CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE
 CATÉGORIQUES

Paul Cherenack

A cartesian closed extension of a category of affine schemes

Cahiers de topologie et géométrie différentielle catégoriques, tome 23, n ${ }^{0} 3$ (1982), p. 291-316
http://www.numdam.org/item?id=CTGDC_1982__23_3_291_0
© Andrée C. Ehresmann et les auteurs, 1982, tous droits réservés.
L'accès aux archives de la revue «Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A CARTESIAN CLOSED EXTENSION OF A CATEGORY OF AFFINE SCHEMES
 by Paul CHE RENACK

The main result shows that there is a slight extension ind-aff of the category aff of reduced affine schemes of countable type over a field k which is cartesian closed. Objects which correspond to the jet spaces of Ehresmann [5] but in the context of affine schemes are employed (Section 4) to define the intemal hom-functor in ind-aff. In addition we show that ind-aff is countable complete and cocomplete. Certain commutation properties for the inductive limits which define the objects of ind-aff are derived. Using the internal hom-functor in ind-aff one can place a topology on the collection of all scheme maps between two affine schemes X and Y. Then under certain restrictions the scheme maps $f: X \rightarrow Y$ which are transversal to a closed subscheme W of Y are shown to form a constructible subset of the collection of all scheme maps from X to Y. The methods used here show how one might begin to extend results (see [6]) on transversality for smooth mappings between differentiable manifolds to the setting of affine schemes.

Let $k^{\mathrm{N}}=\operatorname{Spec}\left(k\left[X_{1}, \ldots, X_{n}, \ldots\right]\right)$ where $k\left[X_{1}, \ldots, X_{n}, \ldots\right]$ is the polynomial ring in a countable number of variables. All objects in ind-aff can be identified as we shall see with subsets of k^{N}. They will have the topology inherited from their structure as ind. lim. of objects of aff in the category of ringed spaces. The topology is not necessarily that induced from k^{N}. See Example 1.11.

The meaning of cartesian closedness for a category is found in Definition 3.4.

Objects of ind-aff are called ind-affine schemes.

P. CHERENACK 2

To avoid confusion a closed set will always be a closed subset of k^{N} and the closure of a set will be the smallest closed subset of k^{N} containing it unless one specifies that that set is closed in some ind-affine scheme and thus not necessarily in k^{N}.

We say that ind-aff is a slight extension of aff since the objects of ind-aff form (as one can see using Proposition 1.4) the smallest collection of subobjects of k^{N} containing all linear (see Definition 1.3) and closed subsets of k^{N} and intersections of these. Compare this to the somewhat larger extension of Demazure and Gabriel [4], page 63.

Let $X \subset k^{\mathrm{N}} . X(k)$ denotes the set of k valued points of X. A morphism $f: X(k) \rightarrow Y(k)$ is a tuple $\left(f_{n}\right)_{n \in Z}$ where f_{n} is a polynomial in $k\left[X_{1}, \ldots, X_{n}, \ldots\right]$. Let \underline{V} be the category of all $X(k)$ with X in $a f f$ and morphisms between such objects. Then, if k is algebraically closed and uncountable since the Hilbert Nullstellensatz holds for affine rings $k[X], X$ an object of aff (see Lang [10]), \underline{V} will be isomorphic to aff and hence \underline{V} also has a slight extension which is cartesian closed. Otherwise one must make some suitable adjustment of V.

We mention briefly one of the possible applications of the theory developed here. Using the cartesian closedness of ind-aff and supposing

$$
Y^{X}: \text { ind-aff } \times \text { ind-aff } \longrightarrow \text { ind-aff }
$$

is the intemal hom-functor in ind-aff, one can form the loop functor

$$
E: \text { ind-aff } \longrightarrow \text { ind-aff }
$$

by setting $E(X)=X^{k} \cap F$ where F is the closed subscheme of k^{N} provided by the condition that the basepoint $* \epsilon k$ is mapped to the basepoint * of X. As ind-aff has coequalizers, one can form the cone functor

$$
C: \text { ind-aff } \longrightarrow \text { ind-aff }
$$

by letting $C(X)$ be the coequalizer of the maps

$$
i, *:(\{*\} \times X) \cup(k \times\{*\}) \Longrightarrow k \times X,
$$

where i is the inclusion and $*$ maps everything to the basepoint $(*, *)$ of $k \times X$. Then one can show (adding basepoints) that C is left adjoint to E
and thus associate to C or E homotopy groups $\Pi_{n}(X, Y)$. For the details of this construction see Huber [9]. The direction in which one might want to take this theory can be seen in [2].

We outline the paper. In Section 1 we provide in Proposition 1.4 three different descriptions of the objects of ind-aff as subsets of k^{N}. We use the more convenient description as required. The objects of ind-aff are then given the structure of ringed spaces and the mappings between them are described. A map $f: X \rightarrow Y$ in ind-aff is required to preserve the filtration that X and Y have as objects in ind-aff. We show (Proposition 1.10) that this is not a severe restriction. In section 2 we show that in $d-a f f$ has countable limits and coproducts in a fairly straightforward way. In Section 3 we show that an external hom-functor on aff to ind-aff (see the first paragraph of 3 for the definition of this concept) can be extended to an intemal hom-functor on ind-aff provided that the inductive limits defining objects of ind-aff satisfy certain commutativity relations. The existence of an external hom-functor on aff to ind-aff is demonstrated in Section 4. The necessary commutativity relations are to be found in Section 5. The reason for proving the results in Section 3 first is to emphasize that the methods appearing here might be used to form a cartesian closed category in a more general context. Categorical methods have made this a more concise paper.

Let X, Y, W be non-singular affine irreducible schemes of finite types over k, let W be parallelisable in Y and X be parallelisable (see Section 6 for definitions). $Y^{X}(k)$ is identified with the scheme maps $f: X \rightarrow Y$. Let k be an algebraically closed field. Then in Section 6 we demonstrate that the set T_{W} of all f such that f is transversal to W is constructible in $Y^{X}(k) . Y^{X}(k)$ can be viewed as the directed union of certain closed algebraic subvarieties $A_{\underline{r}}$ of $k^{\mathrm{N}}(k)$. Let $E \cap A_{\underline{r}}$ denote the set of maps in $A_{\underline{r}}$ which extend (see Section 6) to scheme maps from the projective model of X to that of Y. Then with some limitation we show that $T_{W} \cap E \cap A_{I}$ contains an open subset of $E \cap A_{I}$.

P. CHERENACK 4

For schemes the reader might refer to [7,8] ; for category theory to [11] ; for notions of transversality to [6].

For further applications of ind-affine schemes, see [3].

1. DEFINITION OF ind-aff.

We present a definition of ind-affine schemes and then derive some properties of ind-affine schemes.

LEFINITION 1.1. By a closed linear subscheme of

$$
k^{\mathrm{N}}=\operatorname{Spec}\left(k\left[X_{1}, \ldots, X_{n}, \ldots\right]\right)
$$

we mean a closed subscheme of k^{N} whose defining ideal is generated by linear polynomials in $k\left[X_{1}, \ldots, X_{n}, \ldots\right]$.

Let X be a subset of k^{N} and let $Y \subset X$ be a closed subset of k^{N} for which there is a minimal closed linear subscheme H_{Y} of k^{N} such that $Y=X \cap H_{Y}$. Note that the existence of a minimal H_{Y} follows from the existence of one H_{Y}. Let T_{X} denote a maximal subset of the set consisting of all such H_{Y} with $H_{X}=\cup H\left(H \in T_{X}\right)$ a fixed set.

DEFINITION 1.2. We say that T_{X} is directed if $H, K \in T_{X}$ implies that for some $M \in T_{X}$ we have $H \cup K \subset M$.
DEFINITION 1.3. A subset H of k^{N} is said to be full linear if:
a) Let V be a closed linear subscheme of k^{N}. Then $V(k) \subset H$ implies $V \subset H$.
b) $H(k)$ is a vector subspace of $k^{\mathrm{N}}(k)$.
c) H is the union of closed linear subschemes.

