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NORMAL FORMS OF MATRICES IN TOPOI1

by Javad TAVAKOLI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIII -3 (1982)

0. INTRODUCTION.

In ordinary linear algebra every m X n matrix over a field is equi-
valent to one in normal (diagonal) form. The purpose of this paper is to

examine this in an elementary topos with natural number object. We will

give a positive answer to this problem if we are dealing with a geometric
field (a commutative ring K in a topos E , satisfying the axiom of non-

triviality ( 0 f 1 ) , is said to be a geometric field if

where T is the object of units of K [ JN 21) 2. Our main theorem appears
in Section 1, where we prove every linear transformation between finite

dimensional vector spaces can be normalized. Also we show that if K[P]=
K[q] , then p = q . In Section 2 we define rank for a linear transformation
and introduce dimension for I-families of locally finite dimensional vector

spaces. Finally it is shown that if

is an exact sequence of vector spaces, then if A1 and A2 are finite dim-

ensional then A3 is. If A2 and A3 are finite dimensional then Al is.

If any two are locally finite dimensional then the other is and

Also we give an example to show that if A1 and A3 are finite dimensional

A2 is not necessarily.

1 This research is part of the author’s Ph. D. dissertation at Dalhousie University.
The author wishes to express his deep gratitude to his research supervisor, Prof-
e s sor Robert P ARE.

2 The main definitions of fields are given in [ JN 11 and [ JN 2].
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It is natural to ask whether the results obtained in this paper hold

for the other types of fields. It is tempting to suggest that some variation

of the results are also true for residue fields (for definition see [JN 2]) .
All the concepts of this paper are considered in an elementary topos

E with natural number object N and with geometric field K . The other

notations can be found in [IN1], [P&#x26; S] or [TV1].

1. NORMAL FORM OF A LINEAR TRANSFORMATION.

(1.1) DEFINITION. Let (k : K[ Pl - K [q ] be a linear transformation bet-

ween two finite dimensional vector spaces in E . We say 0 is in normal

form if there exist natural numbers r, p’ and q’ such that

and

commutes, where

are the coproduct injections.

(1.2) REMARK. For any natural numbers p and q we have a family of nor-

mal forms. Consider the following pullback diagram

where a is the addition operation on N . (Interpretation :

Then in Now consider
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in Y is the required family of normal forms.

( 1.3) LEMMA. Let p be a natural number in E. Then there is a morphism

indexed by [1 + p] such that

commutes and

(Interpretation: A is a [ 1 + p ]-family of morphisms
such that for each i c [1+p],

P HOOF. First we define an isomorphism

first

second

th ird

and

Now we define
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by interchanging the first [ p] with the third [ p] . It is obvious that A’ is

a morphism over [1 + p], i. e.,

commutes. Therefore A’ induces a morphism

Since A, 2 = 1 then A2 = 1. Also 1, the second [p], and [c] are cons-

tant under A’ so the required diagram commutes, 0

(1.4) DEFINITION. A linear transformation 0: K[p] -&#x3E; K [ q] is said to be

non-z ero if the pullback of cp along T &#x3E;-&#x3E; K has global support, where 0
is given by

(1.5) L EMMA. Let H = Hom(K[1 + p] ,K[1+ q]) be the object o f homo-

morphisms from K[1 + p] to K[ 1 + q], see [ P &#x26; S], and

be the generic one. Then there exists U1+ U2 = H such that i 1 *0 is non-
zeyo and i*2 0 is zero, where

are the injections.

P ROO F. Consider the following pullback diagram
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where 0 is given by the following bijections

In this diagram H *T is a complemented subobject of H *K so 1 is a com-

plemented subobject of H*( [1+p] X[1+q]) , which is therefore a finite

cardinal in E/H [jN 1]. Hence there exist

i*1 l non-zero in E/L’1 and i *1 is zero in E/U2 ([JN 1] Chapter 6), i. e. ,

i*1 l has global support. Since i l*CP = i *1 0 so by applying i*1 to (*) w e get

i10 non-zero (by Definition (1.4) ) . o

(1 .6) L EMMA. Let 0 : K [1 + p] -&#x3E; K [1 + q] be a non-zero linear trans for-
mation. Then there exist invertible homomorphisms

and a homomorphism f: K [p] -&#x3E; K [q] such that

c omm ute s.

