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BOUNDED FUNCTORS, FINITE LIMITS AND AN APPLICATION OF

INJECTIVE TOPOI

by Robert ROSEBRUGH

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXI V - 3 ( 1983 )

1. INTRODUCTION.

Let S be a topos with natural numbers object (NNO) 1-o--&#x3E; N 4N .

Using bounded functors to provide solutions to recursion problems and

showing that inverse images of endomorphisms of internal presheaf topoi
are bounded provided a proof that S/ N is the natural numbers object in

DTOP/ S, the 2-category of presheaf topoi over S [8]. The main object
of this paper is to broaden this to BTOP/ S, the topoi bounded over S , 

and so recover the result of Johnstone and Wraith [4]. The first step is

to study the relationship between flat and left exact indexed functors on a

finitely complete category object in S . This is the key to showing that a

topos of presheaves on a finitely complete internal category is injective.
We complete the Giraud Theorem for bounded topoi [1] by showing that a

bounded topos is embedded in presheaves on a finitely complete internal

category. We combine these results with a transfer of solutions to recursion

problems to complete the main result. In the remainder of this section are

definitions, the transfer lemma just mentioned, and some results on conl-

parison of bounded endofunctors.

I would like to thank Bob Par6 for helpful discussions and for sug-

gesting Lemma 2.9, and Chris Mikkelsen for asking if K is bounded.

The reader is assumed to be somewhat familiar with the Pare-Schu-

macher theory of indexed categories [6]. We recall a little notation which

will be useful. If A is an S-indexed category, the underlying ordinary cat-

egory A 1 is denoted A ; if C is an internal category in S , the S-indexed

externalisation of C [6, II.1.2] is denoted [C] and in particular, the dis-

*) This research was partially supported by a grant from NSERC Canada.
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crete category on the object I in S is [1]. The bijective correspondence
between objects of A, and (indexed) functors [I] -&#x3E; A should be recalled

as should the notion of «stable», i. e. preserved by substitution. We de-

note the 2-category of internal category objects in S by cat( S) -

The following definitions are from [7].

1. l. D EF INITIONS. 1. A recursion probl em in A is a pair (A 0’ F ) where

A 0 is in A and F : A -&#x3E; /4 , i. e.

A solution to ( Ao F ) is A in A N such that

with a diagram of ,S-categories commuting [71.
2. An e-functor is a functor E : A -&#x3E; S with small fibres (as an S-ind-

exed functor [7, 1.3].

3. F: A -&#x3E; A is called mono bounded (resp. epi-mono bounded) relative

to F if for each A in A there is a R in S such that

There are two results which are important for the sequel. The first

is that if F; A -&#x3E; A is epi-mono bounded (or mono bounded) then every re-

cursion problem ( A0 , F ) has an essentially unique solution [7]. The se-

cond concerns the inverse image f *: S Cop -&#x3E; S COP of a geometric endo-

morphism f (over S ) on an internal presheaf topos : such f * are epi-mono
bounded (and hence all recursion problems ( X, f*) have a solution [8]).
Until further notice (after 2.2) S need only be assumed to be a category

with finite limits and a NNO.

1. 2. PROPOSITION. Let F: A -&#x3E; A, (7: B -&#x3E; B and H : A - B be S-indexed

with H F = G H, and B0 in B. I f there is A0 in A such that H A0 = B0
and ( Ao F ) bas a solution, th en ( Bo G) has a solution.
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P ROO F. Just consider the following diagram in

a solution to ( A0, F) :

1. 3. COROL LARY. I f F : A -&#x3E; A, G : B -&#x3E; B and H: A 4 B are S-indexed,

H F = G F, F has solutions to all recursion problems, and H is onto on

objects, then G bas solutions to all recursion problems.

This result will be applied in 2.12. We can also say something
about functors which can be compared to bounded functors.

1.4. PROPOSITION. Let A be S-indexed with e-functor E and F, G 

A -&#x3E; A.

1. I f F is mono bounded and E G &#x3E;---&#x3E; E F, then G is mono bounded.

2. If F is epi-mono bounded and E F - E G, then G is epi-mono bou-

nded.

3. 1 f A - S, E = ids, F is mono bounded, G preserves epis and

F --&#x3E;-&#x3E; G, then G is epi-mono bounded.

PROOF. 1 and 2 are trivial (just use the same bounding objects as provided
by the hypothe sis). For 3, suppose B X is the bound for X in S, then ob-

serve th at if Y ---- C &#x3E;---&#x3E; Bx th en

so BX epi-mono bounds G Y and this can be localized.

There are several other results concerning comparisons of bounded

functors which are also easy consequences of the definition. For example,
a mono bounded functor which preserves epis is epi-mono bounded.