PROPOSITION 1.4. The follouing are equivalent:
i) $\bar{X} \cap H_{X}=X ; T_{X}$ is directed.
ii) $\bar{X} \cap H=X \cap H$ for $H \in T_{X} . X \subset H_{X} . T_{X}$ is directed.
iii) $X=X_{1} \cap H_{1}$ where X_{1} is a closed affine subscheme and H_{1} is a full linear subset of $k^{\mathrm{N}} . T_{X}$ is the set of H_{Y} such that $H_{Y} \subset H_{1}$. PROOF. i \Rightarrow ii: $\bar{X} \cap H=\bar{X} \cap\left(H_{X} \cap H\right)=X \cap H$.
ii \Rightarrow i: $\bar{X} \cap H_{X}=\bar{X} \cap(\cup H)=\cup(\bar{X} \cap H)=X$.

A C ARTESIAN CLO SED EXTENSION... 5

$\mathrm{i} \Rightarrow$ iii: As H_{X} is the union of closed linear subschemes in T_{X} and T_{X} is directed, $H_{X}(k)$ is a vector subspace of $k^{\mathrm{N}}(k)$. Suppose that $H(k) \subset H_{X}$ where H is a closed linear subscheme. One can by Zorn's Lemma if T_{X} contains no maximal element restrict to the case where $\left\{L_{i}\right\}\left(L_{i} \in T_{X}\right)$ is a countable family totally ordered by inclusion such that

$$
H(k)=u\left(\left(L_{i} \cap H\right)(k)\right)
$$

Note that the linear polynomials in $k\left[X_{1}, \ldots, X_{n}, \ldots\right]$ form a vector space of countable dimension. But an easy argument then shows that $H(k)=$ $\left(L_{i} \cap H\right)(k)$ for some i and thus $H(k) \subset L_{i}(k)$ for some i. But then $H \subset L_{i} \subset H_{X}$.
iii \Rightarrow ii: Every point $P_{\epsilon} X$ belongs to some closed linear subscheme contained in H_{1}. Let T_{X} consist of all closed linear subschemes H_{Y} contained in H_{1}. Then $X \subset H_{X}$. It is not difficult to show :
L EMM A 1.5. If H, K are closed linear subschemes of k^{N} there is a closed linear subscheme $H+K$ containing H and K and such that

$$
(H+K)(k)=H(k)+K(k) .
$$

Let $H, K \in T_{X}$. Clearly $H, K \subset H_{1}$ and, as H_{1} is full linear, $H+K \subset H_{1}$. There is a minimal closed linear subscheme $L \in T_{X}$ such that $L \cap X=(H+K) \cap X$. Clearly $L \supset H, K$. As every $H_{Y} \subset H_{X}$ is contained in H_{1}, T_{X} must be maximal. As every $H \in T_{X}$ is contained in H_{1},

$$
\begin{array}{rr}
X \cap H=X \cap\left(H_{1} \cap H\right)=\left(X \cap H_{1}\right) \cap H=\left(X_{1} \cap H_{1}\right) \cap H= \\
=X_{1} \cap H=\bar{X} \cap H . & \text { Q. Е. ट. }
\end{array}
$$

DEFINITION 1.6. An ind-affine subset of k^{N} is a subset X of k^{N}, satisfying any one of the equivalent conditions of Proposition 1.4.

REMARK. The collection of ind-affine subsets is closed under arbitrary intersection but the union of two full linear subschemes need not be an ind-affine subset.

The additional structure which makes an ind-affine subset X into a ringed space will now be introduced.

P. CHERENACK 6

The set T_{X} can be viewed as a category where the arrows are inclusions. There is a functor $F_{X}: T_{X} \rightarrow$ Rngsp from T_{X} to the category of ringed spaces assigning the affine scheme $H \cap \bar{X}$ to H for each $H \in T_{X}$, and inclusions to inclusions. The inductive limit of F_{X} is a ringed space whose underlying set is X.

Note that one obtains the same inductive limit if one replaces T_{X} by the category whose objects are of the form $H \cap X\left(H \in T_{X}\right)$ and arrows inclusions. Also there may be several T_{X} for the same X. Whether they define the same element of Rngsp is not clear. If X is expressed $X=$ $X_{1} \cap H_{1}$ as in Proposition 1.4, then T_{X} will be the collection of all H_{Y} which are closed linear subschemes contained in $H_{1} . H \cap \bar{X}$ is the affine scheme whose ideal is $A+B$ where A is the ideal of H and B is the ideal of \bar{X}. Thus $H \cap \bar{X}$ need not be reduced.

DEFINITION 1.7. An ind-affine scheme is a ringed space of the form: limind F_{X}. The category of ind-affine schemes (denoted ind-aff) consists of all ind-affine schemes together with morphisms $f:\left(X, Q_{X}\right) \rightarrow\left(Y, Q_{Y}\right)$ of ringed spaces which are induced from morphisms $k^{\mathrm{N}} \rightarrow k^{\mathrm{N}}$ in aff, the category of reduced affine schemes of countable type over k, and such that for $H \in T_{X}$ there is a $K \in T_{Y}$ such that $f(H \cap X) \subset K \cap Y$. We will usually write X instead of $\left(X, \underline{O}_{X}\right)$.

Let X be an ind-affine scheme. From the definition of limind F_{X} it follows $Y \subset X$ is closed iff $Y \subset \cdot H, H \in T_{X}$ is a closed affine subset of k^{N}.

We will show that under certain weak conditions if $f: X \rightarrow Y$ is a map between two objects in ind-aff which is the restriction of a map between k^{N} in aff, then f is a map in ind-aff.

LEMMA 1.8. Let Y be an ind-affine scheme, X an irreducible object in aff and $f: X \rightarrow Y$ the restriction of a map between k^{N} in aff. Then there is a $K \in T_{Y}$ such that $f(X) \subset Y \cap K$.
Proof. $X=\cup f^{-1}(Y \cap K)\left(K \in T_{X}\right)$. As X is irreducible, one of the $f^{-1}(Y \cap K)$ contains the generic point of X and hence $X=f^{-1}(Y \cap K)$.
Q. E.D.

DEFINITION 1.9. An ind-affine scheme X is irreducible if for each $H_{\in} T_{X}$ there is a $K \epsilon T_{X}$ with $K \supset H$ and $X \cap K$ irreducible.

P ROPOSITION 1.10. Let $f: X \rightarrow Y$ be a set map between ind-affine schemes, which is the restriction of a map between k^{N} in aff, and X irreducible. Then f induces a map in ind-aff.
proof. Let $H \in T_{X}$. There is a $K \in T_{X}$ such that $K \supset H$ with $X \cap K$ irreducible. Then Lemma 1.8 implies that $f(K \cap X) \subset Y \cap L$ for some $L \in T_{Y}$, and hence that $f(H \cap X) \subset Y \cap L$. Restricted to $H \cap X, f$ is a map in Rngsp from $H \cap X$ to $Y \cap L$. Taking direct limits one obtains a map $f:$ $X \rightarrow Y$ in ind-aff. Q.E.D.

EXAMPLE 1.11. The topology on $X \cap H$ need not be that induced from the Zariski topology on k^{N}. Consider $k^{k}(k)$ which is the set of all $\left(a_{i}\right)$ with a_{i} in $k, \quad i \in \mathrm{~N}$ and $a_{i}=0$ for all but finitely many i.
Let $k^{n}(k)$ be the set of all $\left(a_{i}\right)$ in $k^{k}(k)$ such that

$$
a_{i}=0 \quad \text { if } \quad i>n,
$$

and $\mathrm{II}_{n}: k^{k}(k) \rightarrow k^{n}(k)$ the projection. Choose a subset $C=\left\{P_{j}\right\}_{j \epsilon \mathrm{~N}}$ of $k^{k}(k)$ such that $C \cap(k \pi k)$) consists of finitely many points and $\Pi_{n}(C)$ is dense in $k^{n}(k)$. It is easy to see that this is possible. Also every closed linear subset K of $k^{n}(k)$ is contained in $k^{n}(k)$ for some n (just consider the echelon form of the linear equations defining K). Hence by definition C is closed in $k^{k}(k)$ which has a topology as the inductive limit of the Zariski topologies on the $k^{k}(k) \cap K$. On the other hand as the closure of C in $k^{\mathrm{N}}(k)$ is $k^{\mathrm{N}}(k), C$ cannot be a closed subset of $k^{k}(k)$ for the topology induced from $k^{\mathrm{N}}(k)$. If k is the complex numbers, then clearly C will be closed for the inductive limit topology in k^{k} but not for the topology induced from k^{N}.

2. COUNTABLE LIMITS AND COLIMITS IN ind-aff.

We show that indoaff has countable limits by showing that it has countable products and equalizers.

