of them earlier [6, 7].

Topological groups, topological monoids, topological groupoids,
and topological preorders provide examples of topological categories often
arising in mathematics. If X is a topological space, we get a topological
groupoid

Proj(1,2) Proj(1)
Proj(1, 3) Diag
i( XX X g

XX XXX

Proj(2,3) Proj(2)

and if we take from this the subspace of X XX consisting of pairs (x, x')
such that x is in the closure of x' as the morphisms of a subspace-subcat-
egory, we get a topological preorder which we will denote by < x- Top
inverse limits of finite set categories, the profinite categories, provide

another important class of topological categories [10].
DEFINITION. A continuous functor (§,& ) from a topological category C

407



D.B. LEVER 16

to SET is a local homeomorphism S » €, and a continuous function

Ixs —& Lg%

C,———C;
(necessarily a local homeomorphism as well) such that for each object ¢
of C,

&(1.) :&10 =1 xg
and for each composable pair of morphisms (f, g)¢ C ,

6(gof)=6ppof)=Egoby-

In the language of [16], a continuous functor from a topological
category C to SET is an internal functor from C to SET. Continuous
functors on a topological category are used in [13] to construct vector

bundles.

DEFINITION. A continuous natural transformation between two continuous
functors (S,&) to (§',&') on a topological category C is a morphism

n: S~ S"in SETC such that the diagram

d%q

0 '

ay S ags

% j&'
din

* _ % Cr

a%s 9%s
. ¢,
commutes in SET *.

Continuous natural transformations are composable and each cont-
inuous functor has an identity continuous natural transformation. If C is
a topological category, we will let SETC denote the category of continu-
ous functors from C to SET and continuous natural transformations of
such. This definition of SETC is guided by the ideas of [16]. From [12],

we have :

THEOREM 2.1. If C is a topological category, SETC is a Grothendieck
topos; if
b:max().(o,card 1 [P>—-—»86“U})

ogen 0
408



CONTINUOUS FAMILIES: CAT EGORICAL ASPECTS 17

then the set of continuous functors (S, &) such that S can be covered by
a set of local sections whose cardinality does not exceed b is a setof

generators of seTC. O

DEFINITION. If C and D are two topological categories, a topological
functor F:C > D is a triple of continuous functions ( Fy, F;, Fy) making

the corresponding squares commute in the diagram

Cy ¢ Sy
Fy ‘Fz lFo
D, D, oy

If F: C> D is a topological functor, a continuous functor (S, & )

in SETD may be pulled back along F to a continuous functor
F¥(S.&) = (F}S,F}&)eSETC.

We get a geometric morphism (F_, F*): SETC 5 SETD ; the existence of
F, uses the special adjoint functor Theorem, which is necessary by its

use in the particular case Co, » C arising in the proof that the category
SETC is a Grothendieck topos.

DEFINITION. A finite topological category is a topological category such

that its space of objects and its space of morphisms are finite.

THEOREM 2.2. If C is a finite topological category then SETC is equi-
valent to a presheaf category.
PROOF, Define a diagram Ct in Set by taking CJ to be the underlying
set of Co and by taking C}" to be the underlying set of C; together with
new morphisms tC,C'-' C->C', C,C¢ ct , whenever C is in the closure
of C'in Co, and subject to tc,c=1¢ for each Ce¢ C4 and the commuta-
tivity conditions:

1. all compositions defined in C;

2.

t ’
c —GC' ¢

m\ ltcr,cvr

C ”n

%09



D.B.LEVER 18

t
d,f.0p8
do! 0" 07 . 9,¢
f , g
d:f,0;8

whenever [ and g are morphisms of C and f is in the closure of g.

+
Let SetC ' be the topos of all diagrams C*t 5 Set which respect any com-
positions defined for ct. Note, by freely generating a small category

from CT and dividing out by the proper relations, we get a small category

A

A + +
CTt such that SetC is equivalent to Setc . We will show SETC is

. ct L . ct
equivalent to Set by showing it is equivalent to Set

- - C ct C
First, we define a functor SET ~ > Set~ . Let (S,& )¢ Set~. For
Ce Co, let S be the fiber of § over C and for fe C;, let

Gf ) > S
f 9y
be the fiber of & over f. For C¢ G, , let S+(C) = SC. If C is in the
closure of C' in C, then for any local section
Ur—S 5§

| |

U>—0ten _ .

