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AN EXPONENTIAL LAW FOR REGULAR ORDERED BANACH SPACES

by KYUNG CHAN MIN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIV - 3 (1983)

0. INTRODUCTION.

The notion of a category upholding an exponential law

(more precisely, a symmetric monoidal closed category), pioneered by S.

Eilenberg and G. M. Kelly [4] and others, provides a setting in which ele-

gant functorial techniques become available. These techniques, which

exploit the presence of a large number of canonical morphisms, become

even more powerful if the category also admits all the usual limit and co-

limit constructions (technically, if it is complete and cocomplete). Thus,
a « well-equipped » category is one which upholds an exponential law and

is complete and cocomplete.
An important example is

Ban = (Banach spaces, linear maps with norm at most 1 ).

The « well-equipped» feature of this category has been put to effective

use by a number of authors so as to bring interesting new developments
into the theory of Banach spaces. See for example J. Cigler, V. Losert and

P. Michor [2], C. Herz and J. Wick Pelletier [10], L.D. Nel [15] and J.
Wick Pelletier [18]. Numerous further papers could be cited to illustrate

the effectiveness of other «well-equipped» categories in Analysis and (top-

ological) Algebra.
In the realm of ordered Banach spaces, however, despite a vast

literature involving numerous special classes of spaces, no corresponding

«well-equipped» category has so far emerged. The main purpose of this

paper is to bring to light such a category.
To be specific, we will show that the class of regular ordered Ban-

ach spaces (previously studied from a different point of view [3,7]) can
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be structured into a «well-equipped» category ROBan by taking as mor-

phisms all positive linear maps with norm at most 1 and by introducing

appropriate internal Hom-obj ects [ E , F I (operator spaces), so as to ob-

tain an exponential law, in fact a symmetric monoidal closed structure.

ROBan seems to be the appropriate «ordered version» of Ban .

While it is of course a subcategory of Ban , it is remarkable how little

structure it inherits from Ban . As will be shown below, the internal Hom-

objects [ E , F] , the categorical tensor products FSF and even the equal-
izers (roughly, the regular ordered Banach subspaces) of ROBan carry

norms that are in general different from the norms of the corresponding

« parent » objects in Ban . Products and coproducts in ROBan , though, are

formed with the same Banach space structure as in Ban . Coequalizers

(roughly, quotient spaces) in ROBan are something else again : We have

so far been unable to obtain their explicit form and we prove only their

existence by indirect categorical arguments.
It is fortunate that ROBan includes virtually all interesting ordered

Banach spaces ; in particular, it includes all Banach lattices. It is worth

pointing out that the spaces arising from the study of an axiomatic founda-

tion of quantum mechanics are regular ordered Banach spaces and the cru-

cial operators are morphisms in ROBan (cf. [7]). Thus, because of its

excellent theoretical attributes and its relevance to real world problems,
th e category ROB an seems destined to play an important role in Analysis.

For general categorical background we refer to H. Herrlich and G.E.

Strecker [9] and for closed categories to S. Eilenberg and G. M. Kelly [4] .

This paper is based on a chapter in my doctoral dissertation [131.
It is a pleasure to thank my supervisor, Professor L. D. Nel, for suggesting
this investigation and for his stimulating guidance and encouragement dur-

ring the research and preparation of this work.

1. A REGULAR ORDERED BANACH SPACE AND ITS POSlTIVE UNIT BALL

For ordered vector space theory we generally follow the terminology
of Y.-C. Wong and K.-F. Ng [22].

An ordered normed space ( E , C, 11 11 ) is called regular [3] when
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the positive cone C of E is closed and II II is a Riesz norm; i. e., 11 11

satisfies the following two conditions :

( Rl ) if - y  x  y, then || x ||  11 y 11 (absolute-monotone),

( R2 ) for any x (E with || x ||  1, there exists y &#x3E; 0 with || y ||  1
such that - y  x  y .

The condition (R2) implies that C is generating: indeed,

Furthermore, (R2) is equivalent to the following statement: If x c E and

f &#x3E; 0 , then there is y &#x3E; 0 with || y ||  || x || + E such that - y  x  y.