PROPOSITION 2.1. ind-aff has countable products.
PROOF. Let $\left\{X_{i}\right\}_{i_{\epsilon} \mathrm{N}}$ be objects in ind-aff. $X_{i}=\bar{X}_{i} \cap H_{i}$ where H_{i} is full linear and \bar{X}_{i} is the closure of X_{i} in k^{N}. One considers (see Remark 2.6) $\times \bar{X}_{i}$ as a closed affine and $\times H_{i}$ as a full linear subset of $k^{\mathrm{N} \times \mathrm{N}}=$ $\operatorname{Spec}\left(k\left[X_{i}^{j}\right]\right.$) where the X_{i}^{j} are indeterminates. But $k^{\mathrm{N}} \times \mathrm{N} \approx k^{\mathrm{N}}$ (by diag. onal counting). Hence

$$
\times X_{i}=\left(\times \bar{X}_{i}\right) \cap\left(\times H_{i}\right)
$$

is an object in ind-aff. Let $p_{i}: \times X_{i} \rightarrow X_{i}$ be the projection map. Let $f_{i}: Z \rightarrow X_{i}$ be ind-affine maps. It is easy to see that the p_{i} and the unique map $f: Z \rightarrow \times X_{i}$ such that $p_{i} \circ f=f_{i}$ belong to ind-aff. Q. E. D.

PROPOSITION 2.2. ind-aff has equalizers.
P ROOF. Let $f, g: X \Longrightarrow Y$ belong to ind-aff. Let

$$
E=\{P \in X \mid f(P)=g(P)\}
$$

Then taking unions over $H \in T_{X}$,

$$
\bar{E} \cap H_{X}=\cup(\bar{E} \cap H)=\cup(\bar{E} \cap \bar{X} \cap H)=\bar{E} \cap(\cup(\bar{X} \cap H))=\bar{E} \cap X=E
$$

where the last equality follows from the fact that $f(Q)=g(Q)$ for $Q \in \bar{E}$ as f, g are induced by maps between k^{N} in aff. Thus E can be given the structure of an ind-affine scheme. Clearly the inclusion $i: E \rightarrow X$ is a map of ind-affine schemes.

Let $h: Z \rightarrow X$ be a map in ind-aff such that $f \circ h=g \circ h$. For $K \in T_{Z}$ there is a $H \in T_{X}$ such that $h(Z \cap K) \subset X \cap H$. There is an L in T_{Y} such that

$$
g(X \cap H) \subset Y \cap L \quad \text { and } \quad f(X \cap H) \subset Y \cap L
$$

But $E \cap H$ is the equalizer in aff of the restricted maps

$$
f, g: X \cap H \Longrightarrow Y \cap L
$$

and hence there is a unique map $c_{K}: Z \cap K \rightarrow E \cap H$ such that $i \circ c_{K}=h$ on $Z \cap K$. Taking direct limits one obtains a unique map $c: Z \rightarrow E$ such that $i \circ c=h$. The uniqueness of c follows from the fact that a map such as c must induce the c_{K} again. Q. E. D.
aff has countable products and equalizers but not countable coproducts. On the other hand:

PROPOSITION 2.3. ind-aff has countable coproducts.
We outline a proof. Let $X_{i}(i \epsilon \mathrm{~N})$ be ind-affine schemes. Shift the X_{i} so that they do not contain the origine $0 \epsilon k^{\mathrm{N}}$. Construct an embedding $s_{i}: X_{i} \rightarrow k^{\mathrm{N} \times \mathrm{N}}$ where on k valued points $s_{i}\left(x_{j}\right)=\left(y_{m}^{j}\right)$ and

$$
y_{m}^{j}=0 \quad \text { if } m \neq i, \quad y_{m}^{j}=x_{j} \text { if } m=i
$$

Let $C=\cup s_{i}\left(X_{i}\right)$. The objects of T_{C} are of the form $\times H_{i}$ where $H_{i} \in T_{X_{i}}$. It is easy to see that $C=\bar{C} \cap H_{C}$ and that the s_{i} are ind-affine maps defining a coproduct structure on C.

Finally we show that ind-aff has countable colimits by showing: PROPOSITION 2.4. ind-aff has coequalizers.

P ROOF. Let $f, g: X \rightrightarrows Y$ be two maps in ind-aff. f, g induce maps $\bar{f}, \bar{g}: \bar{X} \rightrightarrows \bar{Y}$ in aff and \bar{f}, \bar{g} have a coequalizer $\bar{q}: \bar{Y} \rightarrow Q^{\prime}$ in aff. Suppose that $H \in T_{Y}$. Let

$$
r_{H}^{*}: k\left[Q^{\prime}\right] \rightarrow k[\bar{Y}] \rightarrow k[Y \cap H]
$$

be the composition of the inclusion and natural quotient maps of affine rings. Choose a basis $\left\{q_{i}\right\}_{i \epsilon N}$ for $k\left[Q^{\prime}\right]$. Then $k\left[Q^{\prime}\right]=k\left[q_{i}\right]$ and Q^{\prime} can be imbedded as a closed affine subscheme of k^{N} in terms of the generators $\left\{q_{i}\right\}_{i \epsilon \mathrm{~N}}$ of $k\left[Q^{\prime}\right]$. Let L_{H} be the closed linear subscheme of k^{N} defined by the condition that $\Sigma_{i} a_{i} q_{i}$ is sent to 0 under r_{H}^{*}. Then the L_{H} are directed by inclusion (for $H, K \in T_{Y}$ there is an $M \in T_{Y}$ such that $\left.L_{H} \cup L_{K} \subset L_{M}\right)$ and hence $L=\cup L_{H}\left(H \in T_{Y}\right)$ is a full linear subset of k^{N}. Let $Q=Q^{\prime} \cap L . Q$ is an ind-affine scheme. As

$$
q(Y \cap H) \subset Q^{\prime} \cap L_{H} \subset Q
$$

$q(Y) \subset Q$. Clearly $q: Y \rightarrow Q$ is a map of ind-affine schemes. Note that $\overline{q(\bar{Y})}=Q^{\prime}$. Hence $Q^{\prime}=\bar{Q}$.

Let $c: Y \rightarrow Z$ be a map in ind-aff and $\bar{c}: \bar{Y} \rightarrow \bar{Z}$ be the corresponding map on the Zariski closures. Suppose that $c \circ f=c \circ g$ and hence that

P. CHERENACK 10

$\bar{c} \circ \bar{f}=\bar{c} \circ \bar{g}$. Then there is a unique map $\bar{h}: \bar{Q} \rightarrow \bar{Z}$ such that $\bar{h} \circ \bar{q}=\bar{c}$. Let $H \in T_{Y}$. There is a $K \in T_{Z}$ such that $c(Y \cap H) \subset Z \cap K$. Consider the diagram

where h^{*}, c^{*} and c_{H}^{*} are the k-algebra maps corresponding to \bar{h}, \bar{c}, and the restriction $c: Y \cap H \rightarrow Z \cap K$ respectively, and where u_{1}, u_{2} are the natural quotient maps. The inner diagrams commute and thus so does the outer. As u_{1} is surjective,

$$
c_{H}^{*}(k[Z \cap H]) \subset u_{2} \circ q^{*}(k[\bar{Q}])=r_{H}^{*}(k[\bar{Q}])
$$

But $r_{H}^{*}(k[\bar{Q}])=k\left[Q \cap L_{H}\right]$. Hence c_{H}^{*} maps

$$
c_{H}^{*}: k[Z \cap K] \rightarrow k\left[Q \cap L_{H}\right]
$$

which implies that \bar{h} restricts to a map sending $Q \cap L_{H}$ into $Z \cap K$ and thus to a map h in ind-aff sending Q to Z. Clearly $h \circ q=c . h$ is unique since it must be the restriction of \bar{h}. Q.E.D.

From the above follows:
THEOREM 2.5. ind-aff is countably complete and cocomplete.
REMARK 2.6. To any vector space V of $k^{\mathrm{N}}(k)$ one can associate a full linear subset V^{*} of k^{N} by enlarging it to include points of closed linear subschemes H of k^{N} such that $H(k)$ is a subspace of V. By $\times H_{i}(i \epsilon \mathrm{~N})$ in Proposition 2.1 we mean not the set theoretic product which may not be full linear but $\left(\times H_{i}(k)\right)^{*}(\times$ now in sets). We use this convention as required.