with C ¢ U then C' e U, and for any other local section
U—=S_ . s
U’ > ogen Clo

with C¢ U’ and s(C)=s'(C) then s(C') = s'(C'). Therefore, if C is
in the closure of C’, we have a function &""(zc c): stcc)>st(c’)
induced from the restriction of local sections at C to local sections at
C'. Clearly, &t (¢ =1 for each C ¢ CY , and

y (tc.c) stoc) foreach Ce n
(CJ+(tCI,C") o G+(IC,C') = &+(fc’c w)

for each C in the closure of C' and C’ in the closure of C" in C, . Sup-
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pose f is in the closure of g in C;. Then it must be that 9,/ is in the

closure of d, g and 9, [ is in the closure of 9, ¢ If U; is an open neigh-

borhood of f and

1 0

1 |

open
U, >—=oker . ¢,

is equivalent to 80* of a local section

|

UO )——%Ca

is a local section then s,

N
R—
UO

at aofg Uo ; that is
s =9ks .
1lu;nd §u, 050lU;nayU,
Therefore, since the points of (3‘5S)f and equivalence classes of local
sections of $» C, at 60/ are the same thing where the sheaf 66‘ S - CI
is concerned, the function
® o+ (9* > *

induced by the restriction of local sections of §5 S~ C; at f, makes the

diagram
aret(t )
0 dof,0
(355), 0f:%8" _ (55 $)g
+
& (3yf,398’
st(a,1) 0 -70f st(3,e)
commute, where d, is defined by the pullback
al
%S g )
C, % Co
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A similar diagram exists with respect to 9S> C; at f and g. Define
+ . (921 - +
&T(f) by(al)f,alfofrfo\ao)f’aof, and define &7 (g) by

’ ’ -1
(al)g,algoffg o(ao)g,aog.

By the continuity of &, if f¢ U and
s .
>
z’J af s
-___Open
U oy
is a local section, we get a local section

U &os a:]ks

| |

e —
U <, .
Since g ¢ U this implies the commutativity of

* ot
a7 é “azf,a]g)

(97 S), (955),
&f %
axet (g )

(955), of:90¢ (38 5),

Therefore, we have
&t (g) oct(ty 308 = (9,0, Ego () 3p6° G+(taof’aog)
=(9)g,5 406 °9o*5+”aof,aog) o(a;,rffaof
= (37)g,9, 001 67 (19 1.9 o6y ol 9)7g ¢ =

:5+(zalf,alg)oa+(/).

If / and g are composable (but not necessarily f in the closure of g) with
dog =09;f we have
-1 _ -1 ’ _ )

and

(902,051 (90 g1, 006"
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+ + _ ’, -1 ’ ’
— ’, — et
= (9Der,9,6r° Cs° (90)gs, 556 = & (81)
+ +
Therefore, (ST, &+) € Setc . This gives us the functor SETC - Setc .
In the other direction, let (S+, 6-"’) be an object of Setc+. Take
S > C, to be defined on the Setlevel as

st(c)) »¢c,.
proj (cyc " (C))

0
For Ce Co let U, denote the smallest neighborhood of C. Similarly, if
feCy, let Uf denote the smallest neighborhood of f. For x¢ U,, we have
tc,x: C»x in Ct.For ae ST(C), define a local section

S
C,a
D —————

'
Uc>—'—“—-’ Co

at x¢ U by sC,a("):5’+(‘C,x)(“)' Suppose SC,a(x)'—'SC',a'(") .
Then x¢ Uy and x¢ Uy, and for each ye U, , wehave the ¢t commuta-

tive diagram

C tC,x x tC',x Cc'
tC,yJ l‘x,y teny
= = '
y y y
Therefore, for any y ¢ U, , we have

sc,a(¥)=6T(1c J(a) =6V (1, jotp )(a)=
= &% (1, )61 (1 )(a)) =67 (1, )(sc 4(x)) =
= 6%ty )(sgua(x)) =6V (e, )68 (1, )(a)) =
=6V (1, yotgi N@) =6V (g, Na)=sc,u(y).
Therefore, collectively, the local sections SC,a make § > Co into a local
homeomorphism. Now for each f¢ C, identify the fiber (9* S)f with Sc?of

and the fiber (6’; S)f with Salf; this saves us from the involvment of
the isomorphisms (66 )f:aof and (61' )f, alf. Define a function
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&:0%55+095S by & =¢&t(f) foreach f¢ C;
We will show & is continuous. Let f¢ Cy.
* *
Uf C (80 Uaof)ﬂ(c? Ualf)'