It is well known and easily seen that every Banach lattice is a reg-
ular ordered Banach space and an ordered normed space ( E, 11 II ) is a loc-

ally solid space iff it possesses an equivalent Riesz norm 11 ||1, where

A regular ordered Banach space E is fully characterized by its

positive unit ball as is a Banach space by its unit ball. By the positive
unit ball of E is meant the set

1.1. The boundedness of a positive linear map between regular ordered

normed spaces is determined by the positive unit ball of the domain space.

PROPOSITION. L et E and F be regular ordered normed spaces and f :
E - F a bounded positive linear map. Then the sup norm satisfies

PROOF. Let x 6 E and II x 11  1 . Then there is y F, C with 11 y II  1 such

that - y  x  y . Thus

and therefore || f ( x ) ||  || f ( y ) ||. Hence
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We note that every positive linear map between regular ordered

Banach spaces is bounded (cf. II.2.16 [16]).

Consider the function U : ROBan 4 Set defined by:
U E = the positive unit ball of E on objects, and

U ( f ) = f I UE for every f : E + F in ROBan .

Then U is a faithful functor (E = C - C ) . This positive unit ball functor

U is closely related to the unit ball functor U1 : Ban -&#x3E; Set

1.2. PROPOSITION. The functor U : ROBan - Set has a left adjoint, name-

ly l1(-, R).
PROOF. It is well known (cf. 1.1.11 [2]) that L ( - , R ) is left adjoint to

U1 : Ban -&#x3E; Set via the natural isomorphism

where nS ( s ) is the characteristic function of { s }. Since l1( S, R ) is a

Banach lattice (cf. 11.4.12 [16]), hence already lies in ROBan and since

ROBan is a subcategory of Ban , it is enough to check that for every E

in ROBan, Y carries the subset ROBan(l 1(S, R), E ) onto Set ( S, UE) .

This is routine. /

1.3. PROPOSITION. The mono-sources in ROBan are precisely the points

separating-sources.

PROOF. Let {mi : F - Eiii be a mono-source in ROBan , where I is an

index class. Then since Cl is a right adjoint functor { U (mi): U E - U Ei }I
is a mono-source in Set , which separates points of U E . Suppose x # 0

(i = 1, 2). Thus mj(x) # 0 for some j E I.
1.4. The functor U shares with algebraic forgetful functor (e. g. the func-

tor Group 4 Set ) the following useful property.

PROP OSITION. Every mono-source in ROBan is U-initial [8].

PROOF. Let mi: E -&#x3E; Eill be a mono-source in ROBan, where I is an



283

index class. For a source g i: F -&#x3E; Ei I I in ROBan and a function

we can define a function f : F -&#x3E; E by

where x = x 1 x2 with x1, x2 E C F , subject to the convention 110 11-lo = 0.

Indeed, f is well-defined : For each i E I,

Hence, f ( x ) is independent on the choice of xi , x2, because {mi} sep-

arates points of E by Proposition 1.3. For x , y E F,

for each i f 1, and therefore f ( x + y ) = f ( x ) + f ( y ) . In a sim ilar way,

for a c R and x c F, f (a x ) = a f ( x ) . Obviously, f is positive. Moreover,

and therefore f ( x ) = f ( x ) . The uniqueness of such a map 7 f ollows im-

mediately, since the functor U is faithful. /

2. INTERNAL HOM-FUNCTOR FOR ROBan.

We now embark on the derivation of an exponential law for ROBan.

An obvious starting point in the quest for an appropriate internal Hom-ob-

ject [E, F] is the vector space of all bounded linear maps E » F which

can be expressed as a difference of two positive linear maps. However,
the choice of norm is not obvious, since the usual sup norm turns out

to fail in general.
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2.1. For E , F 6 ROBan , let [ E, F] be the set of all linear maps from

E to F which can be expressed as the difference of two (bounded) posi-
tive linear maps from E to F . Then [E, F] is an ordered vector space

with a natural generating positive cone C ( = the set of all positive linear

maps from E to F ). Consider the function II ||1: [ E, F ] -&#x3E; R+ defined by:

where || g II is the sup norm of g . Then it is easy to check that II 111 is

a semi-norm on [ E, F] .

