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0. INTRODUCT10N.

Let Top denote the category of topological spaces and continuous

functions, Set denote the category of sets and functions, and SET denote

the Top-indexed category of sheaves of sets (see Section 1 for the defini-

tion of SET or see [16] for the theory of indexed categories). Although
SET has an extensive history [8] its properties as an indexed category
have been neglected until now. Accepting the view of the working mathema-

tician [9, 11] J that a sheaf of sets on a topological space X is a local

homeomorphism whose fibers form a family of sets varying continuously
over the space, the theory of indexed categories provides a language in

which SET is Set suitably topologized, in that we have specified a «con-
tinuous functions X - SET to be a sheaf of sets on X. When Set is iden-

tified with the category of discrete topological spaces, we get SET’ = Set.
Guided by our view that SET is the « category of sets) of the Top-indexed
world, this paper investigates some of the category theory of this Top-
indexed category.

The importance of the category SET x of sheaves of sets on a top-
ological space X was emphasized by Grothendieck [2l . Later, Lawvere-
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Tierney topos theory discovered the relationship between geometry and

logic [181. In the wake of the methods of topos theory, the last decade

has seen considerable interest in categorical topology, a subject arising
out of the older wish to have universal function spaces [17], while in [14 ]
Niefield has characterized the admissibility of the exponent of a relative

function space and she has shown local homeomorphisms fit into the pic-
ture. If SET is to be a convenient setting for mathematics, analogous to

the discrete case, the category SET C of continuous functors [13] on a

topological category C (category object in Top [1, 6, 7l) should be a

Grothendieck topos. This has been established in [12].

Below, we see SET is well-powered, cowell-powered, and has

small homs. If C is a finite topological category, SET C is shown to be

equivalent to a presheaf category over Set . Our main result characterizes

the Top-indexed functors SET T - SET D in terms of the preservation of

filtered colimits at 1 when T is a topological space and D is a topologic-
al category. In particular, if a «continuous functors Set - Set is taken to

be a Top-indexed functor SET - SET , it is just an ordinary functor

Set - Set preserving filtered colimits. Also, it follows the Top-indexed al-

gebras of triples on SET are the same as the finitary algebras on Set .

1. CONTINUOUS FAMILIES.

The following is well known and easily established.

PROP OSITION 1.1. ( 1 ) All homeomorphisms are local bomeomorpbisms.

( 2 ) 1 f a and (3 are local homeomorphisms and composable, (3a is a

local homeomorphism.

(3) I f a and B are local homeomorphisms and a = (3ô, 0 is a local

homeomorphi sm.

(4) I f S - X is a local homeomorphism, for all continuous functions
f : Y - X , the pullback f * S 4 Y is a local homeomorphism.

(5) S - 1 is a local homeomorphism i f f S is a set (we identify Set

with the category o f discrete topological spaces).
( 6 ) The image factorization of a local homeomorphism results in two

local hnmeomorphisms.
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is a commutative diagram in Top with a a local homeomorphism, a is an

isomorphism (monomorphism, epimorphism) iff for each point x : 1 - X the

fiber x*a: x*S -+ x*S’ of a over x is an isomorphism (monomorphism,

epimorphism). 0

Benabou [3] has defined the notion of a calibration on a category
in order to formalize the notion of relative smallness. The first four pro-

perties stated in 1.1 assert

PROPOSITION 1.2. The class of local homeomorphisms calibrates Top. 0

DEFINITION. The Top-indexed category SET is given at X (Top by tak-

ing SET X to be the comma category of local homeomorphisms with co-

domain X, i. e. sheaves on X, and by taking substitution along f : Y - X

to be the pullback functor f *: SETX - SET Y .

PROPOSITION 1.3. SET has stable monomorphisms, stable subobjects,
stable epimorpbisms, stable quotients, stable equivalence relations, stable

finite limits and stable colimits.

PROOF. By stable monomorphisms we mean: if S’ &#x3E;S is a monomor-

phism in SETX and if f : Y - X is a continuous function then f * S’ - f *S
is a monomorphism. Th e other stability properties are defined in the same

way [16]. These stability properties are well-known [2]. 0

DEFINITION. The Sierpinski two-point space 2 has underlying set 11, 0}
and topolog y of {1} open but not closed.

D EFINITION. For X c Top, 2x - X is proj : 2 X X - X, and tX : X - 2X is

lxX:X-+2XX.