We use that fact in the following application of 1.4, 3, to show

that the «( Kuratowski-finite subobjects) functor [5], denoted X |-&#x3E; K ( X ),
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is epi-mono bounded. For a start, we recall C. J. Mikkelsen’s result that

K is the free functor for the theory of v-semilattices. This theory is a quo-
tient of the theory of monoids as Johnstone observed. [2, 9.20] so letting
M denote the free monoid functor we have M --&#x3E;-&#x3E; K . Now M is mono bound-

ed which may be seen in the proof of Theorem 3.2 of [7]. It remains to see

that K preserves epimorphisms, but wi preserves these so K does as well,

being a quotient of an epi-preserving functor.

2. FINITE LIMITS AND AN APPLICATION OF INJECTIVE TOPOI.

The definition which follows includes several references to «hiero-

glyph» objects of diagrams with respect to an internal category

in S . The objects of diagrams can all be defined as suitable inverse limits

involving the morphisms defining C . This definition says that C has finite

limits if it has canonical equalizers, binary products and terminal object.
Its utility is Lemma 2.2.

2. 1. DEFINITION. C has finite limits iff there are morphisms

and ’ 1’: 1 -&#x3E; C0 and isomorphisms

and u 1 : Co -+ T where the following are pullbacks :
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D e = im ( e ) , DP = im (p ), 0 proj ects to the middle object of the hiero-

glyph and o’ to the initial object. Moreover, several diagrams are required
to commute, e. g. (for equalizers ) :

2.2. L EMM A. C has finite limits iff [C] has (stable) finite limits.

PROOF. (=&#x3E;) This is immediate. Indeed, for any I in S the data of 2.1

give, for example, to each pair of obj ects in [C] I, two arrows of [C]I,
with common domain by composing with p . These are a product diagram.

Equalizers and the terminal object are obtained from e and ’ 1 ’ , so [C] J
has finite limits and these are obviously stable.

( = ) Let

be the generic pair of objects in [ C] co xc 0. These have a product diagram
in [ C] C0 X C0 which is the same thing as a map

The universal property of p may easily be checked to give precisely the

required isomorphism 

Similarly, the equalizer of the generic pair of arrows in and th e
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terminal object in [C]1 provide the rest of the data to show that C has

finite limits.

An indexed functor F : A -&#x3E; B will be said to be left exact if A

has (stable) finite limits which are preserved by F. The full subcategory

of S-CAT ( A , B ) whose objects are such functors will be denoted by

Lex S( A, B ).
We assume again that S is a topos.

If C in cat ( S ) has finite limits and p : E -&#x3E; S is a geometric mor-

phism then p * C in cat(E) has finite limits, for the data of 2.1 are pre-

served (by any left exact functor). Recall (from e.g. [2, 4.31]) that the

category Flat ( C0p, S ) is the category of flat presheaves on C , i. e. those

whose corresponding discrete fibration is filtered (in the internal sense).

2.3. LEMMA. I f C in cat ( S ) has finite colimits, then

PROOF. If F is a flat internal presheaf on C with associated discrete fi-

bration o : F - C , then -OF: SC -&#x3E; S is a left exact S-indexed functor

as is the Yoneda functor

On the other hand, to F : [C]op -&#x3E; S we may associate a presheaf F

whose family of values is

and whose action is the transpose under the adjunction of

If F is left exact then the discrete fibration associated to F , denoted

0 : F - C has filtered domain. For example, the morphism

is split epi. Indeed, it is split by the morphism defined by the following
natural transformations :
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Similarly, preservation of equalizers and 1 provide splittings making the

other required morphisms epic.

2.4. LEMMA. If p : E -&#x3E; S is a geometric morphism and C in cat ( S) has

finite limits, then

PROOF. For any E-indexed F: [ p *C] -&#x3E; E , define an S-indexed functor

for all I in S and A in [C]I. For an S-indexed G : [ C] + E define

for all J in E and A in [p*C]J where

the following is a pullback :

and
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Extending these definitions to morphisms and verifying that they provide
the required equivalences is routine.

Combining 2.3 and 2.4 gives immediately:

2.5. PROPOSITION. I f p : E -&#x3E; S is a geome tric morphism and C in cat ( S )

has finite limits, then

The next several results serve to confirm P. Johnstone’s sugges-
t ion that his characterization of bounded topoi over set which are injective
with respect to inclusions remains valid over an arbitrary base [3]. Both

2.5 and 2.10 are essential. We recall, following Johnstone, the appropriate
notion of injectivity. For a 1-arrow I: A 4 B in a 2-category K , denote

the functors defined by composition. For a class M of 1-arrows in K an ob-

ject E is strongly injective if for any f : A -&#x3E; B in M there is a functor

kf: K ( A E) -&#x3E; K ( B , E ) and a natural isomorphism a f: f + k f -&#x3E; 1 K (A, E ).
E in TOP/S is strongly injective if it is so, in this sense, with respect

to inclusions.

2.6. PROP OSITION. Let C be in cat( S ) and have finite limits, then for

every geometric morphism f: F -&#x3E; E over S, the functor f+ has a right

adjoint Àt and SCOP is strongly injective.
PROOF. Notice that by Diaconescu’s Theorem [11 and 2.5 we have

and then follow Johnstone’s proof over set [3, 1.2].