2.2. It is known (cf. IV.1 [17]) that for Banach lattices E and F , then

([E , F], || ||1 ) is an ordered Banach space with a normal B-cone. Here,

we generalize this result to regular ordered Banach spaces. As a matter of

fact, for E, F f ROBan , ( [ E, F l , C , II ||1 ) will be seen to be again a reg-
ular ordered Banach space.

LEMMA 1. Let E and F be regular ordered Banach spaces. Then for every

f E [ E, F], || f ||  || f ||1. Furth er, ill is positive, then 11111 - II f II1’ 
P ROO F. Let g c [ E , F I such that g  f - g Take x c E with 11 x II  1,

and y E C E such that || y ||  1 and y  x  y . Then

which implies

By adding the first and the last inequalities, we have

and therefore

Thus

Hence || f ||  IIflll. If f is positive, then || f ||1  II f li by the definition

of II "1, and hence III II = || f ||1. /

LEMMA 2 ( Jameson, 3.5.11 [77D. L et E be a metrizable topological vec-

tor space. 11 it is open decomposable and each increasing Cauchy sequence
in C E has a limit, then E is complete.
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THEOREM. Let E and F be regular ordered Banach spaces. Then the

space [ E, F ] equip ped with the pointwise order and with the norm II ||1 is

a regular ordered Banach space. (Henceforth, [ E, F] will be supposed al-

ways to carry this structure.)

PROOF. By the definition of || ||1 and the above Lemma 1, it is easy to

see that II ||1 is a Riesz norm. Observe that the positive cone C of [E, F ]
is closed with respect to the sup norm 11 ||. Hence the positive cone C
is closed with respect to the stronger topology of 11 ||1. Therefore,
([E, F], C, II ||1) is a regular ordered normed space.

To show the completeness of ([ E, F ] , 11 111), let { fn } be an in-

creasing Cauchy sequence in C (with respect to II ||1). Then in } is an

increasing Cauchy sequence with respect to the weaker topology of 11 11

and hence converges to some bounded linear map f . Furthermore, since

the sequence {fn} I is increasing and C is closed with respect to 11 ||,

f = sup fn and therefore f E C . As a matter of fact, f is a limit of { fn } in

([ E , F ] , II ||1), because

II I - In 111 =Ilf-fnll for all n E N

by Lemma 1. Thus ([ E, F L II ||1) is complete by Lemma 2. /

2.3. It is known (IV.1.4 [17]) that 11 ||1 &#x3E; II II in general. Here we remark

on some relationships between [ E, F ] and the ordered Banach space

L ( E, F ) of bounded linear maps from E to F , with respect to the sup

norm and the pointwise order.

( 1 ) A. J. Ellis (1 [5]) showed that i f E is a base normed space and

F is an order-unit normed space, then L ( E, F) is an order-unit normed

space. It is known (cf. IV.1.5 [17]) that for Banach lattices E and F if

(a) F is an order complete ANi-space with unit (a largest element

in the unit ball),

or (b) E is an AL-space and there exists a positive contractive projec-
tion P : F" -&#x3E; F (by means of evaluation, F is considered as a subspace of

F"), 

then L ( E, F ) is a Banach lattice.
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Thus, in these cases, it is easy to see that [E, F] = L ( E , F ) in

ROBan .

(2) A. W. Wickstead [19] showed that for E , F (ROBan each of the

following cases implies that L ( E , F ) is a locally solid space :
( a ) Let Q be a stonean space, i. e. a compact Hausdorff space such

that the closure of every open subset is open, and C(Sl ) 1 ( = the set of

all real-valued continuous functions on Q ) the Banach lattice with respect
to the sup norm and the pointwise order. Let F = C(Q).

( b ) Let E or F be finite dimensional.

Thus, in these cases, [E, F] = L ( E, F ), as ordered vector spaces, and

II Ill and the sup norm || II are equivalent.

2.4. We conclude this section by showing that the category ROBan is

closed.

The regular ordered Banach space [E, F ] defines a functor

[-,-]: ROBan * X ROBan -&#x3E; ROBan

on obj ects ; its definition on morphisms proceeds in the obvious way.

Indeed,

by Lemma 2.2.1 1.