PROPOSITION 1.4. tX ; X - 2X is an open inclusion, so it is a subobject

of 1 in SET X. D
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PROPOSITION 1.5. For a local homeomorphism S -+ X and continuous

function f: Y 4 X , there are bijections

T’hese bijections are natural in the variables S -+ X and f: Y - X . 0

Recall from [14] a continuous function C -+ X is cartesian if for

each continuous function Z - X there is a continuous function ZC - X and

bij ection

which is natural in the variables Y - X and Z - X . In [14), it is shown
C - X is cartesian iff there is a continuous function 2c -, X and bijection

which is natural in the variable Y - X.
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Additionally, in [14] it is shown every local homeomorphism is

cartesian.

Recall from [ 16 J the Top-indexed category SET is well-powered
if for each X c Top and S E SET X there is a continuous function subx s - X
and bijection

which is natural in the variable f : Y - X.

PROPOSITION 1.6. SET is well-powered.

PROOF. An object of SETX is a local homeomorphism S - X, which as

we have noted is a cartesian function. Therefore if S f SET X , we have the
natural -bijection 

This in combination with Proposition 1.5 gives the natural bijection

Therefore, SET is well-powered. 0

Recall from [16] the definitions of cowell-poweredness and small
homs.
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PROPOSITION 1.7. SET has small homs and is cowell-powered.
PROOF. SET is well-powered by Proposition 1.6 and has finite stable

limits by Proposition 1.3.
Let a : S - S’ be a morphism in SET X, X c Top. Let M a &#x3E;--&#x3E; X be

the equalizer of

Then f : Y - X factors through M a &#x3E;-. X iff f*a: f * S - f * S’ is a mono-

morphism. Let 1 a &#x3E;-- M a be the equalizer of

Then f : Y -X factors through 1 at X iff f * a: f * S - f * .S’ is an iso-

morphism.
Now let S and S’ be any two objects of SET X, X E Top . Let

in SET subXS X S’ be the generic subobject of S X S’ , and let

be the projection. We have natural bijections

Morphism in SE T .

Therefore, lp 4 X serves as the object of morphisms S - S’ . Hence, the

Top-indexed category SET has small homs.

For cowell-poweredness, let S c SET and
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be the generic subobject of S X S . Let ,I be the co-

equalizer of the pair of projections , and let

be the kernel pair of

have the comparison

making the corresponding squares commute. As above, or as in [13L let

be the subobject in Top such that U&#x3E;: Y - subx S X S

factors through I 0&#x3E;-- subX S X S iff U &#x3E; * 0 is an isomorphism. We have

natural bijections

Therefore, I0 - X will serve as epi X S - X . So SET is cowell-powered. 0

Let C - X be cartesian. Taking a point x : 1- X, we get a bijec-
tion

Therefore, the underlying set of the fiber of 2 c , X over the point x is

isomorphic to open UCx*C}. In [14l, a description of a topology on

making
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isomorphic to 2CX- X in TOP X is given ( TOP denotes the indexing of

Top by itself). When X = 1 , this topology is called the Scott-topology ;
for general c - X, we will call this topology the Nie field - Scott topology,

signaling its appearance by the notation 0(C) + X. In [14] a subbasic

open H C 0( C) is given by the requirement that it be saturated, binding,
and have fup - saturated means if x c X then

binding means if U C C is open then :{x l x * U E x * H} is an open subset

of X, and fup means if x c X then

for some finite subset F of A .

Let S - X be a local homeomorphism. If

is a local section of S - X, let the subset Hs C 0( S) be defined at x E X

by

Clearly Hs is saturated and has fup. It is binding because if U C S is

open, then 

Therefore, Hs is a subbasic open of 0 (S) for each local section s of

S - X. Conversely, let H C 0 ( S) be saturated, binding, and have fup . If

U c x* H is non empty, then by the three given properties we can choose

a finite set of local sections
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such that

On the oth er hand, if x E X then the only neighborhoods of ø in 0 (S) over

x are (0(S) - X)-1 W for neighborhoods W of x . Therefore, together
with the inverse images of opens of X along 0(S) + X , a subbasis of

0(S) may be taken to be subsets Hs C 0 (S) defined by local sections

s of S - X 

TH EOR EM 1. 1. I f X c Top and

1. an open function,
2. a closed function, and

3. a cartesian function.

PROOF. Because 0(S) - X and sub XS- X are TOP X homemorphic, we

may work with the former of these.