3. THE EXTENSION OF EXTERNAL HOM-FUNCTORS IN aff, TO INT. ERNAL HOM-FUNCTORS IN ind-aff.

All hom-sets are those of ind-aff unless specified otherwise.

We suppose that there is a bifunctor (as will be shown in 4)

$$
B(X, Y)=Y^{X}: a f f \times a f f \rightarrow \text { ind-aff }
$$

such that a natural equivalence

$$
\operatorname{Hom}(X \times Y, Z) \approx \operatorname{Hom}\left(X, Z^{Y}\right)
$$

(where X, Y, Z are restricted to objects in aff) exists. In this situation $B(X, Y)$ is called an external hom-functor on aff to ind-aff.

Let Y be an object in ind-aff and $Y=\operatorname{limind}(Y \cap H)$ where the inductive limit is taken over $H \in T_{Y}$. Let X be affine. Extend the bifunctor B on objects by letting $Y^{X}=\operatorname{limind}(Y \cap H)^{X}$ where the inductive limit is taken over $H \in T_{Y}$. We'll see that Y^{X} is an object of ind-aff later in Proposition 5.2. Let $f: Y \rightarrow \mathbb{W}$ belong to ind-aff. For each $H \in T_{Y}$ there is a $K \in T_{W}$ such that $f(Y \cap H) \subset K \cap W$ and thus a map

$$
f^{X}:(Y \cap H)^{X} \rightarrow(\mathbb{W} \cap K)^{X}
$$

in ind-aff. Taking inductive limits one obtains a map $f^{X}: Y^{X} \rightarrow W^{X}$. Let $g: Z \rightarrow X$ be a map in aff. Taking inductive limits of the maps

$$
(Y \cap H)^{g}:(Y \cap H)^{X} \rightarrow(Y \cap H)^{Z}
$$

one obtains a map $Y g: Y^{X} \rightarrow Y^{Z}$.
One readily verifies that defining f^{X} and Y^{g} as above one has extended the bifunctor B to a bifunctor

$$
B(X, Y)=Y^{X}: a f f \times \text { ind-aff } \rightarrow \text { ind-aff }
$$

See Remark 5.6.
Let now $X=\operatorname{limind}(X \cap K)\left(K \in T_{X}\right)$. Define

$$
\underline{\underline{Y}}^{X}=\operatorname{limproj} Y^{(X \cap K)}
$$

where the projective limit is taken over $K \in T_{X} \cdot \underline{Y}^{X}$ is not necessarily an ind-affine scheme (the proofs would be shorter if it was). Both $\underline{\underline{Y}}^{X}$ and $\bar{Y} \bar{X}$ (as X is reduced; see Proposition 5.5) can be viewed as subsets of $\times \bar{Y}^{(X \cap K)}\left(K \in T_{X}\right)$.
DEFINITION 3.1. $Y^{X}=\underset{=}{Y} \cap \bar{Y}^{\bar{X}}$.
In Section 5 we will show that Y^{X} is an ind-affine scheme.

P. CHERENACK 12

In a manner analogous to that above (but dual) one obtains an extension of the bifunctor B to a bifunctor

$$
\underline{\underline{B}}(X, Y)=Y^{X}: \text { ind-aff } \times \text { ind-aff } \rightarrow \underline{R}
$$

where \underline{R} is the category of ringed spaces. Let $c: i n d-a f f \rightarrow a f f$ be the functor which associates to $X \in$ ind-aff the closure \bar{X} of X in k^{N} and to an arrow $f: X \rightarrow Y$ the induced map $\bar{f}: \bar{X} \rightarrow \bar{Y}$ in aff. Then

$$
\underline{B}(X, Y)=B(c(X), c(Y)): \text { ind-aff } \times \text { ind-aff } \rightarrow \text { ind-aff }
$$

is clearly a bifunctor. Letting $B(X, Y)=\underline{\underline{B}}(X, Y) \cap \underline{B}(X, Y)$ one sees that we have extended the bifunctor B to a bifunctor (see Remark 5.6):

$$
B(X, Y)=Y^{X}: \text { ind-aff } \times \text { ind-aff } \rightarrow \text { ind-aff }
$$

If ind-aff had the inductive and projective limits that we needed above, we would have used only the following two lemmas in the proof that ind-aff was cartesian-closed. Their proofs are to be found in Section 5.

LEMMA 3.2. Let $Z=$ limind $(Z \cap L)$ where the inductive limit is taken over $L \in T_{Z}$ and X, Y be affine. Then

$$
\operatorname{Hom}\left(X, Z^{Y}\right)=\bigcup_{L} \operatorname{Hom}\left(X,(Z \cap L)^{Y}\right)
$$

LEMMA 3.3. Let X be ind-affine and $Y=\operatorname{limind}(Y \cap H)\left(H \in T_{Y}\right)$.Then $\operatorname{limind}(X \times(Y \cap H))=X \times Y\left(H \in T_{Y}\right)$.

DEFINITION 3.4. A category \underline{C} is cartesian closed if there is a bifunctor $B: \underline{C} \times \underline{C} \rightarrow \underline{C}, \underline{C}$ has finite products and there is a natural equivalence

$$
\operatorname{Hom}_{\underline{C}}(X \times Y, Z) \approx \operatorname{Hom}_{\underline{C}}(X, B(Y, Z))
$$

with X, Y, Z objects in \underline{C}.
Then we show:
THEOREM 3.5. There is a natural equivalence

$$
\operatorname{Hom}_{\underline{I}}(X \times Y, Z) \approx \operatorname{Hom}_{\underline{\underline{I}}}\left(X, Z^{Y}\right)
$$

induce d from the natural equivalence

$$
\operatorname{Hom}_{\underline{I}}(\bar{X} \times \bar{Y}, \bar{Z}) \approx \operatorname{Hom}_{\underline{I}}\left(\bar{X}, \bar{Z}^{\bar{Y}}\right)
$$

where X, Y, Z are objects in $\underline{I}=$ ind-aff and $\bar{X}, \bar{Y}, \bar{Z}$ denote the closure of X, Y, Z in k^{N}. Thus ind-aff is cartesian closed.

We omit the subscript \underline{I} below.
Proof. Let X, Y be affine and Z as in Lemma 3.2. Then

$$
\begin{aligned}
& \operatorname{Hom}\left(X, Z^{Y}\right)=\operatorname{Hom}\left(X, \operatorname{limind}(Z \cap L)^{Y}\right)=\cup \operatorname{Hom}\left(X,(Z \cap L)^{Y}\right)= \\
& =\cup \operatorname{Hom}(X \times Y, Z \cap L)=\operatorname{Hom}(X \times Y, \operatorname{limind} Z \cap L)=\operatorname{Hom}(X \times Y, Z)
\end{aligned}
$$

using Lemma 3.2, the assumption that (\dagger) holds for affines and the definitions of mappings between ind-affine schemes.

Note that as the isomorphism between $\operatorname{Hom}\left(X,(Z \cap L)^{Y}\right)$ and $\operatorname{Hom}(X \times Y, Z \cap L)$ is induced from an isomorphism between $\operatorname{Hom}\left(X, \bar{Z}^{Y}\right)$ and $\operatorname{Hom}(X \times Y, \bar{Z})$, the isomorphism between

$$
\operatorname{Hom}\left(X, Z^{Y}\right) \text { and } \operatorname{Hom}(X \times Y, Z)
$$

is also induced from this isomorphism. See ($* *$) of Remark 2.6.
Next let Y be affine and X, Z be ind-affine schemes. Let $X=$ \lim ind $(X \cap K)$ with $K \in T_{X}$. There are commutative diagrams

and

where $i_{1}, i_{2}, j_{1}, j_{2}$ are canonical embeddings and the natural isomorphisms which are the vertical mappings we have by the first part of the proof. Again note that i_{1}, i_{2} are embeddings because \bar{X} and $\bar{X} \times Y$ are reduced. As

$$
\operatorname{Hom}\left(X, Z^{Y}\right)=\operatorname{Hom}\left(\bar{X}, Z^{Y}\right) \cap\left(\lim \text { proj } \operatorname{Hom}\left(X \cap K, Z^{Y}\right)\right)
$$

and

P. CHERENACK 14

$\operatorname{Hom}(X \times Y, Z)=\operatorname{Hom}(\bar{X} \times Y, Z) \cap(l i m p r o j \operatorname{Hom}((X \cap K) \times Y, Z))$ (using Lemma 3.3), there is a natural isomorphism between $\operatorname{Hom}\left(X, Z^{Y}\right.$) and $\operatorname{Hom}(X \times Y, Z)$ induced from the natural isomorphism β between $\operatorname{Hom}\left(\bar{X}, Z^{Y}\right)$ and $\operatorname{Hom}(\bar{X} \times Y, Z)$.