Moreover, each of the following maps in ROBan induces a natural

tran s formation :

an isomorphism,

Thus,

is a closed category in the sense of [4) . .
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3. THE PROJECTIVE TENSOR PRODUCT OF REGULAR ORDERED BA-

NACH SPACES.

The appropriate tensor product for ROBan turns out to have been

studied already recently form a different point of view. Adopting the pro-

jective tensor product of regular ordered normed spaces due to G. Wittstock

[20], we obtain a bifunctor E on ROBan which will turn out to be adjoint
to [-,-].

3.1. We recall some results of [20] concerning tensor products of regular
ordered normed spaces.

Let E and F be regular ordered normed spaces and let

Then Cp is a generating cone for the vector space E O F. For each

v fe, let

where 

Bb (E, F)+ = the cone of all bounded positive bilinear functionals on E X F.

Then, the functional

is a norm on E O F . Indeed, E O F = ( E O F , C p1 , II ||p) is a regular ordered
normed space such that 

p 

Moreover, the canonical bilinear map (DE F: E X F -&#x3E; E OF , which

is positive and bounded, has the following universal property:
If T : E X F -&#x3E; G is a bounded positive bilinear map into a regular or-

dered normed space G, then the induced linear map T: E O F -&#x3E; G is
bounded, positive and ||Y ii = 11T II : 

p

REMARK [21]. In fact, for each u c E O F ,
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3.2. THEOREM. There exists a functor 9 : ROBan X ROBan -&#x3E; ROBan and

for any E , F in ROBan , there exists a universal bilinear map 8 E F:
E X F -&#x3E; E D F for ROBan, 2’. o. for every positive bilinear map lJI: EX F -&#x3E; G

with norm at most 1, there is precisely one map T: E C8’J F 4 G in ROBan

such that Y o OEF = T.
(We call D the projective tensor product for the category ROBan. )

PROOF. Let ES F be the completion of E O F . Then E D F is a regular
P

ordered Banach space with respect to the order generated by the closure

of C in E D F (cf. 2.4 [20]). Let ci : E O F -&#x3E; E D F be the canonical

injection and

where Q EF: E X F O E O F is the canonical bilinear map. Then the posi-
tive bilinear map 8 E F is universal for ROBan (note that || O E F 11 = 1 ) :

Let ’P : E X F -&#x3E; G be a positive bilinear map with norm at most 1 . Then,

by 3.1, there is a unique bounded positive linear map

Let IF : E 0 F -+ G be the unique extension of Y. Then llw 11 = ll jl II and

T is positive, since C G is closed. Thus 9 i s a map in ROBan . Moreover

Therefore a functor

E : ROBan X ROBan 4 ROBan

is determined by the universal positive bilinear maps O EF for ROBan :

Indeed, OEF : E X F -&#x3E; E D F is a natural transformation, and f D g : 

E D F -&#x3E; G D H is given by the factorization

REMARK. D.H. Fremlin ( lE [6]) showed that for Banach lattices E and

F , E D F is again a Banach lattice.
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3.3. We conclude this section by showing that every bounded linear map

from a finite combination of the projective tensor product D in ROBan to

a regular ordered Banach space is determined by the values on certain po-
sitive elements in the domain space.

PROPOSITION. Let E , F, G and H be regular ordered Banach spaces
and f , g : ( E D F ) D G -&#x3E; H bounded linear maps. 1 f for all x f U E, y E U F

and

PROOF. By the definition of D, it is enough to show that

Indeed,

PROOF. For a positive linear map g : E lll F -&#x3E; G, define a function

subj ect to th e convention :

= g ( u O z ) , by assumption. /

4. A SYMMETRIC MONOIDAL CLOSED STRUCTURE OF ROBan.

We first show that ROBan upholds an exponential law.

4. 1. Exponential law for ROBan : There exists a natural isomorphism

Then, by routine verification, 9 is a positive linear map and II g II = II g 11 .

Now, define a function
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where f = f1 - f2, f1, f2 are positive. Then, using the universal property
of OEF, we can check without difficulty that a is a bijective linear map.

Obviously, a is positive and norm preserving. /

REMARK. This result can also be obtained via U-bimorphisms, using re-

sults of B. Banaschewski &#x26; E. Nelson [1] and Proposition 1.4 (see [13] ).