1. To see 0 (S) - X is an open function, it is enough to see the image
of a basic open is open. So let t-I = H1 rl ... n n where H1 , ... , Hn C 0 (S
are saturated, binding and have fup . Let x E X and Vx E x * H . Then Vx
is an open subset of Sx and we can find an open subset V of ,S such that

x * V = Vx . By the binding property,

is an open subset of X. But x E W and W is a subset of the image of

H - X . Therefore, 0 (S) - X is an open function.

2. Let CC 0(S) be a closed subset and let V be the complement of

C . If Oc S is the empty subset of S then from the pullback

we see x E O&#x3E;* V iff the fiber x* V contains O&#x3E;(x) as an element.

Now x * V is an open subset of x * 0(S) ; therefore, all of x * 0(S) if and

only if xEO&#x3E; *V. Therefore, the image of C - X is the complement of
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the open subset 0&#x3E;* V of X . Hence, 0(S) - X is a closed function.

3. In [14], it is shown that a continuous function Y - X is cartesian

if for each

there is H C0(Y) such that Ux 
0 
(H and H is saturated, binding, has

fup , and QHCY is a (not necessarily open) neighborhood of y ; here,
n H is defined at x E X by

We will apply this to show 0(S) - X is cartesian. For purposes of nota-

tion, let Y - X be 0 (S) - X . Fix

Now y is a subset of x*o S. First suppose y is the empty subset of x *o S.

Then Ux is all of x*o Y. Define H C 0( Y) by x* H = {x* Y}, x f X, so
o

x* H is a singleton for each x (X. Then Ux E x *o H . Also n H = Y is a

neighborhood of y. H is saturated because x* H is the maximal subset

of x* Y for each x E X. H has fup because x* Y is compact for each

x f X . To see H is binding it is enough to see if W is a basic open of Y

is open. But if for loc al sec-

tions s1, ... , sn of S - X then

because for each while

w=(y-+ X)’IV forsome VCX then

Therefore, H is binding. Now suppose y is not the empty subset of S .

Then there are local sections
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such that

Let H C 0( Y ) be defined at each x E X by

Then
F 

and since is a neigh-

borhood of y . Clearly H is saturated. For fup, note x *(Hs n ... n H )
sl sn

is compact for each x E X because either it is empty or if x f V1 Q...QVn, 
then x * (H1 n ... Q Hn) is homeomorphic to the Scott-space of

For binding, let WCY be open. It is sufficient to assume W is a basic

open. If f or som e open V C X th en {

which is open, and if 1 for some local

sections

then

and

which is open. Therefore, H is binding. Hence, 0 (S) - X is cartesian. 0

Recall from [4] a continuous function P - X is proper if for every
continuous function f : Y - X, f * P - Y is a closed function; also, it is

proper iff it is closed and has compact fibers.

COROLLARY. For each X E Top and S E SET X , subXS-+X is a proper
function.

PROOF. If f : Y - X is a continuous function then we have a pullback
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The result follows from Theorem 1.1.2 applied to these pullbacks E3

PROPOSITION 1.8. 1 f X is a topological space and S E SET X then the

direct image functor SET Sub XS - SET X preserves filtered colimits.
PROOF. For notation, denote sub X S - X by rr . Let C be a small filtered

category and F : C - SET sub X S be a functor. In SET X , we have a comp-
arison E : lim TT* o F -TT lim F coming from the universal property of

lim n j F . We will show f is both epi and mono, so iso.
-

Fix x c X and suppose that

is a local section with x f V . By adjunction, we get a local section

Choose c c C such that s ( 0 &#x3E; (x)) is in the image of f
Let

be a local section such that

Let we have Since v is

proper, TT* U is an open neighborhood of x . We have the commutative dia-

gram
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Therefore, c is an epimorphism. Next, with x c X fixed, suppose

with x c V such that E o sl = c o s2 . By the filteredness of C we can choose

c f C and local sections

such that x c V’ C V and the respective squares of

commute. Becaus e f o 51 = ( o s2 and because
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commutes, by adjunction we get the commutative square

Since

there is a morphism a: c - d in C such that

Therefore there is an open neighborhood U of O&#x3E; (x) such that U r- - rr-1 V’
and

commutes. Since .,,-1 x C U and TT is proper, TT * U is an open neighborhood
of x , and we have a commutative diagram

Therefore, locally at x, sl = s2 . lience, c is a monomorphism.