A section

s
Uf>——L'L—’a*S

bY Sf’a = aéksaof,a |Uf . FOI' any g€ Uf’ we have

(Gosf’a)(g):(&oagsaof’a)(g)=G+(g)o€r+(taof,aog)(a)
- gt _ et _ gt +
=& (gotagf,aog)(a)~& (zazf,algof)(a)—& (t3,1,0,8'°6" (1)(a)

= %9,,6(£)(a)\918) = (3 53 f 6% (fya))(8):

Therefore, we have a commutative diagram
95 s
c % o Y07fia 5%
95 Y, 9g S

&

Uy
[

9fsg f.6% (f)(a)

*

97V,

Therefore, & is continuous. So now we have the functor Setc > SETC,
inverse to SETC - Setc+. Therefore, SETC is equivalent to Sett+ .0

EXAMPLES. (1) Let C be the topological category

idl z'do

FN_ Y,

HA%
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with topologies defined by taking the opens of {1, 0} to be
{o,t1}, tr, 04

(so C, is homeomorphic to the Sierpinski space) and by taking the opens
of {z'a'l, f ido} to be
The functions 60 and 61 are continuous because

3p101Y = tidy, i and 9;1{1}= lid;}.

The function id: Co » C; is continuous because it is a subspace inclu-

sion, and o: C9» C; is continuous because Cy is a subspace of C;X Cy,
0-1{id} = {(idy, id})}.

o l{fy = cidy 1), (fiidg)}= HixCc u g xtfing,,
and

0-1{id,, id,} = {(id}.id;), (idy, idy)} = {id;, idy}xidy, id, 3 NC,.

The topos SETC is equivalent to the category of presheaves on the cat-

egory freely generated by the graph

The absence of relations between [ and the topologically induced arrow

to, 1 arises because {f} is both open and closed. The Beck condition

c, 9 c
SET T —0% | ’

*
71

c c
ser 2—T0* ,gpr 1

c
does not hold for this topological category, for if S ¢ SET I then
(9F 39, S) =(8,, S)y=S; x5, while (m) n}S) =(n} S)f.idy) = So-
(2) Take C as in Example (1), but with topology on arrows given as

(0, 1id ), Lid,. [}, Lid,. [, idg}}.

d» 9; and id are continuous for the sam: reasons as before. Composition

%15



D.B. LEVER 24

is continuous because O'I{id1¥ = [(idl, ia’l)} and
0" 1tid,, f} = {(id}. id}). (id}. [). ([, idy)} = Lid), f}x C0C, .

In C* we must have the commutative diagram

because ido is in the closure of / and { is in the closure of id . It fol-
lows that f¢ CT is forced to be a left and right inverse to the topological-
ly induced arrow tg,1- Therefore, SETC is equivalent to Set. For use
later we note

CP <<, and SETC' < SETZ.

The Beck condition 9¥9, == g

190« o*ﬂ;‘ holds for this topological category,

c
because global sections of S ¢ SET I correspond by restriction to the

elements of the fiber of S at id,.
(3) C is as in Example (1), except the topology on C; is given by
{o, {idll, i {idl./}, {idl./. idOH-

All the maps 9, d ;, 7d, and o are continuous for the reasons given in

Example (1). In Ct we must have the commutative diagram

t t
1 0,1 0 0,0 0
ia, _ lz’do ]/
t t
0,1 0 0,1 1

because id, is in the closures of id; and f. Therefore, we see that if we
first apply the topologically induced arrow to, 1 then [, we must have
id,. This means f¢ C;' is a split epimorphism. However, there are no fur-
ther conditions.

As in Example (2), the Beck condition 0}‘ ao*—“an *,7;‘ holds

0
for this topological category.

(4) C is as in Example (1), except the topology on C; is given by
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(o, tid; 3, tid;. 1}, tid . idog, {idl./.idoﬂ-
All the maps 9, d;, id, and o are continuous for the reasons given in

Example (2). In Ct we have the commutative diagram

t t

0 0,1 1 0,1 0

/ = idl :’ido
t t

1 1,1 1 0,1 0

Therefore, [ is a retract in CT with tp 1 providing the retraction.
As in Example (1), the Beck condition 9%9,, ~>n, n} fails

for this topological category.