Next let X, Y, Z be ind-affine and $Y=\operatorname{limind}(Y \cap H)\left(H \in T_{Y}\right)$. Then there are commutative diagrams

limprojHom $\left(X, Z^{Y \cap H}\right) \xrightarrow{j_{1}} \times \operatorname{Hom}\left(X, Z^{Y \cap H}\right)$

where $i_{1}, i_{2}, j_{1}, j_{2}$ are canonical embeddings and the natural isomorphisms which are the vertical maps we have by the last part of the proof. As
$\operatorname{Hom}\left(X, Z^{Y}\right)=\operatorname{Hom}\left(X, Z^{\bar{Y}}\right) \cap\left(l i m p r o j \operatorname{Hom}\left(X, Z^{Y \cap H}\right)\right)$
($Z^{Y} \subset Z^{\bar{Y}} \subset \bar{Z}^{\bar{Y}}$; see (**) of Remark 5.6) and
$\operatorname{Hom}(X \times Y, Z)=\operatorname{Hom}(X \times \bar{Y}, Z) \cap(\operatorname{limproj} \operatorname{Hom}(X \times(Y \cap H), Z)$
(use Lemma 3.3) there is a natural isomorphism between $\operatorname{Hom}(X \times Y, Z)$ and $\operatorname{Hom}\left(X, Z^{Y}\right)$ induced by the natural isomorphism a above. Q.E.E.

4. CONSTRUCTING THE EXTERNAL HOM-FUNCTOR OF aff INTO ind-aff.

All hom-sets are those in ind-aff.
We show that the bifunctor

$$
B(X, Y)=Y^{X}: a f f \times a f f \rightarrow \text { ind-aff }
$$

described at the outset of Section 3 exists.
Let X, Y be affine. A morphism $f: X \rightarrow Y$ is given by a countable number of coordinates $f_{i} \in k[X]$. Suppose $\left\{e_{j}\right\}_{j \in N}$ is a basis for $k[X]$
and $I(Y)$ is the ideal defining Y. If

$$
f(x)=\left(f_{i}(x)\right)=\left(\sum_{i} a_{i}^{j} e_{j}\right)
$$

then

$$
0=F(f(x))=\sum_{p} F_{p}\left(a_{i}^{j}\right) e_{p} \text { for } F_{\epsilon} I(Y)
$$

implies $F_{p}\left(a_{i}^{j}\right)=0$. We let U be the affine closed subscheme of $k^{\mathrm{N} \times \mathrm{N}}$ defined by the ideal J_{Y} which is generated by

$$
\left\{F_{p}\left(X_{i}^{j}\right) \mid p \in \mathrm{~N}, F \in I(Y)\right\}
$$

$k^{\mathrm{N} \times \mathrm{N}}$ can be identified with k^{N} (by diagonal counting). Let

$$
T=\left\{\left(t_{i}\right) \mid t_{i} \in \mathrm{~N}, i \in \mathrm{~N}\right\}
$$

If $t=\left(t_{i}\right)$ consider the ideal A_{t} generated by the X_{i}^{j} for $j \geq t_{i}$. Then $H=\cup H_{t}(t \in T)$ where $H_{t}=\operatorname{Spec}\left(k\left[X_{i}^{j}\right] / A_{t}\right)$ is a full linear subset of k^{N}. REMARK. $\left(U \cap H_{t}\right)(k)$ can be naturally identified with the set of maps $f \in \operatorname{Hom}(X, Y)$ such that if $f=\left(\sum_{i} a_{i}^{j} e_{i}\right)$ then $a_{i}^{j}=0$ if $j>t_{i}$. Hence $U \cap H_{t}$ might be described as a t-jet scheme, and this point of view plays an important role in Section 6.

DEFINITION 4.1. $Y^{X}=U \cap H=\operatorname{limind}\left(U \cap H_{t}\right)$.
It can be seen that a change of basis $\left\{e_{j}\right\}_{j \in \mathrm{~N}}$ corresponds to a linear map (each coordinate a linear polynomial) mapping Y^{X} onto an isomorphic copy.

Let $g: Y \rightarrow W$ be in aff. As

$$
g(f(x))=\left(g_{m}(f(x))\right)=\left(g_{m}\left(\sum_{j} a_{i}^{j} e_{j}\right)\right)=\left(\sum_{p} g_{m}^{p}\left(a_{i}^{j}\right) e_{p}\right)
$$

g induces a map $g^{X}: Y^{X} \rightarrow W^{X}$ in ind-aff which on k valued points is defined by $g^{X}\left(a_{i}^{j}\right)=\left(g_{m}^{p}\left(a_{i}^{j}\right)\right)$. Clearly with this defintiion of g^{X}, Y^{X} is a functor in Y from aff to ind-aff.

Let $g: W \rightarrow X$ be in aff. g induces a map $g^{*}: k[X] \rightarrow k[W]$. Let $\left\{d_{m}\right\}_{m \in \mathrm{~N}}$ be a basis for $k[W]$.

$$
f(g(x))=\left(f_{i}(g(x))\right)=\left(g^{*}\left(f_{i}(x)\right)\right)=\left(\sum_{m} L_{i}^{m}\left(a_{i}^{j}\right) d_{m}\right)
$$

where $L_{i}^{m}\left(a_{i}^{j}\right)$ is a linear function in $\left(a_{i}^{j}\right)$. Define a map $Y^{g}: Y^{X} \rightarrow Y^{W}$ in
ind-aff by setting $Y^{g}\left(a_{i}^{j}\right)=\left(L_{i}^{m}\left(a_{i}^{j}\right)\right)$ on k valued points. Note that if one changes the basis $\left\{d_{m}\right\}_{m \epsilon} \mathrm{~N}$ then the map in ind-aff obtained differs from the first map by the isomorphism between the two copies of Y^{W} induced by this base change. Thus with this definition of Y^{g} a functor Y^{X} :aff \rightarrow ind-aff in X is obtained.

Let $f: Z \rightarrow X, g: X \rightarrow Y$ and $h: Y \rightarrow W$ be maps in aff. As

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

one sees that $\mathbb{W} f \circ g^{X}=g^{Z} \circ Y^{f}$ and hence that

$$
B(X, Y)=Y^{X}: \text { aff } \times a f f \rightarrow \text { ind-aff }
$$

is a bifunctor.
THEOREM 4.2. There is a natural equivalence

$$
\operatorname{Hom}(X \times Y, Z) \approx \operatorname{Hom}\left(X, Z^{Y}\right)
$$

Thus B is an external hom-functor on aff to ind-aff.
PROOF. Let $\left\{e_{h}^{x}\right\}_{h \in \mathrm{~N}}$, resp. $\left\{e_{j}^{y}\right\}_{j \in \mathrm{~N}}$, be a basis of $k[X]$, resp. $k[Y]$. Then $\left\{e_{h}^{x} e_{j}^{y}\right\}$ form a basis for $k[X \times Y]=k[X] \otimes k[Y]$.
If $z_{h}=\sum_{h, j} a_{h j}^{i} e_{h}^{x} e_{j}^{y}$ is the h-th tuple of an element of $\operatorname{Hom}(X \times Y, Z)$ write

$$
F\left(z_{h}\right)=\sum_{p, q} F_{p q}\left(a_{h j}^{i}\right) e_{p}^{x} e_{q}^{y} .
$$

Then the mappings in $\operatorname{Hom}(X \times Y, Z)$ correspond to the set of all (a_{h}^{i}) ($k^{\mathrm{N}} \times \mathrm{N} \times \mathrm{N}$ is identified with k^{N}) satisfying:

A) $F_{p q}\left(a_{h j}^{i}\right)=0$ for all $F \in I(Z)$.
B) For fixed $i, a_{h j}^{i}=0$ except for a finite number of h, j.