Therefore, 77 preserves filtered colimits. 0

2. TOPOLOGICAL CATEGORIES.

DEFINITION. A topological category is a category object in Top ; that is,
a topological category C has a topological space Co of objects, a top-

ological space C, of morphisms, a continuous function id : C o - C1 which
chooses an identity morphism 7 = id (c) for each object c E Co , cont-
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inuous functions a 0 : C’i - Co and d1 : C1 - Co which assign to each mor-

phism f E C1 its domain d0 fE Co and its codomain d1 fE C,, , and a cont-
inuous function o : C2 . C1 of composition where

is a pullback in Top , and with o( f , g) written g o I, satisfying the com-

mutativity condition :

In [1], 2.6, Adams has defined a topological category in the same

way as we have above, but Ehresmann knew of them earlier [6, 7].

Topological groups, topological monoids, topological groupoids,
and topological preorders provide examples of topological categories often

arising in mathematics. If X is a topological space, we get a topological

groupoid 

and if we take from this the subspace of X X X consisting of pairs ( x, x’ )

such that x is in the closure of x’ as the morphisms of a subspace-subcat-
egory, we get a topological preorder which we will denote by 5 X. Top
inverse limits of finite set categories, the profinite categories, provide
another important class of topological categories [10] .

DEFINITION. A continuous functor ( S, E) from a topological category C
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to SET is a local homeomorphism S - Co and a continuous function

(necessarily a local homeomorphism as well) such that for each object c

of C ,

and for each composable pair of morphisms ( f, g): C ,

In the language of [16] , a continuous functor from a topological

category C to SET is an internal functor from C to SET . Continuous

functors on a topological category are used in [13] to construct vector

bundles.

DEFINITION. A continuous natural trans for’nation between two continuous

functors ( S, &#x26; ) to (S’ , E,’) on a topological category C is a morphism

n : S - S’ in SETC, such that the diagram

commutes in SET - 1 -

Continuous natural transformations are composable and each cont-
inuous functor has an identity continuous natural transformation. If C is

a topological category, we will let SET C denote the category of continu-
ous functors from C to SET and continuous natural transformations of

such. This definition of SET C is guided by the ideas of [16]. From [12],
we h ave :

THEOREM 2.1. If C is a topological category, SET C is a Grothendieck

topos; if
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then the set of continuous functors ( S, &#x26; ) such that S can be covered by
a set of local sections whose cardinality does not exceed b is a set of

generators o f SET C . 0

D EF INITION. If C and D are two topological categories, a topological

functor F : C -+ D is a triple of continuous functions ( Fo, F, , F2) making
the corresponding squares commute in the diagram

If F : C- D is a topological functor, a continuous functor ( S, &#x26; )

in SET D may be pulled back along F to a continuous functor

We get a geometric morphism ( F* , F*) : SETC.-. SET D ; the existence of

F* uses the special adjoint functor Theorem, which is necessary by its

use in th e particular case Co - C arising in the proof that the category

SET C is a Grothendieck topos.

D EF INITIO N. A finite topological category is a topological category such

that its space of objects and its space of morphisms are finite.

THEOREM 2.2. If C is a finite topological category then SETC is equi-

val en t to a p resh ea f category.
PROOF. Define a diagram C+ in Set by taking C+o to be the underlying
set of Co and by taking C+ to be the underlying set of C 1 together with

new morphisms tC, C, : C - C’, C, C’ E C+o , whenever C is in the closure

of C’ in Co , and subject to tc, c = 1 C for each CE C+ o and th e commuta-

tivity conditions :

1. all compositions defined in C ;
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whenever f and g are morphisms of C and f is in the closure of g.
Let Set C+ be the topos of all diagrams C+ -* Set which respect any com-
positions defined for C + . Note, by freely generating a small category

from C + and dividing out by the proper relations, we get a small category

C + such that Set C+ is equivalent to Set C+ . We will show SET C is

equivalent to SetC+ by showin g it is equivalent to Set C+ . 
First, we define a functor SFT C - Set C+. Let ( S ,E) E Set C . For

Cf C o , let SC be the fiber of S over C and for f E Cl let

be the fiber of cr over/. For CECo,let S+
closure of C’ in Co then for any local section

with C c U then C’ c U , and for any other local section

with C E U’ and s (C) = s’ (C) then s (C’ ) = s’ (C’) . Therefore, if C is

in the closure of C’ , we have a func tion

induced from the restriction of local sections at C to local sections at

for each C in the closure of C’ and C’ in the closure of C" in Co . Sup-
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pose f is in the closure of g in C, . Then it must be that a0f is in the
closure of a0 g and a, f is in the closure of al1g . If U1 is an open neigh-
borhood of f and

is a local section then s i is equivalent to a0* of a local section

at a 0 f f U 0 ; that is

Therefore, since the points of (d*0S)f and equivalence classes of local

sections of S - Co at d0 f are the same thing where the sheaf d*0 S - C1
is concerned, th e function

induced by the restriction of local sections of d*0S- C. at f , makes the

diagram

commute, where 0j is defined by the pullback
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A similar diagram exists with respect to a j1*S - Cl at f and g . Define