PROPOSITION 2.1. When {1,0} is given the topology {©,{ 1}, {1,0}},
there are only four topologies on {id,, [, id,} making
id, id,
Ny,

into a topological category.
PROOF,

dplt1y="tidy. 3}, 97701} =1id,}, oplto}=1{id,},

and  977{0} =1/, id,},

so {id;,f} and {id ]} are open while {id)} and {f,id,} are closed in
C;- {ido} and {f, idO} cannot be open because id is a continuous func-
tion and {0} is not open in C,. Therefore, the only possible neighborhood
of id, other then {id},[,id,} is {id}, id)} as in Example (1) and Ex-
ample (4), and the only possible neighborhood of [ other than {id,,f |
and {id;, [, idy} is {f} as in Examples (1) and (3). O

3. ASSOCIATED SHEAF FUNCTOR.

DEFINITION. A topological category C is filtered if
(1) it is nonempty,

(2) it is pseudofiltered; that is, for any two objects ¢, ¢’ of C,
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there is an object ¢’’ of C and morphisms ¢ > c¢” and ¢’'~c¢"”, and if

[ c'

8

is a parallel pair of morphisms in C, there is a morphism bh:c'> c” of

C such that hof =hog.

This definition may be abstracted to define a filtered category ob-
ject in a category with finite limits [S], in which case the condition of
nonemptiness becomes the requirement that C, > 1 be the coequalizer of

dJ

spaces over X ¢ Top, for C to be filtered it is not sufficient for each fiber

0 and 61 . If C is a category object of TOP X | the comma category of

x*C, x ¢ X, to be filtered because the comparison function
coeq(ao, 81) > X

may not be an isomorphism even though it will be both a monomorphism
and an epimorphism; as an example, take C but not X to have discrete

topology.

PROPOSITION 3.1. If C is a category object of SETX, it is filtered iff
each fiber x* C¢ Set, x¢ X, is filtered.

PROOF. Filteredness is preserved by substitution, so if Ce¢ SET X s
filtered so is x*C for each x ¢ X. Alternatively, suppose each fiber of
C is filtered. The only question is if coeq(d,,d;) > X is an isomorphism.
But each fiber of this comparison is an isomorphism by hypothesis, so the

result follows from Proposition 1.1 (7). O

Let X¢ Top and let @y be the partially ordered set of open sub-
sets of X. Let ev: 4P X X » 2 be the evaluation morphism, and define

(pysmy): e"XP >— 0%PX X by the pullback
O§Px X —&— 2

(pX, y) pen

&

PROPOSITION 3.2. For a topological space X, the projection Px: 5‘)’{" > X
presents €§F as a filtered category object of SETX.

%48



CQONTINUOUS FAMILIES: CATEGORICAL ASPECTS 27

PROOF. The object part of ¢ ¥ is homeomorphic to the Top coproduct

UUO U, and ry is the obvious projection, so my makes ¢$F into a cat-
p ;
X

egory object of SETX . For x¢X, x* ¢§P is equivalent to the partially
ordered set of open neighborhoods of x, so x* ¢} is filtered. The result

follows from Proposition 3.1. O

Let X e Top and Ue @y . The inclusion e » €§F defines a sub-

object of 1 in SETE?, and if by » 0%f is the representable correspond-
ing to U, we have 5, ~ §{f and a diagram of pullbacks

op—EL o TX

L, b

Ty
op
bU E'U U

Also, if f: Y > X is a continuous function, we have a commutative diagram
o f'l o
0% 0%

N
134 Ji /*E%P_.L..‘?

Px

my 'rrf P.b Ty
y— I . x

providing us with some notation.
Let Xe¢ Top, and F: D> C be an internal functor between two
category objects in SETX . Recall [5] that F*: SETC > SETD has a left

adjoint Zim, the left Kan extension along F. If f: Y > X is a continuous

F
function then f* preserves lim ; that is,
->
F

f*o lim—= lim .

