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NOTION OF TOPOLOGY FOR BICATEGORIES

by R. BETTI and A. CARBONI 

CAHIERS DE TOPOLOGIE

E T GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIV-1 (1983)

INTRODUCTION.

W e deal with the approach to categories based on a bicategory in-

troduced by Walters [3 ,4] and Betti &#x26; Carboni [1 ]. In view of further deve-

lopments, where B-ca tegory theory becomes relevant to cohomology (Street

[2]) and other geometrical applications (as Walters’ «glueing data») it

seems useful to have an a bstract notion of topology for general bicategory.
Here such a notion is given in term of a «closure operator» for a

locally partially ordered bicategory, even if it can be ea sily generalized
to any locally left ex act bicategory. The theorem is that in the wellknown

ca se when B = Rel ( C ) (the ba se bicategory for presheaves) closure oper..
a tors on B are exactly Grothendieck topologies on C.

Moreover, on the basis of the given definition and of a previous

paper [1] an intrinsic notion of sheaf for a closure operator is given. These

notions arose in helpful conversations with R.H. Street, while he was vi-

siting Milan.

1. We recall that Rel (C) is the bicategory defined as follows (Walters

[4], for C any locally small category):
objects of Rel ( C) are those of C, 1-cells u f- v are cribles of

spans u To w - v , 2-cells are inclusions.

Rel ( C ) is a symmetric bicategory, and R0 denotes the opposite
1-cell of R.

DEFINITION. Let B be a bicategory , loca lly an inf-semilattice. A closure

operator on B is a locally left exact lax idempotent monad in B which

is the identity on objects.

Any Grothendieck topology J on C determines a closure operator

*) Work partially supported by the Italian C. N. R.
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on Rel(C) by defining

there exists a cover (pi -&#x3E; p)i such that

as in Walters [4] where all stated properties a re proved, but the loca ily
left exactness R A S = R A S : just observe that if U and V are coverings
of u , then also U A V is a covering.

Let us observe that the axioms of a closure operator cannot be

strengthened by requiring strict functoria lity. Indeed, let C be a regular

category and J the regular epi-topology; if f is a regular epi , then the

crible generated by f, f&#x3E; contains its closure iff f has a section.

Our a im is to show that in f act any closure operator on Rel ( C ) can

be obtained in the previous way from a unique Grothendieck topology J
on C.

T H EO R EM. Closure operators on Rel (C) correspond bijectively to Gro-

thendieck topologies on C .

FROO F. If Re/(C) --&#x3E; Rel ( C ) is a closure oper ator , define the covering
cribles as those cribles

such that the 1-cell Rv =  hi, hi&#x3E; satisfies 1 C Ru With this definition)
we get a topology on C :

i ) trivially the maximal crible covers.

ii) Let U be a covering crible of u and f: v - u a morphism of C ;

observe th at

(for terminology and properties of Rel ( C ) see Walters [1 ]), then
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(the last equality easily follows from the identity R . S = R . S, which is a

direct consequence of the axioms). Hence

(by left exactness). So 1 C R f*u and 1 *U covers.

iii) Let U be a covering crible of u and V a crible such that, for each

f E U, 1* V covers, we have

So

(because f * V covers)

(because f ° . f C 1 ).

hence Ru C R V and thus 1 C R v 
It is straightforward to verify that if j is a topology on C and - is

the associated closure operator then j is a ¡...cover iff 1 C RU. Converse-

ly, given a closure operator on Rel(C), we need to show

there exists a crible U on w such tha t

and

for each 1-cell T of Rel( C ) . In one direction we have

In the other one, define Ru a s 1 A h . T . k °. Then 1 C RU for

Moreover

In the same way we can translate notions relative to Grothendieck

, topologies in this more «algebraic» context. For instance it is easy to prove
the following

PROPOSITION. The following conditions are equivalent :
i ) Representables are J-sheaves.

ii) If R is a «partial map» (i. e. R 0 R C 1), then

and
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PROO F. A compatible family ua -&#x3E; v on the covering u. -* u gives rise to

a partial map R : ui- v . The hypothesis implies that R is a map.

Given any closure operator (-) : B - B, a new bicategory B is def-

ined by taking the same objects as B and, as 1-cells, the closed ones, i.e.

locally the algebras for the idempotent monad induced by the closure oper-
ator. In B the composition is defined by R . S ; identities for such compo-
sition are closures of the old ones.

i 
A pair of morphisms of bicategories is obtained : B -&#x3E;- B , such

that (’-) is locally left exact left adjoint to i . Observe that i is really a

lax morphism (see the above counterexample), while (-) is a strict one

(homomorphism). The induced change of base B-Cat -&#x3E; B-Cat is also de-

noted by (-) .
The result of [1] motivates the following definitions :

DEFINITION 1. Let B - B be a closure operator and X a B-category. A

bimodule R : Yi- X covers X if Y C R . R° and R 0 . R C X .

The above definition amounts to require that R : Y +&#x3E; X has a

right adjoint in B-Cat .

DEFINITION 2. Let X be a B-category. X is a sheaf if each covering

R : Y +&#x3E; X is representable by a functor.
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