, and define &#x26;+ (g) by

By the continuity of E, if fEU and

is a local section, we get a local section

Since g c U this implies the commutativity of

Therefore, we have

If f and g are composable (but not necessarily f in the closure of g ) with

we have
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Therefore, , This gives us the functor S

In the other direction, let ( S+, &#x26;+ ) be an object of

S - Co to be defined on the Set level as

For C l Co let UC denote the smallest neighborhood of C . Similarly, i f

f E C1 , let U denote the smallest neighborhood of f . For xE UC , we have

, define a local section

Suppose
Then x c UC and x c UC, , and for’each y c Ux , we have the C + commuta-
tive diagram

Therefore, for any y c Ux , we have

Therefore, collectively, the local sections Sc , a make S - Co into a local

homeomorphism. Now for each f E C1’ identify the fiber ( a * S ) f with Sa f
and the fiber (a *1S)f with S ; this saves us from the involvment of

the isomorphisms , Define a function
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for each

We will show E is continuous. Let

A section

I

comes from a section

by For any g c U f , we have

Therefore, we have a commutative diagram

Therefore, E is continuous. So now we have the functor

inverse to SErC -+ SetC+. Therefore, SET C is equivalent to Set e-- + . D

E XAMP L E S. (1) Let C be the topological category
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with topologies defined by taking the opens of {1, 0 1 to be

(so Co is homeomorphic to the Sierpinski space) and by taking the opens
of idl , f, id01 } to be

The functions d0 and d1 are continuous because

The function id : Co - Cj is continuous because it is a subspace inclu-

sion, and o : C2 - C1 is continuous because C2 is a subspace of CIX C1’

and

The topos SETC is equivalent to the category of presheaves on the cat-

egory freely generated by the graph

The absence of relations between i and the topologically induced arrow

t0, 1 arises because I f } is both open and closed. The Beck condition

does not hold for this topological category, for if S c SET C1 then

( 2 ) Take C as in Example ( 1), but with topology on arrows given as

d0, c3l and id are continuous for the sam! reasons as before. Composition
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is continuous because 0-1 { id1}= {(id1 , id1)} and

In C+ we must have the commutative diagram

because id0 is in the closure of f and f is in the closure of id 1. It fol-
lows that f c C 1 is forced to be a left and right inverse to the topological-

ly induced arrow t0,1 Therefore, SETC is equivalent to Set . For use

later we note

The Beck condition holds for this topological category,

because global sections of S c SET 
C1 correspond by restriction to the

elements of the fiber of S at id0. 

(3) C is as in Example (1), except the topology on C1 is given by

All the maps a0 , a1, id, and o are continuous for the reasons given in

Example ( 1 ). In C+ we must have the commutative diagram

because ido is in the closures of id1 and f . Therefore, we see that if we

first apply the topologically induced arrow t0,1 , then f , we must have

id0 . This means fE C+ is a split epimorphism. However, there are no fur-

ther conditions.

As in Example (2), the Beck condition holds

for this topological category.

(4) C is as in Example (1), except the topology on C1 is given by
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All the maps a 0’ d1, id, and o are continuous for the reasons given in

Example ( 2 ). In C+ we have the commutative diagram

Therefore, f is a retract in C+ with t0,1 providing the retraction.
As in Example (1), the Beck condition i fails

for this topological category.

PROPOSITION 2.1. When (1, 0} is given the topology {O, { 1}, {1 , 0 }},

there are only four topologies on 1 idl’ f, id0} making

into a topological category.

PROOF.

so {id1 , f} and {id 1} are open while {id0 } and I f, id 0} are closed in

C1. {id0} and {f, ido } cannot be open because id is a continuous func-

tion and 10 } is not open in C o . Therefore, the only possible neighborhood
of ido other then (id1’ f, id0 I is {id 1, id 0 } as in Example (1) and Ex-

ample (4), and the only possible neighborhood of f other than I idl, f I

and {id1, f, id0} is I f } as in Examples ( 1 ) and ( 3 ). D

3. ASSOCIATED SHEAF FUNCTOR.

DEFINITION. A topological category C is filtered if

( 1) it is nonempty,

( 2 ) it is pseudofiltered ; that is, for any two objects c , c ’ of C,
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there is an object c " of C and morphisms c -+ c " and c ’ - c " , and if
I

is a parallel pair of morphisms in C, there is a morphism h : c’ - c " of

C such that b o f =hog.