F AF
Also, if C =X and (S,&)ESETD, then
lim(S,é') > X
F
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comes from

rof
ox s —2 —~ c0eqd, lim(S, &)
& 9fS prog F
Fy _
Do Co = X

Still if C =X and if F presents D as a filtered category object of SETX

then lim is left exact and lim F*=- X-
¥ fa SET

o

£
PROPOSITION 3.3. For X¢ Top, lim:SET ¥ > SETX is the inverse
Tx

part of a geometric morphism.
PROOF. r y presents ¢’ as a filtered category object of SETX, so

Y
lim is left exact. Since z*: SETX » SET'XP is the right adjoint to lim,
- X g
TX mX
it follows l.fm is the inverse part of a geometric morphism. O
"X
Let X be a topological space and §: 6‘)’{’ > Set a presheaf. This

0%

the coproduct of th2 (valu:s of the presheaf and projecting to 6%P. Recall

is the same thing as an object Se¢ SET ; §-0%F is gotten by taking

[91, page 17, there is an associated sheaf ay § > X.

THEOREM 3.1. If S: 03P > S is a presheaf then ay S~ X is equivalent
to lim p)}‘ S+ X.
mX

PROOF. Let §'-> X be a local homeomorphism and Ue¢ fy. We have a
diagram of pullbacks

"y o

[ 1]

X X {?} pX 03{)

and
U—=—s Lim (P > ¢$P) in SETX.
(D¢
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Therefore, we have natural bijections

0%

bu*pX*n)"ZS' in SET

op

€
pyhy »mfs  in SETU

eSP
€GP > mp s in SET Y
o , ) X
lgrz((lf) > S in SET
X
U S in SETX.

00
Therefore, P Xy nk: SETX 5 SET Xp is the local section functor. But the
associated sheaf functor ay and the functor l}m p% are both left adjoints

X
to py,mx- Therefore, lim pkx is equivalent to the associated sheaf

mX
functor. O
This theorem computes, within the category theory of Top, the
associated sheaf functor. This seems more natural than first constructing
the underlying set of an associated sheaf and then forcing on the topology
which makes things work.
It follows from the above theorem that, if §» X is a sheaf on

Xe¢Top then S =-limpypy n}S. Also, if S 0% is a presheaf of
7 ’
sets, it is a complete presheaf iff §=— F’X*”)*{: limpg S. For thesereasons
TX

and as usual today, we may write a sheaf §- X as a presheaf § »Bfi}’
(or S: @Y » Set) whenever it suits our needs; if there is a possibility of
of confusion, we will use [" y for PX*”;( and a y for lim p:‘\i.

7 X
COROLLARY. If S> X is a sheaf of setson Xe¢Top and [: Y > X isa
continuous function then {* S = lim p}" S.

X
PROOF. mf= f¥ny. [*: sETX > SETY preserves internal colimits be-

cause it is a left adjoint. Therefore,
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f)}ts-:,/*aXS=/*l};pj‘YS==’lrg}mf'* S-lz}npf 0O
In a like manner, because
[reg —L— o3
Ly I

o — 0y
is a pullback with /'1 a local homeomorphism on each component, we have

lim p ;S p% lim S. In summary, the following diagram commutes :

8}’ f1

0

SET . 0y f SETG’\P

oY ay \\

0 * O

SET ._[_ SET SET
. lim lim
l.z’m ,';f Ty
Ty

serYo ' sETX
DEFINITION. For T ¢ Top, SET T is Top-indexed by taking ( SET T)X
be SET T*X and by taking substitution along f:Y>X tobe (TX[f)*.

This definition giv:s the indexing of SETT as suggested by the

general theory of indexed categories. For X ¢ Top let

TXay= lim (Txpy* and TX[y =(TXpy), (TXny *.
TX(;X

With the same kind of reasoning as before we conclude the well-known

PROPOSITION 3.4. If T and X are topological spaces, the functor
Tx9% X
TXay:SET X > SET is the associated sheaf functor to the in-

Tx 6%
clusion TX[ y: SETTXX , SET ¥ of Grothendieck toposes. [

This allows us to view an object SeSETTXX as an object of

TTXOf’\}’

continuous function, we may take the inverse image of § along T X/ to

, something we do at our convenience. Thus if /: Y > X is a
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be (TXaY) l_{m S.
Txf1