P ROOF. 0 being non-zero means that the object l in the following diagram

has global support. Since 1 is a finite cardinal then it has a global ele-

ment, i. e. we have (i , j ) : 1 -&#x3E; ( 1-+ p] X (1 +] such that 0 ( i, j ) is a

unit. Apply i * and j * to the morphisms
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and

(defined in Lemma (1 .3 ) ) to get

respectively. Now consider the following diagram
. * A

In this diagram Z (-) is the functor defined in [TV 2] and j1 , i1 are the

injections. But

and the diagrams

are commutative (Lemma (1.3 ) ) . Therefore

Also, by definition of li , we have ni= Zi ’1’. Hence the transpose of

which is

factors through T &#x3E;-&#x3E; K, since 0 is non-zero; i.e. a is a unit. Hence we
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have the following diagram

By letting

and f = - b a-1 c + d we get the required result. D

( 1.7) L EMM A. Let p , q : 1 -&#x3E; N be such that there exist U1 11 U2 = 1 such

that Vj p = 0 and U2q=0 (i.e. 1= p=0vq=0). Then

i. e. the only morphism KL PJ - K Lq] is the zero morphism.

Since

(1.8) THEOREM. L et p , q be any two natural numbers in E. Then every
linear transformation U: K [p] -&#x3E; K [q] is equivalent to one in normal orm.

P ROO F. We will prove this by induction. Let p and q be natural numbers

in E satisfying the condition of Lemma (1.7) . In what follows the cons-

tant natural numbers I *p and 1* q are also denoted by p and q , respecti-

vely. E. g. in the definition of i 1 below, B *K [b,p] means B*K[b +B*p] .
Consider



324

in E/N . Then b: IN b = B - N is the object consisting of all (r, 1) such

that r-f-l = n, i.e. if m:1-&#x3E;N then

Let ro and lo be the generic natural numbers such that ro + lo = b . Let

and

Consider in E/N which has the following universal proper.
ty. If m : I , N th en

There is a morphism : IT (d) -&#x3E; ( h) given by the following natural trans-

formations. If m: I - N :

It suffices to show that IT is a split epimorphism. Consider
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in E/N . We want to show t = splitN (IT) has a global element.

(Lemma ( 1.7 ) ) . Also we get a global element for 0 * d by the following

But since

is a pullback then we have a global element

only to show that there is a morphism

To do this it is enough to show there exists a morphism y ; t X s *h -&#x3E; s*d

such th at (s*11 ) Y is the projection, because if we have such a map then

i.e. we get t -&#x3E; s *t. For simplicity of notation we denote the functor

by ( ) . Let $ be the generic homomorphism for

then by Lemma ( 1.5 ) there exists such

that P is non-zero on nr and it is zero on u2 . If

is the injection then, by Lemma ( 1.6 ) , there exist homomorphisms P, Q,
and f such that P and Q are invertible and
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commutes. The homomorphism f gives us a morphism p ; (u1 ) -&#x3E; (h) such

that p *0 = f’, where 0 is the generic homomorphism for h . On the other
hand by definition of t we have

such th at

is IT * 2 0 where IT2: (h) -&#x3E;(h) is the projection (because by definition of
IT : (d )-&#x3E; (h) and the fact that (h)-&#x3E; (d)-&#x3E; (h) is the projection IT2 ).

Now apply

A lso by pulling back the diagram (*) along the projection
we get

But
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commutes, so

On the other hand

Therefore 1+rp+lp = 7+Hy and so we have the following natural iso-

morphism

such that

and

such th at

commutes, because P is the generic homomorphism and

A lso we have a morphism (u2) -&#x3E; s *(d) defined as follows :

and
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Since the 1 in is the identity on U which is

equal to zero, and (D is zero on ft2 we h ave
, rt. 11

where is the projection. Hence by definition of u

commutes. So we have a morphism

such th at ( is the projection.
Now let p, q be any two natural numbers in E . There exists

T1 + T 2 = 1 such that p S q on T1 and p &#x3E; q on T2, i. e. there are nat-

ural numbers r1 and T 2 such that

Consider two natural numbers

and a natural number

(we can interpret T as the minimum value

satisfy the condition of Lemma ( 1.7 ) because

so if we apply 1* to the above argument we get
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the result, i. e. every linear transformation U: K [p] -&#x3E; K [q] is equivalent
to one in normal form. This completes the proof, a

(1.9) COROLLARY. Any monomorphism 0 : K [P] &#x3E;-&#x3E; K[p] is an isomor-
p hi sm.