This definition may be abstracted to define a filtered category ob-

ject in a category with finite limits [5], in which case the condition of

nonemptiness becomes the requirement that Co -+ 1 be the coequalizer of

d0 and d1. If C is a category object of T’OP X , the comma category of

spaces over X c Top , for C to be filtered it is not sufficient for each fiber

x * C , x c X , to be filtered because the comparison function

may not be an isomorphism even though it will be both a monomorphism
and an epimorphism; as an example, take C but not X to have discrete

topology.

PROPOSITION 3.1. 1 f C is a category object of SET X , it is fil tered iff
each fiber x* C c Set, x f X, is filtered.

PROOF. Filteredness is preserved by substitution, so if C c SET X is

filtered so is x* C for each x E X . Alternatively, suppose each fiber of

C is filtered. The only question is if coeq( d0,d1)- X is an isomorphism.
But each fiber of this comparison is an isomorphism by hypothesis, so the

result follows from Proposition 1.1 (7). D

Let X f Top and let 0X be the partially ordered set of open sub-
sets of X. Let ev : 0opX X X - 2 be the evaluation morphism, and define

by the pullback

PROPOSITION 3.2. For a topological space X, the projection
presents E)t as a filtered category object of SET X .
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PROOF. The object part of EopX is homeomorphic to the Top coproduct
Il U , and TTX is the obvious projection, so 17.¥ makes co into a cat-

UE0X
egory object of SET X . For x E X , x* f)t is equivalent to the partially
ordered set of open neighborhoods of x , so x * Elf is filtered. The result

follows from Proposition 3.1. D

Let X c Top and U c 0X . The inclusion ry f)t defines a sub-

obj ect of 1 in SET EopX, and if b U .. 0opX is the representable correspond-
ing to U , we have b U= 0y and a diagram of pullbacks

Also, if f : Y 4 X is a continuous function, we have a commutative diagram

providing us with some notation.

Let X E Top, and F: D - C be an internal functor betwe en two

category objects in SET X . Recall [5] that F * : SETC... SET D has a left
adjoint lim , the left Kan extension along F. If f : Y... X is a continuous

F
function then f * preserves lim ; that is,

Also, if C = X and ( S , E) E SET D , then
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comes from

Still if C = X and if F presents D as a filtered category object of SET X
then lim is left exact and

-tl

PROPOSITION 3.3. For X c Top, is the inverse

part of a geornetric morphism.

PROOF. 77 X presents cy as a filtered category object of SET X , so

lim is left exact. Since TT *:SET X - SET 57 is the right adjoint to lim
?,x X 

TTX

it follows lirn is the inverse part of a geometric morphism. D

rr x

Let X be a topological space and S : 0opX - Set a presheaf. This

is the same thing as an object S is gotten by taking
the coproduct of tha values of the presheaf and projecting to 0opX Recall
[9] , page 17, there is an associated sheaf aX S - X.

THEOREM 3. 1. If S : 0opX- S is a presheaf the n aX S - X is equivalent
to lim P*X S - X.

TT x

PROOF. Let S’ - X be a local homeomorphism and UE0X. We have a

diagram of pullbacks

and
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Therefore, we have natural bijections

Therefore, py TT*X:SETX-SETY0opX is the local section functor. But the

associated sheaf functor ax and the functor lim - p*X are both left adjoints
TTX

to P X* TT*X. Therefore, is equivalent to the associated sheaf

functor. D

This theorem computes, within the category theory of Top , the

associated sheaf functor. This seems more natural than first constructing
the underlying set of an associated sheaf and then forcing on the topology
which makes things work.

It follows from the above theorem that, if S - X i s a sheaf on

X (Top then S =-lim p *XpX*TT*XS. Also, if S-0opX is a presheaf of
TTX

sets, it is a complete presheaf iff For th ese reasons

and as usual today, we may write a sheaf S - X as a presheaf S - 0opX
(or S : 0opX- Set) whenever it suits our needs ; if there is a possibility of

of confusion, we will use [

COR OLL AR Y. If S - X is a shea f of sets on X c Top and f : Y - X is a

. 
continuous function then

PROOF. TTf = f *TTX. f * : SET X- SET Y preserves internal colimits be-

cause it is a left adjoint. Therefore,
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In a like manner, because

is a pullback with f’1 a local homeomorphism on each component, we have

. In summary, the following diagram commutes :

DEFINITION. For T E Top, SET T is Top-indexed by taking ( SET T ) X to

be SET T X X and by taking substitution along f : Y - X to be (TXf) *.