If C is a topological category, SETC is indexed by (SETC)HX =
SET ©*X . We have (SETC)X < (SETX)C.1f h: C>D is a topological
functor then the pullback functor h*: SETD 5 seTC s Top-indexed by
taking (h*)X: (SETP)YX 5 (SET €)X to be
(bxX)*: SETDXX , spr ©X

this applies to the functors p%, f*, p}‘, and p} above. Additionally, if
h:C> D is a local homeomorphism on Co, C; and C, then the functor

lim: SETC 5 SETD is Top-indexed by taking

h
(lim)X: (SETCYX 5 (SETDYX tobe lim : SETC*X 5 sETD*X,
h hxX
this applies to the functors [{m, lim, lim, and lim above. Therefore,
m g 1
X °f 9 f
letting Cxay= lim .(C pr)* , we get the commutative diagram

an'f

lj)m
Cx 09 -1 Cx09
SET X sET ¥

(Cxpy )+
(CxPY)*lxzx'aY (Cxpp* \ PX

lim .
o nd * O [¢]
SETCXfYP Cxaf SETCXf € (fo;)* SETCX({

lim Cxa lim
. =Y X
137” \\ Can C_)erX
CerY (CX/)*

SE TCxY SETCXX

for each topological category C and continuous function f: Y » X.

4. MAIN RESULT.
Recall from above the definition of the topological preorder S_;.It

<
is equivalent to 0.— . I ; that is, the forgetful functor SET~2 5 SET?

is an equivalence of categories (see Example (2), Section 2).

PROPOSITION 4.1. For each X¢ Top, th forgetful functor SET-X 5 SETX

is a Top-indexed equivalence.
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Tx<
PROOF. If T ¢ Top and (S,&)e SET ~ ~2, substitution along

1X<p: <, » TXE,

for each t: 1> T shows & is completely determined by S, (TXd,)*s,
and (TXd;)*S. On the other hand, let §» TX2 be a local homeomor-
phism. Substitution along ¢tX2: 2> T X2 for each t: 1> T gives us the
fibers of a function &: (TXBO)* S (T><81 ) ¥ S which is easily shown
to be continuous by a routine examination of local sections, and such that

T x<
(S$,&) is an object of SET =2, Therefore, the forgetful functor

X<g TX9 . . .
SET - SET is an equivalence of categories. Even more, as T

ranges over the objects of Top these forgetful functors definea Top-ind-

<
exed equivalence of S_ET'2 and SET 2. For any topological space X and

elements xy< x; of <y, we have a topological functor Sx()’xl 1<, <y

coming from the continuous function
2-X (0bxy 1pxg).
Therefore, for each T ¢ Top , we have commutative diagrams

Tx< orget
ET Sx_forget | seT TXX

(TX< )¥

—xo ,xl

(TX(ng,xl)o)*
T><<2
SET ~2_forget  sprT*2
providing us with a prescription for reconstructing (up to isomorphism) an
. Tx<y . . TxX
internal functor (S, &) e SET * given the object part S¢ SET .
These same diagrams give us a function & (TXGO)* S>(TXd,)*S in

Tx<
ser!TSx) TT*X

given S ¢ SE , and we will show & is continuous. Let

te T and [ be a morphism of <y. g,/ is in the closure of 9/, so any
neighborhood of J,f contains g;f. Let

S
U___I_,(Txao)*s

U >——— (TX<y),
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be a small enough local section with (¢, f)¢ U and so that there is an

open rectangle VXW in T XX and a local section

S
VXW 0 S

i
VXW >——— T XX
such that (T Xd,)* Solu =s1- We will show &os; is continuous. Let
(t'f')eU. 9yf" is in the closure of 9, f', so d,f'e W implies d,f"e W.
t" ¢ V. Therefore, pulling back along (t',f'):<,+»TX<y shows that
&(t',f')(sl(t" f')) is sp(t',9;f) when (', f')* (TX9;)*S is ident-
ified with (#',9;/')*S. Therefore Gos; =(TXd,;)* Sol U (the res-
triction exists because aOIWCa W). Therefore, the forgetful functor
SETTXSX 5 sETT*X s an equivalence of categones As T varies in

Top this defines a Top-indexed equivalence SET X > SETX. O

THEOREM 4.1. If F: SETC > SETD is a Top-indexed functor then F1!

preserves filtered colimits.