4.2. LEMMA. There is a natural isomorphism

such that ic( f)(y)(x) = f(x)(y) for all f E [E, [F, G] J, x c E and

y E F .

PROOF. For a positive linear map g : E - [F, G], define a function

Then 9 is a positive linear map and

4.3. Now we can obtain the main result in this section, which incorporates
the exponential law just obtained.

TH EOREM. ROBan is a symmetric monoidal closed category.

PROOF. To obtain a monoidal closed structure on ROBan , it is enough
to show (2.4.1 [4]) that the following diagram commutes

where c is the counit of the adjunction -D E U [E, - J . Indeed, for all

Hence . Thus,
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is a monoidal closed category, where a, r and l are the natural isomor-

phisms determined by a and i , that give coherence.

For symmetry, apply Lemma 4.2 to obtain a natural isomorphism

such that

It follows that there exists exactly one natural isomorphism s: - 9 F- F 9 -

making the diagram

commutative (cf. 4, [12]).
NOTE 2. s ( x D y ) = y D x for all x E E and y E F.

Moreover, since D is a bifunctor, s : E D F -&#x3E; F D E is a natural isomor-

phism. The coherence properties follow by the above Note 1 and Note 2,

Theorem 3.2 and Proposition 3.3. /

5. COMPLETENESS AND COCOMPLETENESS OF ROBan.

Neither the proof of completeness nor of cocompleteness is a rout-

ine matter. While the obvious forgetful functor ROBan 4 Ban preserves

products and coproducts, it does not preserve equalizers. The general form

of coequalizers turns out to be rather elusive.

By establishing existence of products and equalizers, we show that

the category ROBan is complete. 

5.1. PROPOSITION. ROBan has products, in fact, the underlying functor
from ROBan to Ban preserves and reflects products.

PROOF. Recall (cf. [2)) that in Ban the product of spaces E i i c I) is

formed by the space
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with projection functions

In view of Proposition 1.4 this will give also a product in ROBan provided
that loo (I, { Ei }I) equipped with the pointwise order lies in ROBan and

the projections are positive. But both of these follow by routine verifi-

cation. /

5.2. Hereafter, CE denotes the positive cone of E.

PROPOSITION. ROBan has equalizers.

PROOF. For a pair of maps f , g : E - F in ROBan , let

Then D1 is an ordered vector space with a generating positive cone Dr1CE.
For each x t Dl , let

where II 11 is th e Riesz norm on E . Observe that for every x E D1, 
|| x ||  II x ||1, and moreover if x E D n CE, then II x ||1  || x II , and hence

x 111 - 11 x
Thus, by routine work, tt ||1 is shown to be a norm on D1. Indeed,

11 ill is a Riesz norm on D1 by the definition of II 111 and the above ob-

servation. Furthermore, since D n CE is closed with respect to 11 11 , the

positive cone D n CE of D1 is closed with respect to the stronger topo-

logy of 11 ||1. Thus ( D1 , D n CE , II ||1) is a regular ordered normed space.
To show the completeness of (D1, II ||1), let I xn be an increasing

Cauchy sequence in DT-ICE with respect to II Ill . Then {xn I is an increas-

ing Cauchy sequence in ( E, II 11) and therefore converges to an x in E .

Indeed, x 6 D , because D is closed in f E , II 11). Moreover, since CE is

closed with respect to 11 II and the sequence is increasing, x = supxn.

Thus x c D n CE . As a matter of fact, x is a limit of the sequence {xn }
in (Di , 11 111), because
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Hence by Lemma 2.2.2 D1 is complete with respect to II II1 . 
From now on, D1 means the regular ordered Banach space:

( D 1 ’ D n CE, p ||1 ). Let e : D1 -&#x3E; E be the canonical injection. Then e is

an order-isomorphic linear map and 11 e 11 = 1 . Indeed, ( D1, e ) is an equal-
izer in ROBan of f and g : Obviously, f o e = g o e . For each map h :
H - E in ROBrxn with f o h = g o h , there is a function h : H -&#x3E; D1 defined
by h ( u ) = h ( u ) . By Proposition 1.4, h is a morphism in ROBan and the

uniqueness of such L is obvious.

5.3. In general, D1 need not coincide with D , nor need II Ill 1 coincide

with II II .