This definition gives the indexing of SET as suggested by the

general theory of indexed categories. For X c Top let

A

With the same kind of reasoning as before we conclude the well-known

PROPOSITION 3.4. If T and X are topological spaces, the itinctor

is the associated sheaf functor to the in-

clusion of Grothendieck toposes. 0

This allows us to view an object SE SET TxX as an object of

SET 
Tx eJt, something we do at our convenience. Thus if f: Y - X is a

continuous function, we may take the inverse image of S along T X f to
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If C is a topological category, SETC is indexed by (SETL)X =
SET CxX . We have ( SET C) x = (SET X) C . If h : C - D is a topological
functor then the pullback functor b * : SET D - SET C is Top-indexed by

this applies to the functors pt, f*., pi, and P*Y above. Additionally, if

h : C- D is a local homeomorphism on Co, C1 and C 2 then the functor

lim,’ SET C -+ SET D is Top-indexed by taking

this applies to the functors Jim, lim , lim , and lim above. Therefore,
-TTX -TTf d -f1

I

we get the commutative diagram

for each topological category C and continuous function f: Y - X.

4. MAIN RESULT.

Recall from above the definition of the topological preorder +2. It
is equivalent to 0 . 2013.1 ; that is, the forgetful functor SET2- SET
is an equivalence of categories (see Example (2), Section 2).

PROPOSITION 4.1. For each X c Top, the forgetful functor SETX- SETX
is a Top-indexed equivalence,
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PROOF. If T E Top and S, E) E SET Tx2, substitution along

for each t : 1 - T shows &#x26; is completely determined by S, (T Xd0) * S ,
and (TX d1) * S. On the other hand, let S - T X 2 be a local homeomor-

phism. Substitution along t X 2 : 2 - T X 2 for each t : 1 - T gives us the

fibers of a function E : ( T Xd0) * S -(Rxd1)*S which is easily shown

to be continuous by a routine examination of local sections, and such that
Tx

( S, E) is an object of SET -2. Therefore, the forgetful functor

SET 
TX 2 , SET T X 2 is an equivalence of categories. Even more, as T

ranges over the objects of Top these forgetful functors define a Top-ind-

exed equivalence of SET 2 and SET 2 . For any topological space X and
elements x0 x1 of X , we have a topological functor -x0,x1: 2-X,
coming from the continuous function

Therefore, for each T f Top, we have commutative diagrams

providing us with a prescription for reconstructing (up to isomorphism) an

internal functor (S,E)E SET T x X given the object art S E SET T xX .

These same diagrams give us a function

and we will show E is continuous. Let

l (T and f be a morphism of X, d0 f is in the closure of d1 f, so any
neighborhood of d0 f contains a 1 f. Let
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be a small enough local section with (t, f)E U and so that there is an

open rectangle VXW in T X X and a local section

such that (T X d0) * s0lU = s I . We will show &#x26;osi is continuous. Let

(t’, f ’) E U . 80 f ’ iS in the closure of all’, so d0 f ’E W implies all’ é W.
t’ E V . Therefore, pulling back along ( t’ , f ’) :  2 - T’ X  X shows that

when i s ident-

ified with ( t’ , d1 f ’)* S. Therefore E o s1 = ( T X d1) *s0lU (the res-

triction exists because d0-1WC d-11 W). Therefore, the forgetful functor

SET T X X -SET TxX is an equivalence of categories. As T varies in

Top this defines a Top-indexed equivalence SET X- SET X . 0

THEOREM 4.1. I f F : SET C - SET D is a Top-indexed functor then F 1

preserves filtered colimits.