P ROO F. By Theorem (1.8) there are natural numbers r, p 1, p2 such that

commutes and r + pl = p = r+p2). Since 0 is mono, then Vi is. Hence the

kernel of Vi , i.e. K[P1], is the 0 vector space, i. e. p 1 = 0 ; but PI = P2,

so p2 = 0 . This means is an identity on K [r] which implies that 0 is
an isomorphism. 0

( 1.10) COROLLARY. If W is any vector space which satisfies

for any natural number p .

P ROOF. It is obvious that we have the following pullback diagram

Given any I-element of Mon( K[p] X W, K[p] ), we have

Then we have the monomorphism

in VectK (9), which is an isomorphism, by Corollary (1.9). Therefore 0
is an isomorphism, i.e. I *i is an isomorphism. Now apply I * to the above

diagram to get 0 = I*W in VectK (iii, which is equivalent to
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Therefore Mon(K [P] X W, K [P])= 0 (let I= Mon (K[P] X W, k [P] ) and

(,b to be a gencric monomorphism). 0

(1.11) P ROPOSITION. 1f 0: K [P]&#x3E;-&#x3E; k[q] is a lnonomorphism then p q.

P ROO F. Let U1 + U:1 = 1 in E such that p  q on U1 and p &#x3E; q on(,’ 2 ’
Then in E/ U2 there exists a natural number r such that l/5p --- r- U1*q,
and so 

has a global element U2*0 , which is impossible by Corollary (1.10 L unless
i = 0 . Hence U2 = 0, i. e. p  q. a

(1.12) PROPOSITION. if K[p] = K[q] then p= - q.

PROOF. Let 0: K [p] -&#x3E; k[ q] be the isomorphism, then by Theorem (1.8)
there are natural numbers r, p’, q’ such that p = r - p’, q = r + q’ and

commutes. 6 is an isomorphism implies is, so the kernel of L’i is the

zero vector space, i. e. K [p’] = 0, so p’ = 0 . On the other hand since the

image of u is K[ r], then K[ r] = K [r]+K[q’] and, by Corollary (1.10 )

q’ = 0 s o r = p = q. a

(1.13) COROLLARY. Every epimorphism 6: K[p]-&#x3E; K[p] is an isomor-

phi Sln.

P ROO F. It is easy to see that finite cardinals are internally projective,
see [JN1], and therefore locally projective. Thus 0 splits locally, i. e.

there exists /-&#x3E; 1 such that 1*0 splits. This means there is a mono m

in hect I * K (E )I such th at 1*0 . m = 7 r i ; by Corollary (1.9 ) , m

is an isomorphism. Therefore l*0 is an iso. Since I * reflects isomorph-
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isms, then 95 is an isomorphism. 0

(1.14) CO ROL L A RY. I f Iso(0, W) = 0 for W a vector space in Ii, then

epi(K [p], W+K[p])=0 for any finite cardinal [p] in E .

P ROOF. The proof is similar to Corollary ( 1.10) . D

NOT E. Corollary ( 1.14) shows that if K[ p] -&#x3E; K[ q] is an epimorphism,
th en q  p . 0

( 1.15 ) COROLLAR Y. Let V be a locally finite dimensional (l, f.d.) vector

space and 0 : V -&#x3E; V be a linear tran s fo rmation.
(i) If 0 is mono, then it is an i somo rphi sm.
(ii) If’ 0 is epi, then it is an isomorphism.

P ROO F. By definition of l.f.d. there exists

(i) If 0 is mono then I *0 : (l *K ) [K] &#x3E;-&#x3E;(1*K)[p] is also mono :

then by Corollary ( 1.9 ) l * 0 is an isomorphism. Hence 0 is an isomor-

ph ism .

( ii ) If 0 is epi, then 1*0 : (1*K ) : - (l*K ) Pl is epi. By Corollary
(1.13), l *0 is an isomorphism. Therefore 0 is an isomorphism, D

2. RANK OF A LINEA R TRANSFORMATION.

Let qj : K[ p] -&#x3E; A q] be a linear transformation. Then there exist

natural numbers r, p ’ and q’ such that p = r+ p’, q = r+ q’ and

(Theorem (1.8) ). This shows that the image of 0 is K [r] . If the image

of 0 is also K [ r’] for some natural number r’ , then K [r] = K [r’] and so

r = r’ (by Proposition ( 1.12 ) ) , i. e. r is the unique natural number with

the above property.
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( 2.1 ) DE FINITION. Let 0 : [P] -&#x3E; K [q] be a linear transformation from

K I PI to K [q] in E . Then the natural number r: 1 -&#x3E; N , which is given

above, is called the rank of 0 and is denoted by r(0 ) .