COUNTEREXAMPLES. Let C[0, 1 ] be the Banach lattice of real-valued

continuous functions on [0,1] , with respect to the sup norm and the point-
wise order.

( 1 ) A case in which D1 4- D : Consider the two real-valued functions

on C[ 0 , 1 ]. Then [0] and I are positive linear maps with norm  1 Let

Then it is easy to see that D1 = DnC - DnC = 10 1.
( 2 ) A case in whi ch II "1 f- II 1/: Consider a real - valued function

J ( f ) = 2-1 f ( 0 ) on C [ 0, 1]. Th en J is a positive linear map with norm

 1 . Let

Define a function / on [ 0 , 11 ] by

Then f E D . Moreover, f E D1 : Consider the two functions ii and f 2 on

C[0, 1 ] defined by
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since

Therefore g(0) + h(0) &#x3E; 3/4. Thus || f ||1 &#x3E; 3/4, while IIf II = 112.

COROLLARY. The obvious forgetful functor from ROBan to Ban does

not preserve equalizers and therfore does not have a left adjoint.

5.4. THEOREM. ROBan is complete.

PROOF. It is immediate from Proposition 2.1 and Proposition 2.2. /

5.5. Usually, cocompleteness is obtained by showing the existence of co-

products and coequalizers. However, for the category ROBan it is trouble-

some to detect coequalizers, while easy to exhibit coproducts. Thus, in-

stead, we use indirect categorical results to show cocompleteness.

LEMMA 1. ROBan is well- powered.

P ROO F . For F E ROBan, let {[(E, CE, 11 ||E ) , m ]} be a representative
class of subobj ects of F. Then there is a function

defined by

where P(F), 9 ( CF ) and P ( R+F ) are the power-sets of F , CF and the

set R+F of all functions from F to R+, respectively. Indeed, w is in-

jective (cf. Proposition 1.3). /

LEMMA 2. R is a coseparator for the category ROBan.

PROOF. Let f , g : E - F be distinct maps in ROBan . Take x E E with

f(x) # g(x). Then we have h c C’ such that h( f(x)) # h(g(x))by ob-

serving that the dual F’ of F separates points of F and F’ = C’ C’ ,
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where C’ is the set of all positive linear functionals on F (cf. 6.7 [12)).

Thus, we have a map lib ||-1 h: F 4 R in ROBan such that

TH EORE M. ROBan is co(well-powered) and cocomplete.

PROOF. Theorem 2.4 and the above Lemma 1 and Lemma 2 imply the re-

sult (cf. 23.14 [9)). /

5.6 Coproducts in ROBan are formed, as in Ban , as follows.

P ROP OSITION. For a family I Ei li in ROBan, where I is an index set,

the coproduct 11 Ei in ROBan is the space o f all elements

with a norm ||(xi) ||1 = E|| xi || and the pointwise order.
P ROO F. Let

This is the coproduct of the spaces Ei ( i E I ) in Ban . One verifies with-

out difficulty that l1 (1, { Ei }I) equipped with the pointwise order lies in

ROBan whenever all Ei are; moreover, the canonical injections

are positive. The remaining arguments are routine. /

5.7. REMARKS. Consider a new category ROBanoo of regular ordered Ba-

nach spaces and all (bounded) positive linear maps. The relations between

ROBan and ROBanoo are quite analogous to those between Ban and

Banoo = ( Banach spaces, bounded linear maps).

Similarly as in ROBan , we can show, in the obvious way, that ROBanoo
is also a symmetric monoidal closed category. In fact, the adjunction

[E D F, G] = [E, [ F, G] ] in ROBan implies immediately 

[ E D F, G ] = [E, [ F , G]] in ROBan. .

However, this category ROBan 00 has, like Ban. , rather bad pro-

perties with respect to limits and colimits. In fact, it can be shown that
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infinite products and infinite coproducts do not exist by the same reason-

ing as in Banoo.

We note that if the index set 1 is finite, then the products II Ei,
and coproducts ILl Ei in ROBan are also products and coproducts in ROBan 00
respectively, and are isomorphic in ROBanoo. In the category ROBan.

11 E. and II E. are of course not isomorphic in general, because they carry

different norms.
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