Let $w_{i j}=\sum_{i} b_{h j}^{i} e_{h}^{x}$ be the $i j$-th coordinate of an element in $\operatorname{Hom}\left(X, Z^{Y}\right)$. As a consequence of the definition of $Z^{Y}\left(j \geq t_{i}\right.$ implies $\left.w_{i j}=0\right)$ the $b_{h j}^{i}$ satisfy condition B. Let $u_{i}=\sum_{j} w_{i j} e_{j}^{y}$ be the i-th coordinate of an element of $Z^{Y}(k)$ and $F \in I(Z)$. Then

$$
0=F\left(u_{i}\right)=F\left(\sum_{j}\left(\sum_{h} b_{h j}^{i} e_{h}^{x}\right) e_{j}^{y}\right)=\sum_{p, q} F_{p, q}\left(b_{h j}^{i}\right) e_{p}^{x} e_{q}^{y}
$$

and thus the $b_{h j}^{i}$ satisfy condition B . Conversely it is clear that to every $b_{h j}^{i}$ satisfying A and B there is a unique element of $\operatorname{Hom}\left(X, Z^{Y}\right)$. Thus
there is a «natural identification" of both $\operatorname{Hom}(X \times Y, Z)$ and $\operatorname{Hom}\left(X, Z^{Y}\right)$ with the set of all ($a_{h j}^{i}$) satisfying A and B. We leave it to the reader to see that from this «natural identification" there comes a natural isomorphism between $\operatorname{Hom}(X \times Y, Z)$ and $\operatorname{Hom}\left(X, Z^{Y}\right)$. Q.E. D.

5. COMMUTATION PROPERTIES OF THE INDUCTIVE LIMIT.

We prove the lemmas and show that the hom-functor exists as required in Section 3. The lemmas describe commutation properties of the inductive limit with certain operations. Before we begin the proof of Lemma 3.2 we will describe the inductive limit $Z^{Y}=\operatorname{limind}(Z \cap L)^{Y}$ where Y is affine and $L \in T_{Z}$.

First $(Z \cap L)^{Y}=U_{Z \cap L} \cap H$ where H is a fixed full linear subset of $k^{\mathrm{N}}, L \in T_{Z}$ and $U_{Z \cap L}$ is defined by the ideal $J_{Z \cap L}$ where H and $U_{Z \cap L}$ are chosen as they were in Definition 4.1. Clearly $J_{Z \cap L}=J_{\bar{Z}}+J_{L}$, and thus $U_{Z \cap L}=U_{\bar{Z}} \cap U_{L}$. Let

$$
M=\cup\left(U_{L} \cap H\right) \quad\left(L \in T_{Z}\right)
$$

As U_{L} is a closed linear subscheme and the $U_{L} \cap H$ are directed by inclusion the following lemma implies that M is a full linear subset of k^{N}.

LEMMA 5.1. Let $A(k) \subset M$ be a Zariski closed subset of $M(k)$. Then $A \subset U_{L}$ for some $L \in T_{Z}$ if A is a closed linear subscheme of k^{N}.

PROOF. Recall that the relation

$$
F(f(x))=\sum_{p} F_{p}\left(a_{i}^{j}\right) e_{p} \quad \text { where } f(x)=\left(\sum_{j} a_{i}^{j} e_{j}\right)
$$

provides the generators and linear polynomials $F_{p}\left(a_{i}^{j}\right)$ for J_{L} when the F are restricted to a set of linear generators of $I(L)$ and p varies. Let E_{L} be the ideal generated by linear F in $I(L)$ or where F_{p} vanishes on A for all p and $E=\cap E_{L}$. The closed linear subschemes which are the zero sets of E and E_{L} are related by $V(E)=\overline{U V\left(E_{L}\right)}$. Clearly $V\left(E_{L}\right) \subset L$. Hence:

```
    1\circV(E)\subset\cupL (L\inT
```

From the definition of T_{Z} and 1° follows

P. CHERENACK 18

20 $V(E)=R$ for some $R \in T_{Z}$.
It is not difficult to see that
$30 E$ is the ideal generated by linear polynomials F where F_{p} vanishes on A for all p or F vanishes on \bar{H}_{Z}.
Next we show
4° For R as in $2^{\circ}, A \subset U_{R}$.
As $A \subset \cup\left(U_{L}\right)$ if $A \cap U_{R} \neq A$ there is a $K \in T_{Z}(K \supset R)$ and a point $Q \in U_{K} \cap A$ such that $Q \notin U_{R}$. Hence one can find a linear polynomial $G \in I(R)$ such that the G_{p} vanishes on U_{R} but $G_{p}(Q) \neq 0$ for some p. Then by $3^{\circ} G \nmid E$. This contradicts 2°. Q.E.D.

Let $B=U_{\bar{Z}} \cap M$.
PROPOSITION 5.2. $B=Z^{Y}$.
PROOF. Let Q_{L} be the set of all closed linear subschemes of $U_{L} \cap H$. Then

$$
\begin{array}{rlrl}
Z^{Y} & =\operatorname{limind}\left(U_{\bar{Z}}^{\left.\cap U_{L} \cap H\right)}\left(L \in T_{Z}\right)\right. & \\
& =\operatorname{limind}\left(\operatorname { l i m } \operatorname { i n d } \left(U_{\left.\left.\bar{Z}^{\cap A}\right)\right)} \quad\left(A \in Q_{L}, L \in T_{Z}\right)\right.\right. \\
& =\operatorname{limind}\left(U_{\bar{Z}^{\cap A}}\right)\left(A \in T_{B}\right) & & \text { by Lemma } 5.1 \\
& =B . & & \text { Q.E.D. }
\end{array}
$$

Here as before all hom-sets consist of morphisms in ind-aff between two objects in ind-aff.

PROPOSITION 5.3(Lemma 3.2). Let $Z=\operatorname{limind}(Z \cap L)$ where the limit is taken over $L \in T_{Z}$ and X, Y be affine. Then

$$
\operatorname{Hom}\left(X, \lim \operatorname{ind}\left((Z \cap L)^{Y}\right)\right)=\text { limind } \operatorname{Hom}\left(X,(Z \cap L)^{Y}\right) .
$$

PROOF. Note that the inductive limit in sets here is just union. Let f : $X \rightarrow Z^{Y}$ be a map in ind-affine schemes. Then for $D=Z^{Y}$ and some $K \in T_{D}$ $f(X) \subset Z^{Y} \cap K$. Lemma 5.1 implies that $\left.K \subset U_{L^{\prime}}\right) H$ for some $L \in T_{Z}$. Hence

$$
\begin{array}{r}
f(X) \subset Z^{Y} \cap K \subset U_{L} \cap H \cap B=U_{L^{\cap}} U_{\bar{Z}} \cap H=(Z \cap L)^{Y} . \\
\text { Q. E.D. }
\end{array}
$$

PROPOSITION 5.4 (Lemma 3.3). Let X be an ind-affine scheme and $Y=\lim$ ind $(Y \cap H)\left(H \in T_{Y}\right)$. Then

$$
X \times Y=\operatorname{limind}(X \times(Y \cap H)) \quad\left(H \in T_{Y}\right)
$$

PROOF. Let $X=\bar{X} \cap H_{X}$ as in Proposition 1.1.

$$
X \times Y=\left(\bar{X} \cap H_{X}\right) \times\left(\bar{Y} \cap H_{Y}\right)=(\bar{X} \times \bar{Y}) \cap\left(H_{X} \times H_{Y}\right)
$$

Let A be linear closed in $H_{X} \times H_{Y}$. Then there is a $H \in T_{Y}, K \in T_{X}$ such that $A \subset K \times H$. Let Q_{H} be the set of all closed linear subschemes contained in $H_{X} \times H$. Then for fixed H
(1) $\operatorname{limind}((\bar{X} \times \bar{Y}) \cap L)=(\bar{X} \times \bar{Y}) \cap\left(H_{X} \times H\right)=X \times(\bar{Y} \cap H)$
where the inductive limit is over $L \in Q_{H}$. Applying limind taken over $H \in T_{Y}$ the left side of (1) becomes

$$
\operatorname{limind}((\bar{X} \times \bar{Y}) \cap M) \quad\left(M \in T_{X \times Y}\right)
$$

which equals $X \times Y$. Q.E.D.
We show now the last requirement for the fundamental result of this paper.
P ROPOSITION 5.5. Y^{X} is an affine scheme for ind-affine schemes X, Y. Proof. Let $X=\lim$ ind $(X \cap K)\left(K \in T_{X}\right)$. As we have seen in Section 4 the maps $b_{K}: \bar{Y}^{\bar{X}} \bar{Y}^{X \cap K}$ induced by the inclusions $X \cap K \rightarrow \bar{X}$ are linear. Hence $\mathbb{W}=\cap b_{K}^{-1}\left(Y^{X \cap K}\right)$ is easily seen to be an ind-affine scheme ($Y^{X \cap K} \subset \bar{Y}^{X \cap K}$. See (*) of Remark 5.6). We show that $\mathbb{W}=Y^{X}$. Let

$$
S=k^{\mathrm{N}}, \quad R=S^{\bar{X}} \text { and } \quad R_{K}=S^{X \cap K}
$$