PROOF. Let P be a directed set. Define the topological space X by tak-

ing the underlying set of X to be P, and an additional point = , and by

taking a basis of the topology of X to be the subsets of the form
Xp=lelulg| 0<ql, pePo

the directnedness of P ensutes this is a basis, and that the point =

is not isolated. If T is a topological space and § ¢ SET TXX | then
[(TXpX)*(TXnX)*S](xp) = (TXxP)*S

for each p ¢ Po by Proposition 3.4, because Xp is a minimal neighborhood
of the point xp € X corresponding to p . Therefore, SET TXX =, sgT T*P

This equivalence decomposes as

seT T*X__forget™ opr TXSx _(Txip)* SET T*P

where z'p is the topological functor P » <y mapping p to Xp - We have
already mentioned z* SET‘X->SETP 1s Top-indexed by (z*)T—

(T><z )*, while the fotgetful functor SET ~ $x > SETX is Top- mdexed by
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Proposition 4.1. Therefore,
(SETC)P = seTC*P o spr X = (sgT7C)X

for any topological category C ; also, (SETC)P is the category of func-
tors P > SETC because P has discrete topology. Therefore, if F:
SETC > SETD is a Top-indexed functor we have a diagram

Cxi )* Cx<
(SETC)P = sppCxP_ (0" L CXSX forger g CXX _ ( spC)X

|
FP X

. Dx<
(SETD)P = sprDxP _(Dxip)} spp " =X _forget sppDxX _ (gD )X
which in combination with

(SETC)X —=* __ sprC

e

(SETD)X _=* gD

Fl

gives the commutative diagram

(SETCY = (sETC)X _=*, sgrC

FP F!

(SETP)P_=__ (seTD)X_=* _sprD

By the corollary to Theorem 3.1 the vlaue of
(SET)P—=— (SETC)X =X, sprD
at S: P> SETC is lirr;S(p) (similarly, with C replaced by D). For any
peé
p ¢ P we have a commutative diagram
(SETSP_£*_ seTC

FP F!

(SETDYP_2* _sprD .

b

that is, if Se(SETC)P , we have
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P\ ) SETC
P Fl
£ \SETD

Combining this with the above gives us

FllimS(p) = Floo*s = o*FP S = lim (Flo§)(p) =

P P
pe =tm Fl(sp))  FF

peP
for S¢ (SETC)P . Therefore, F1I preserves directed colimits. But it is
well known [2], I.1.6, a functor preserves filtered colimits iff it preserves

directed colimits. Therefore, F! preserves filtered colimits. [

COROLLARY. If T is a topological space, D is a topological category,
and F:SETT > SE;TD is a Top-indexed functor then for each X ¢ Top,
FX < (Dxay)F where the right band side of this equivalence views
an object of (SETT)X as an object of (SETT )%,

PROOF. We have DXxay = lim (DXpX)“, so for Ss(SETT)X we have
X
X

a comparison
o

60 o
(Dxa,)F ¥ lim (DXPX)*FGA})S < lim F‘Xp(Tpr)*S
DX”Y DXﬂX
) a

FXs = FXlim(Txpy)*s
TXVX ,

Let x: 1> X be a point of X. We have a commutative triangle

eo
(Dxx)*(Dxay)F ¥

o 1=

lim(F "% S)(U)
xel ;: (Dxx)*a
0%"
Lp{UI*F * S
xeU -
lim FI{ul*s
xeU -
lim F1s(U)2Y 41 pl jim §(U)—~ FI(Txx)* S (Dx x)* FXs
xelU = xelU
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Therefore, the fiber (DX x)* g of ¢ over each x¢ X is an isomorphism.

Hence, o is an isomorphism. 0O

THEOREM 4.2. If G: SET T,SETD isa functor preserving filtered co-
limits then there is a unique (up to isamorphism) Top-indexed functor F:
SETT 5 SETD such that F1 =G.
PROOF. By the corollary to Theorem 4.1, uniqueness will follow from
existence. For Z ¢ Top , define
69 07" 65°
F ZP:(SETT) Z . (seTDY’'Z by
60
(F% ) - (03P S seTT-%, sETP) = 6o 5.
Let f: Y 5 X be a continuous function. For each u ¢ Gy,
{Ufexl /'IvDuX

is directed. Therefore,

lim
00 ")_1 00
(SETT) Xp.__T_’iL_.(SETT) v
0% 09
0% 7
lj,ml
ap DX - 00
(SETD)HX —;*(SETD) v
0%
commutes. Also, for S¢(SETT)X, viewing Se(SETT) , and

0%

n: lfm §— (TX[f)*S

(Tx[)*Se(SETT)

gives a comparison functor

Txf1
because (T X f)*S is the sheafication of [im S. This gives us a comp-
T><f'1
arison functor
60 60 op
(Dxay)F qu: (Dxay)F 4 lim § —>(D><aY)F0Y (TXf)*S.
-1
Txf

For each y¢ Y we have a commutative triangle

%28
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o
(DXy)*(DXaY)FGYp lim §
Nl Txf~1
~ o
(Dxy)*(Dxay) lim F X
ol Dxygd

0“’
(Dxy)*(Dxay)F Yr)

~0
lim (Fe)f
yefy

S)(v)

lim G(S(v))
yeflv

=

G lipm S(v)
)’ef'lv

= op
G lim(TX[)*S)I (1 1v)5 lg',m{FeY (Tx [)*51(f1v)

veflv yeflv \

QP
o (Dxy)*(Dxay)F Y(Tx[f)*s
0
Therefore, (Dxay)F Y n is an isomorphism.