(2.2) THEOREM. Let be two linear trans formations in
E . Then r( 01) = r( CP2) iff there exist two invertible linear transfonnations
P: K [p] -&#x3E; K[P] an d Q: K[q] , K[q] such that Q 0 1 = 0 2 P.
P ROOF. Suppose r(0 1 ) = r (02) = r. Then, by Definition ( 2.1 ) the follow-
ing is commutative

Now by taking P = 0j -1 . el and Q - e2 -1 . 02 we are done. Conversely,

suppose there are invertible linear transformations P and Q such that

Q CPl = cP 2 P. APPIy Definition ( 2.1 ) to 01 and cp 2 to get the follow-

ing diagram
/7 n , 

where r1 = r(01) and r 2 - r(02). By the diagonal lemma there exists a
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unique homomorphism a: K [r1]  -&#x3E; [2] such that the resulting diagrams
commute. Therefore a is an isomorphism and then r, = r2 , by Proposi-

tion (1.12). D

( 2.3) COIROLLARY. Let 0 : K [P] -&#x3E; K[q] and Y: K [ q ] -&#x3E; K [t] be two lin-
ear trans formations. Then r( Y . 0) S r(0 ) and r(Y . 0 )  r( Y ) .

P ROO F. Apply Definition (2.1 ) to 0 and Vf 0 to get a commutative diagram

By the Diagonal Lemma there exists a unique homomorphism

such that the resulting diagrams commute, and is an epimorphism. So by
the Note after Corollary ( 1.14 ) r(Y 0 p)  r( 0 ) .

Now apply Definition ( 2.1 ) to Y and Vfo to get a commutative diagram

Then by the diagonal lemma there exists a unique homomorphism

such that the resulting diagrams commute, and is a monomorphism. So, by

Proposition ( 1.11 ), r(Y0) : r(Y) . o

( 2.4 ) THEOREM. Any finite dimensional subspace of a finite dimensional
vector space has a finite dimensional complement.

P ROOF. Let K [p] be a finite dimensional subspace of K [q] , i. e. there

is a monomorphism 0: K [p] &#x3E;-&#x3E; K[ q] . Apply Theorem (1.8) to get
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where r = r(o) . Since 0 is monomorphism, is monomorphism.

( 2.5 ) D EFINITION. Let I be an object of E. A vector space V in

VeclK(f)I is said to be an I-family of locally finite dimensional vector

spaces if there exist a: f-&#x3E; I and a natural number p : J -&#x3E; N in Elf such

( 2.6 ) T H EO R EM. Let V be an I-family o f lo cally finite dimensional vec-
tor spaces. Then there exists a unique "lorphism p’: I -&#x3E; N , such that

p’a = p, where a and p are given above.

P ROO F . Let

be the kernel pair of a . Then we have

T h ere fore in
I 

and, by Prop-
osition (1.12), p77j = p IT 2 . Since a is a coequalizer of (IT , IT 2 ), hence
there exists a unique morphism p’: I - N such that

commutes, i. e. p’ a = p , D
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( 2.7 ) DE FINITION. The natural number p’;  I -&#x3E; N given in Theorem ( 2.6 )
is called the dimension o f V and is denoted by dim (V) . In particular, If

I = 1, i. e. if V is locally finite dimensional, then v has a dimension,

namely p’: I - N .

(2.8) THEOREM. Let V and V’be locally finite dimensional vector spaces
such that V is a subspace o f V’, i. e. there is a monomorphism 0 : V&#x3E;-&#x3E; V’.

I f dim(V) = dim ( V’) , then V = V’

P ROO F. Let

in where

in , where

B y d efin ition of dim ens ion w e h ave

where p’ =dim( V) and q’ = dim (V’) . Since q’ = p’ , by assumption, then

we have

which implies pIT1 = q 7T2 . Apply (IX ,j ) 
* to 0 to get

But, by Corollary ( 1.9 ) , (1 X J ) *0 is an isomorphism. Then 0 is an iso-

morphism. D
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( 2.9 ) CO ROLL A RY. Let 0: T -&#x3E; V’ be a linear transformation with V and
V’ locally finite dimensional vector spaces, then

P ROO F. ( i ) Since V and V’ are l.f.d. then there are objects a : I-&#x3E; 1,

f3 : J-&#x3E; 1 such that

where p : I -&#x3E; N, q : -&#x3E; N are natural numbers in E/I and E//, respec-

tively. Suppose 0 is a monomorphism, then

is a monomorphism, where 7Ti ’s are the projections. Then, by Proposition

(1.11), P IT  q IT2 as n atural num bers in E/ 1 X J . If W &#x3E;-&#x3E; N x N repre-

sents «» on N , then 
’

c ommutes, where dim ( V ) = p’, dim ( V’) = q’ are given by

respectively. Then (p’, q’) factors through W&#x3E;-&#x3E; NxN, i, e, p’  q’.
( ii ) The proof is similar to ( i ) .