Our next goal is to show that a bounded S-topos p : E -&#x3E; S may be

included in presheaves on a category in S which may be taken to have

finite limits. Now E has an object D of generators over S , i. e. for any

X in E , the composite
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is epi, where c is the counit of p * -| p .

2.7. LEMMA. If D is an object o f generators for E over S and j : D &#x3E;----&#x3E; D’ 

is monic, then so is D’.

PROOF. Let X be in E. X is injective so there is a j : XD &#x3E;----&#x3E; XD’. Now
consider

The square commutes by naturality. Both

and evD ( XJ X D ) are transpose of Xj, so they are equal and cancelling
Xj X D shows that the triangle commutes. But evD(E X D ) is epi and hence

so is evD’( c X D’ ) . m

2.8. LEMMA. I f D in cat ( E ) has finite limits then p* D in cat(S) has

finite limits.

PROOF. By 2.2 it is enough to show that [p*D] has stable (S-indexed)

finite limits. We construct e. g. stable finite products in [p*D]. Let I be

in S and A, B:I -&#x3E; p*D0 be obj ects in [p*D]I. Let A , B : p*I -&#x3E; D0 cor-

respond to A , B by adjointness, and A X B : p *I -&#x3E; Do be their product in

tDJP*I. Now nI*p* (A X B) is an object of [p *D]I, where nI: I -&#x3E; p*p *I is
the front adjunction, and it is easily shown to be a product of A and B .

Stability follows by naturality of n. 

2.9. LEMMA. Let K = L N and let S &#x3E;---&#x3E; (QK)*K be the generic subob-

j ect o f K (in S/QK) . Full ( S ) , the full subcategory o f S determined by

S, has finite limits.

PROOF. We show that Full ( S) has binary products. Let p denote the iso-

morphism
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We work at 1 for simplicity and let A , B be in Full ( S ) , i. e.

Now A*(S) X B *( S) is an object of S with

giving A x B: 1 -7 aK corresponding to the monic. Notice that A I B *S

comes equipped with projections which give morphisms in Full ( S ) mak-

ing A X B the product of A and B .

Full( S) also has equalizers and 1 . Indeed, it is closed under sub-

objects in S.

Full ( S ) is small and Full ( S ) = [Full ( S )] I where the latter is

the internal full subcategory, so Full ( S ) also has finite limits by 2.5.

2. 10. THEOREM. Let p : E - S be a bounded geometric morphism, then

there is C in cat ( S ) with finite limits such that E is a subtopos of SCop.
PROOF. It is well known that E is a subtopos of ;Cop if C = p* D and

D= Full ( S ) where S is the generic family of subobjects of an object of

generators for E over S [2, 4.46]. Let D be an object of generators for

E . By 2.7, G = DN is also an object of generators since D &#x3E;---&#x3E; DN . Let

S be the generic family of subobjects of G . If D = Full ( S ) then D has

finite limits by 2.9, hence so does C = p*D by 2.8.

2. 11. COROLLARY. BTOP/ S has enough strong injectives..

For the record, this means that Johnstone’s characterization of inj-
ectives in liI?PISet [3, 1.4] extends to BT’OP/ S , i. e. E is weakly

injective (i. e. inje ctive for inclusions in the category BTOP/ S) iff E is

a retract of SCop for some C with finite limits.

Returning finally to recursion problems, we obtain immediately:

2.12. PROPOSITION. L et f : E -&#x3E; E be a morphism in BTOP/ S and X an

object o f E , then ( X , f *) has a solution.

PROOF. By 2.11, E is a subtopos via . a , say, of an inj-
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ective presheaf topos, so f has an extension to a geometric endomorphism

f of 5.. Now f 
* 

is epi-mono bounded [8, 2.3] and a f * = f *a , so by

1.3 we are done.

2.13. COROLLARY. 11 f : E -&#x3E; E is a morphism of BTOP/S then there is

an indexed functor o *: E -* EN such that o * X is a solution to ( X , f*)

for X in E .

PROOF. To define o* on morphisms use 2.12 applied to E2 and unique-

ness of solutions for functoriality. e

We are now in a position to prove

2. 14. T H EOR EM [4]. SN is the natural numbers object in BTOP/ S.

PROOF. Let x : S -&#x3E; E and f : E - E be in BTOP/S . By 2.13 there is an

indexed functor o*: E -&#x3E; EN giving solutions to recursion problems, so by

[8, 3.4] this is the inverse image of a geometric morphism EN -&#x3E; E over

S . Moreover, the following commutes :

Further, the composite 0 xN is unique in making both the triangle and the

outside square commute.

REMARK. It should be pointed out that the methods developed in [8] and
here show that S/ N is the NNO in any subcategory of TOP/S for which

all recursion problems posed by inverse images have solutions. The im-

pact of 2.14 is to verify that BTOP/ S is such a subcategory.
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