Now for each Z ¢ Top define FZ: (SETT)2 5 (SETD)Z, at 5 ¢ (SETT)Z |
0P
by FZs =(Dxa,)F Z S, where the right hand side of the equality

o
views § as an object of (SETT)GZP. Therefore, for Se(SETT)X,we
have
0P
1* FX 5= (Dx/)*FXs = (Dxf)*(Dxay)F X §
‘ % o%®
-‘-'~->(DXaY) lim F XS—““‘—»(DXaY)F Y lim§
Txf! Txf!
OOP 00
(Dxay)F Y1 (Dxay)F f{Tx/)*S-”——»FY/*S

Therefore, we have a Top-indexed functor F: SET T 5 SETD such that

Fl=6. O

COROLLARY. For XeTop and SeSETX, the direct image functor
X

SETSub"S | sprX along subX's » X may be Top-indexed.

X
PROOF. By Proposition 1.8, the direct image functor SET S%% S, sETX
preserves filtered colimits. Therefore, with T = subXS and C =X the

theorem says the direct image functor along subX S > X has a unique (up
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to isomorphism) Top-indexing. 0O

THEOREM 4.3. Up to isomorphism the Top-indexed functors F: SET > SET
are in bijective correspondewce with the filtered colimit preserving func-

tors Fl: Set- Set.
PROOF. This is just Theorems 4.1 and 4.2 combined with T =1 and
C=1. O

Let Fin denote the category of finite sets and functions.
PROPOSITION 4.2. A functor F: Fin > Set preserves all the filtered co-
limits existing in Fin.

PROOF. Let D be a filtered diagram in Fin with l[im D ¢ Fin. By the fil-
teredness of D and because the objects of D are objects of Fin, there

is a diagram

Py

d; lim D
f
Pi
i
representing a section of the colimiting cone of lim D with p; onto limD
and
Image([) d, 2L\ lim D
8 i yn

an isomorphism. Therefore, we have a commutative diagram

lim D ;4D
lim D

Since dl-{D > D is final, li)m(diiD) =- limD . Therefore, p : D >limD
is an absolute colimiting cone. Therefore, every functor on Fin preserves

the colimit of D. O

A functor Fin> Set has an extension F: Set- Set defined at
S ¢ Set by E(S) = lim( F(Fin(S5))), where Fin(S) is the partially order-

ed set of finite subsets of §. Referring to the next diagram, for any filtered

430
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diagram D in Set with d =1lim D, we have
lim F(s) = lim ( lim (F(s'))
seD seD d'e¢Fin(s)

= lim ( lim (li lim (F(s"é(s'))))
seD s'¢ Fin(s) s"eFin(d)

= lim lim ( lim (F(s"Xs')) < F(d);
s"eFin(d)seD s'eFin(s) d

|

s"> > .d

SI' X SI
d

)

s

Therefore, the extension F of F preserves filtered colimits.

THEOREM 4.4. The category of isomorphism classes of Top-indexed func-
tors SET » SET is equivalent to SetFin,

PROOF. Since every set is the canonical colimit of its finite subsets, any
functor Set > Set preserving colimits is determined up to isomorphism by
what it does to finite sets. Therefore, the filtered colimit preserving func-
tors Set » Set correspond to functors Fin > Set. The result now follows
from Theorem 4.3. 0O

5. SHEAVES OF FINITARY ALGEBRAS.

THEOREM 5.1. The algebraic theories whose algebras can be/Top-indexed
as the algebras of a Top-indexed triple SET » SET are precisely the finit-

ary algebraic theories.

PROOF. It is well-known that the finitary algebraic theories arise exactly

from triples Set » Set preserving filtered colimits. The result follows from
this and Theorem 4.3. O

Research Branch, NDA Gulf Region
P. 0. Box 5030
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