There is a commutative diagram

for each K. It is easily seen that c_{K} is surjective and hence the induced maps $c_{K}^{*}: k\left[\bar{R}_{K}\right] \rightarrow k[\tilde{R}]$ are injective. As the $k\left[\bar{R}_{K}\right]$ are directed by
inclusion

$$
\operatorname{limind} k\left[\bar{R}_{K}\right]=\cup k\left[\bar{R}_{K}\right]\left(K \in T_{X}\right)
$$

Suppose $f \epsilon k[\bar{R}]$ but $f \nLeftarrow k\left[\bar{R}_{K}\right]$. Recalling the definition of $S^{\bar{X}}$, we see that f is a polynomial in a finite number of variables a_{i}^{j} where $\left(c,{ }_{i}^{j}\right) \epsilon$ $R(k)$ arises from $\left(\Sigma d_{i}^{j} e_{\dot{L}}\right) \in \operatorname{Hom}\left(\bar{X}, k^{\mathrm{N}}\right)$ and the e_{j} form a basis for $k[\bar{X}]$. As X is dense in \bar{X} there is a K such that

$$
\left\{e_{j} \mid a_{i}^{j} \text { is a variable in } f \text { for some } i\right\}
$$

is linearly independent in $k[X \cap K]$. One has thus a basis for $k\left[\bar{R}_{K}\right]$ such that c_{K} is projection and $c_{K}^{*}\left(a_{i}^{j}\right)=a_{i}^{j}$ if a_{i}^{j} is a variable in f. But then $f \in k\left[\bar{R}_{K}\right]$. Thus limind $k\left[\bar{R}_{K}\right]=k[\bar{R}]$ and hence $\bar{R}=\operatorname{limproj} \bar{R}_{K}$.

Taking projective limits, diagram ($\dagger \dagger$) becomes

As the horizontal arrows are injective, so are a and b. Thus

$$
W \subset \bar{Y}^{\bar{X}} \cap \operatorname{limproj}\left(Y^{X \cap K}\right)
$$

(note that strictly speaking one should speak of pullback rather than intersection). If

$$
P_{\epsilon} \bar{Y}^{\bar{X}} \cap l i m p r o j\left(Y^{X \cap K}\right)
$$

then $b(P)=\left(b_{K}(P)\right) \epsilon \times Y^{X \cap K}$ and hence $P \epsilon \mathbb{W}$. Q. E.D.
REMARK 5.6. Let Y be affine and Z be ind-affine (as in the discussion preceding Lemma 5.1). Then

$$
(Z \cap L)^{Y}=U_{Z \cap L} \cap H \subset U_{\bar{Z}} \cap H \subset \bar{Z}^{Y}
$$

and hence

$$
(*) \quad Z^{Y} \subset \bar{Z}^{Y}
$$

Let $f: Z \rightarrow W$ be a map in ind-aff and $\bar{f}: \bar{Z} \rightarrow \bar{W}$ the corresponding map in aff. Then $f^{Y}: Z^{Y} \rightarrow \mathbb{W}^{Y}$ is induced from \bar{f}^{Y} and hence f^{Y} is the restriction of a map in aff between k^{N}. Because $f(Z \cap L) \subset W \cap K$ for some $K \in T_{W}$ and Lemma 5.1, f^{Y} respects filtration in Z^{Y} and hence belongs
to ind-aff. $g: X \rightarrow Y$ in ind-aff induces

$$
(Z \cap L) g_{:} U_{Z \cap L} \cap H \rightarrow U_{Z \cap L}^{\prime} \cap H^{\prime}
$$

which is the restriction of $\bar{Z}^{g}: U_{\bar{Z}} \cap H \rightarrow U \frac{\dot{Z}}{} \cap H^{\prime}$ and hence Z^{g} is the restriction of $\bar{Z} g$. Again Lemma 5.1 implies that Z^{g} preserves filtration.

Next let X, Y be ind-affine. Suppose that $f: Y \rightarrow W, g: Z \rightarrow X$ are in ind-aff and $\bar{f}: \bar{Y} \rightarrow \bar{W}, \bar{g}: \bar{Z} \rightarrow \bar{X}$ are the corresponding maps in aff. Then from the definition of Y^{X} via the b_{K} it follows that f^{X} (resp. Y^{g}) is the restriction of $\bar{f}^{\bar{X}}$ (resp. $\bar{Y}^{\bar{g}}$). Because the b_{K} are linear and hence map closed linear subschemes to closed linear subschemes, the filtration preserving maps $f^{X \cap H}$ (resp. $Y g(L)$ where $g(L)$ is the restriction of g to $Z \cap L$ for some $L \in T_{Z}$ and $g(Z \cap L) \subset X \cap H$ for some $\left.H \in T_{X}\right)$ lift to filtration preserving map f^{X} (resp. Y^{g}). The fact that

$$
\begin{equation*}
Y^{X} \subset Y^{\bar{X}} \subset \bar{Y} \bar{X} \tag{**}
\end{equation*}
$$

follows from the commutativity of

(which commutes because we have shown that $d_{K}=Y^{I}$ is the restriction of $b_{K}=\bar{Y}^{I}$ where $I: X \cap K \rightarrow \bar{X}$ is the inclusion).

6. TRANSVERSALITY IN Y^{X}.

Let X, Y, W be affine non-singular irreducible schemes of finite type over an alge braically closed field k, W a closed proper subscheme of Y and $f: X \rightarrow Y$ a map of schemes. For an affine non-singular scheme Z of finite type over k by $T_{z} Z$ we denote the tangent space to Z at z. For the notions that we use see $[1,6]$. We assume that k is algebraically closed.

DEFINITION 6.1. f is transversal to W if for each $x \in X(k), f(x) \notin W$ or

$$
T_{f(x)} Y=T_{f(x)} W+(d f)_{x}\left(T_{x}\right)
$$

P. CHERENACK 22

Let $r=\operatorname{dim} W$ and $Y \subset k^{m}$.
DEFINITION 6.2. W is parallelisable in Y if there is a map of schemes $a: Y \rightarrow\left(k^{m}\right)^{r}$ such that for each $y \in \mathbb{W}(k), a(y)$ is an r-tuple of vectors generating $T_{y} W$. The map a will be called a parallelising map. We say X is parallelisable if X is paralellisable in X.

If W is not parallelisable in Y it is not difficult to find a finite open covering $\left\{U_{i}\right\}$ of Y such that $U_{i} \cap W$ is parallelisable in U_{i}.

Recall that $Y^{X}(k)$ is just the collection of all scheme maps f : $X \rightarrow Y$. Let $\left\{b_{p}\right\}$ be a basis for $k[X]$. The elements of $Y^{X}(k)$ have the form $f=\left(\sum_{p} a_{q}^{p} b_{p}\right)$ where $a_{q}^{p} \epsilon k$, for fixed q one has

$$
a_{q}^{p}=0 \text { if } p \gg 0 \text { and } q=1, \ldots, m
$$

Let $\underline{r}=\left(r_{1}, \ldots, r_{m}\right) \in \mathrm{N}^{m}$ and

$$
A_{\underline{r}}=\left\{f \in Y^{X}(k) \mid a_{q}^{p}=0 \text { if } p>r_{q}\right\} .
$$