( iii ) Vfith the same notation as in ( i ), if 0 is an isomorphism then

(1 X J) *0 is an isomorphism hence, Proposition ( 1.12), P iT1 = q772 i. e.

(p 17 l’ qIT2 ) factors through the diagonal subobject of N X N . Then there
is a morphism 1 -) A which makes
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commute, i. e. p ’ = q’. 0

(2.10) COROLL ARY. Every lo cally finite dimensional subspace o f a l.fd.
vector space is locally complemented.

P ROO F. Let S be a subspace of V . Since S and v are locally finite dim-

ens ional, then there exist] J-&#x3E;1, 1 -&#x3E;-&#x3E; 1, p : J - N and q: 1-&#x3E; N such

that J *S = (J *K ) [P] and 1 * V= (I *K) [q] . Hence

where 7r ’s are the projections. Apply Theorem ( 2.4) to this subspace (i. e.

(J X1) *S C (JX1) * V ) to get

where t : J X 1 -&#x3E; N is a natural number in E/,JX 1. o

( 2.11 ) THEO REM. Any complemented subspace o f a locally finite dimen-
sional vector space is locally finite dimensional.

P ROO F. Let V be a locally finite dimensional vector space and V1 C V
such th at V = V1 + 112 , for some vector space V 2 . Then there exist I-&#x3E; 1

and p : I -&#x3E; N such that I*V = (I*K) [p] in VectK (g)I. So we h ave

where 77 is projection and i is injection. But i IT is a linear transforma-

tion on (I *K) [p] , so the image should be finite dimensional (i.e. I*V1 =
(I* K) [ r] , where r is the rank of i IT ) . Therefore Vi is locally finite dim-

ensional. o

(2.12) COROLLARY. Let V, Vi and V2 be locally finite dimensional
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vector spaces such that V = Vi (J) V2. Then

P ROO F. Let p’, q’, t’ be the dimensions of v, jh 1 and V2 , respectivcly.
Then there exist

such that

to get

where zj ’s are the projections. Therefore pIT1 = qIT, + tIT3 (Proposition

( 1.12) ) and by the follow in g commutative diagram

we have p’ = q’+ t’, o

(2.13) PROPOSITION. Let V and If be locally finite dimensional vector

spaces. Then dim (v X W) - ( dim( V) ) ( dim) (W) ) ; for the de finition of
tensor product, see [TV1] Chapter ll.

P ROO F . If
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then there exist

such that I *V = (1*K) [p] and ,J * W= (j * K) [q] . Hence

where rri ’s are the projections. Since tensor product is preserved by the

inverse image of a geometric morphism, then we have

which is isomorphic to ((1 x j ) *K) [pIT1.qIT2] (see [TV1] Chapter II).
Thus there exists a unique t ; 7 -&#x3E; N such that

commutes (Definition ( 2.7 ) ) . Also, there exists a unique t’: 1 -) N which

makes both triangles
I

commute, where m is the multiplication on N (diagonal Lemma). In par-

ticular, t’a IT1 = P IT1 . q7r, . But by uniqueness of t, t’ = t = p’. q’ , i. e.,

dim(YXW) = (dim(V))(dim(W)). 0

The next theorem summarizes some of the theorems and corollaries.

(2.14) THEOREM. Let 0 -&#x3E; A1 -&#x3E; A2 -) A3 -&#x3E; 0 be an exact sequence of
K-vector spaces in E . 

1. I f A1 and A2 are finite dimensional then A3 is.
2. 1 f A 2 and A 3 are finite dimensional then A1 is.
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3. 1 f any two are locally finite dimensional, then the other is, and

dim (A 2) - dim (A1) + dim (A3) .
4. I f A, and A3 are finite dimensional, A2 is not necessarily.

The following is an example for (4). Let =&#x3E;1 K be a geometric
1

field in Set , where K is a field in Set , and let A2 be

It is obvious that A2 is not finite dimensional (but it is locally finite dim-

.

ensional because if U = ( 1 =&#x3E;0 1 2) is in Set then Set / U=-&#x3E; Set
and so the im age of U *A2 under this equivalence is

which is finite dimensional in Set -&#x3E; . But we have the following exact

sequence in Set* +
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