PROOF. Let P be a directed set. Define the topological space X by tak-

ing the underlying set of X to be Po and an additional point and by

taking a basis of the topology of X to be the subsets of the form

the directnedness of P ensures this is a basis, and that the point oo

is not isolated. If T is a topological space and S c SET TxX, then

for each P c Po by Proposition 3.4, because X p is a minimal neighborhood
of the point x P E X corresponding to p . Therefore, SET TxX ,4 SET TxP .
This equivalence decomposes as

where in is the topological functor We have

already mentioned is Top-indexed by 
while the forgetful functor is Top-in dexed by
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Proposition 4.1. Therefore,

for any topological category C ; also, (SET C ) P is the category of func-

tors P -* SETC because P has discrete topology. Therefore, if F : 

SET C - SET is a Top-indexed functor we have a diagram

which in combination with 

gives the commutative diagram

By the corollary to Theorem 3.1 the vlaue of

(similarly, with C replaced by D). For any

PEP we have a commutative diagram

that is, if S f (SET C) P , we have
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Combining this with the above gives us

for SE ( SET C ) P . Therefore, F1 preserves directed colimits. But it is

well known [2], I.1.6, a functor preserves filtered colimits iff it preserves
directed colimits. Therefore, F 1 preserves filtered colimits. 0

COROLLARY. I f T is a topological space, D is a topological category,
is a Top-indexed functor then for each X c Top,

F A zz ( D x aX) F X where the right hand side of this equivalence views

an object o f (SET T) X as an object of (SET T) OF.
PROOF. We have

a comparison

Let x : 1- X be a point of X . We have a commutative triangle



428

Therefore, the fiber ( D x x ) * a of a over each x E X is an isomorphism.

Hence, a is an isomorphism. 0

THEOREM 4.2. I f G : SET T- SET D is a functor preserving filtered co-
limits then there is a unique (up to isanorphism) Top-indexed functor F : 

SET T - SET D such that FI = G .

PROOF. By the corollary to Theorem 4.1, uniqueness will follow from

existence. For Z E Top , define

Let f : Y - X be a continuous function. For each u s 0y , 

is directed. Therefore,

commutes. Also, for

gives a comparison functor

- 

I

because ( T X f)* S is the sheafication of . This gives us a comp-

arison functor

For each y c Y we have a commutative triangle
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Therefore, is an isomorphism.

Now for each Z c Top define 

by where the right hand side of the equality
-mn

views S as an object of (SET T)U7 . Therefore, for , 

have

Therefore, we have a Top-indexed functor F : SET T - SET D such that

F 1 = G. 0

COROLL ARY. For X E Top and S E SET X, the direct image functor

SET subXS - SET X along sub X S - X may be Top-indexed.
PROOF. By Proposition 1.8, the direct image functor SET sub X S - SET X
preserves filtered colimits. Therefore, with T = sub X S and C = X the

theorem says the direct image functor along sub X S - X has a unique (up
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to isomorphism) ?’op-indexing. D 

THEOREM 4.3. Up to isomorphism the Top-indexed functors F: SET - SET

are in bijective correspondeuce with the filtered colimit preserving func-
tors Fl : Set - Set .

PROOF. This is just Theorems 4.1 and 4.2 combined with T = 1 and

C=I. 0

Let Fin denote the category of finite sets and functions.

PROPOSITION 4.2. A functor F: Fin - Set preserves all the fil tered co-

l imi ts exi sting in Fin .

PROOF. Let D be a filtered diagram in Fin with lim - D E Fin . By the fil-
teredness of D and because the objects of D are objects of Fin , there

is a diagram

representing a section of the colimiting cone of lim D with pi onto lim - D
and

I

an isomorphism. Therefore, we have a commutative diagram

Since djlD - D is final, lim - ( djlD) =-&#x3E; lim D . Therefore, P ; D - lim D
is an absolute colimiting cone. Therefore, every functor on Fin preserves

the colimit of D . D

A functor Fin ^- Set has an extension F : Set + Set defined at

S f Set by F (S) = lim ( F ( Fin (S))), where Fin ( S) is the partially order-

ed set of finite subsets of S . Referring to the next diagram, for any filtered
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diagram D in Set with d = lim D , we have

Therefore, the extension F of F preserves filtered colimits.

THEOREM 4.4. The category of isomorphism classes of Top-indexed func-
tors SET SET is equivalent to Set Fin.

PROOF. Since every set is the canonical colimit of its finite subsets, any
functor Set - Set preserving colimits is determined up to isomorphism by
what it does to finite sets. Therefore, the filtered colimit preserving func-

tors Set - Set correspond to functors Fin - Set . The result now follows

from Theorem 4.3. 0

5. SHEAVES OF FINITARY ALGEBRAS.

THEOREM 5.1. The algebraic theories whose algebras can be Top-indexed
as the algebras o f a Top-indexed triple SET 4 SET are precisely the finit-
ary algebraic theori es.

P ROO F . It is well-known that the finitary algebraic theories arise exactly
from triples Set - Set preserving filtered colimits. The result follows from
this and Theorem 4.3. 0
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