DEFINITION 6.3. A subset C of $Y^{X}(k)$ is constructible if, for all \underline{r}, $C \cap A_{\underline{r}}$ is constructible, i.e., if for some $n \in \mathrm{~N}$,

$$
A_{I} \cap C=\stackrel{n}{=}_{=1}^{U}\left(K_{m} \cap U_{m}\right)
$$

where K_{m} is closed and U_{m} is open in $k^{\mathrm{N}}(k)(m=1, \ldots, n)$. PROPOSITION 6.4. Let X be parallelisable and W be parallelisable in Y. Then

$$
T_{W}=\left\{f \in Y^{X}(k) \mid f \text { is transversal to } W\right\}
$$

is constructible.
Proof. Let $x \in X(k)$ and $\beta: X \rightarrow\left(k^{n}\right)^{s}$ be the parallelising map of X where $X \subset k^{n}$ and $s=\operatorname{dim} X$. Let α as above be the parallelising map of W in Y and $\xi: X \rightarrow\left(k^{m}\right)^{r}$ the composite $a \circ f$. We restrict to $f \in A_{\underline{I}} \cap Y^{X}(k)$. Form all $r \times r$ determinants from the array $\left((d f)_{x}(\beta(x)), \xi(x)\right)$ calling these $D_{1}\left(a_{q}^{p}, x, \underline{r}\right), \ldots, D_{a}\left(a_{q}^{p}, x, \underline{r}\right)$. Suppose that F_{1}, \ldots, F_{b} generate the ideal of W and let

$$
D_{i+a}\left(a_{q}^{p}, x, \underline{r}\right)=F_{i}(f(x)) \quad \text { for } \quad i=1, \ldots, b
$$

A CARTESIAN CLOSED EXTENSION... 23

Then clearly $f \in A_{I}$ will be transversal to \mathbb{W} if, with $c=a+b$,

$$
D_{1}\left(a_{q}^{p}, x, \underline{r}\right)=0, \ldots, \quad D_{c}\left(a_{q}^{p}, x, \underline{r}\right)=0
$$

do not have a common zero on X. The equations

$$
D_{1}\left(a_{q}^{p}, x, \underline{r}\right)=0, \ldots, \quad D_{c}\left(a_{q}^{p}, x, \underline{r}\right)=0
$$

define a closed subset S_{r} of $A_{r} \times X$. Let $p_{r}: A_{\underline{r}} \times X \rightarrow A_{\underline{r}}$ be the projection on the first factor. Then by Chevalley's Theorem [8, page 94] $p_{\underline{I}}\left(S_{\underline{I}}\right)$ is a constructible subset of A_{I} and hence its complement $T_{W} \cap A_{r}$ is also constructible. Q.E.E.

Let Y^{*} (resp. W^{*}) be the projective scheme which is the closure of Y (resp. \mathbb{W}) in projective m-space P^{m} defined over k. Similarly let X^{*} be the projective scheme which is the closure of X in P^{n}. Suppose that X^{*}, Y^{*} and \mathbb{W}^{*} are non-singular. Let F be an element of the projective ring of X^{*} of a given degree and suppose that

$$
X=\left\{P \in X^{*} \mid F(P) \neq 0\right\}
$$

There is a smallest integer $m(\underline{r})$ such that, for all $f \in Y^{X}(k) \cap A_{\underline{r}}, f$ can be written in homogeneous coordinates

$$
f^{*}=\left(F^{m}(I), G_{l}, \ldots, G_{m}\right)
$$

where $F^{m(r)}, G_{1}, \ldots, G_{m}$ are elements of the same degree in the projective ring of X^{*}. We call f^{*} the extension of f (relative to F and \underline{r}) if $F^{m}(I), G_{1}, \ldots, G_{m}$ do not have a common zero in.*. Let

$$
\underline{r}=\left(r_{1}, \ldots, r_{m}\right), \underline{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathrm{N}^{m} .
$$

W'e write $\underline{s} \geq \underline{r}$ if $s_{i} \geq r_{i}$ for each i.
W'e assume that β (resp. α) extends to a map

$$
\beta^{*}: X^{*} \rightarrow\left(\mathrm{P}^{n}\right)^{s} \quad\left(\text { resp. } a^{*}: Y^{*} \rightarrow\left(\mathrm{P}^{m}\right)^{r}\right)
$$

of schemes and that restricted to suitable covering affine opens β^{*} is a parallelising map (resp. a^{*} is a parallelising map of \mathbb{W}^{*} in Y^{*}).

PROPOSITION 6.5. Let $E \cap A_{\underline{I}}$ be the set of elementsin $Y^{X}(k) \cap A_{L}$ uhich extend to scheme maps $X^{*} \rightarrow Y^{*}$. Suppose that $E \cap A_{I}$ contains a map which
extends to a scheme map $X^{*} \rightarrow Y^{*}$ which is transversal to W^{*}. Then, $T_{W} \cap E \cap A_{\underline{I}}$ contains an open non-empty subset of $E \cap A_{\underline{I}}$ (with respect to the subspace topology).

PROOF. Working in homogeneous coordinates let $\xi^{*}: X^{*} \rightarrow\left(\mathrm{P}^{m}\right)^{r}$ be the composite $a^{*} \circ f^{*}$ (where $f \in E \cap A_{\underline{r}}$ and f extends to $f^{*}: X^{*} \rightarrow Y^{*}$). Form all $r \times r$ determinants of the array $\left(x \in X^{*}\right)\left(\left(d f^{*}\right)_{x}\left(\beta^{*}(x)\right), \xi^{*}(x)\right)$ restricting to $f \in A_{\underline{r}} \cap E$ and call these

$$
D_{1}\left(a_{q}^{p}, x, \underline{r}\right), \ldots, \quad D_{a}\left(a_{q}^{p}, x, \underline{r}\right)
$$

Suppose that F_{1}, \ldots, F_{b} are homogeneous polynomial generating the ideal of W^{*} and let

$$
D_{i+a}\left(a_{q}^{p}, x, \underline{r}\right)=F_{i}\left(f^{*}(x)\right) \text { for } i=1, \ldots, b
$$

Then clearly if the

$$
D_{1}\left(a_{q}^{p}, x, \underline{r}\right)=0, \ldots, D_{c}\left(a_{q}^{p}, x, \underline{r}\right)=0 \quad(c=a+b)
$$

do not have a common root other than zero then $a_{q}^{p} \epsilon A_{\underline{r}} \cap E \cap T_{W}$.
Let $I\left(X^{*}\right)$ be the homogeneous ideal defining X^{*} in P^{n}, and $q: k\left[T_{0}, \ldots, T_{n}\right] \rightarrow k\left[X^{*}\right]$ the quotient by $I\left(X^{*}\right)$. There are homogeneous polynomials $E_{j}\left(a_{q}^{p}, T, \underline{r}\right)$ such that

$$
q\left(E_{j}\left(a_{q}^{p}, T, \underline{r}\right)\right)=D_{j}\left(a_{q}^{p}, x, \underline{r}\right) \quad \text { for } \quad j=1, \ldots, c
$$

Let $H_{j}(T)(j=1, \ldots, d)$ generate $I\left(X^{*}\right)$ and

$$
E_{j+c}\left(a_{q}^{p}, T, \underline{r}\right)=H_{j}(T) \quad \text { for } \quad j=1, \ldots, d
$$

Set $e=d+c$. Then we apply the following result to be found in van der Waerden [12, page 8].
LEMMA 6.6. e homogeneous polynomials with indeterminate coefficients possess a resultant system of integral polynomials b_{1}, \ldots, b_{ϕ} in these coefficients such that for special values of the coefficients in an arbitrary field the vanishing of the resultants is necessary and sufficient in order that the homogeneous polynomials have a solution distinct from the zero solution.

Applying this lemma to the $E_{j}\left(a_{q}^{p}, T, \underline{r}\right)$ for $j=1, \ldots, e$ in our

A CARTESIAN CLOSED EXTENSION... 25

case the indeterminate coefficients of the lemma being replaced by polynomials in the a_{q}^{p} obtained from the $E_{j}\left(a_{q}^{p}, T, \underline{r}\right)$ one obtains polynomials $b_{1}\left(a_{q}^{p}, \underline{r}\right), \ldots, b_{\phi}\left(a_{q}^{p}, \underline{r}\right)$ in the a_{q}^{p} such that: Let

$$
V_{\underline{r}}=\left\{a_{q}^{p} \in E \cap A_{\underline{r}} \mid b_{1}\left(a_{q}^{p}, \underline{r}\right)=0, \ldots, b_{\phi}\left(a_{q}^{p}, \underline{r}\right)=0\right\}
$$

Then $U_{\underline{I}}=\left(A_{\underline{I}} \cap E\right)-V_{\underline{t}}$ is an open subset of $E \cap A_{\underline{r}}$ such that if $\left(c_{q}^{p}\right) \in U_{\underline{r}}$ the equations $E_{j}\left(c_{q}^{p}, T, \underline{r}\right)=0 \quad(j=1, \ldots, e)$ have no common root. Thus $T_{W} \cap E \cap A_{\underline{I}} \supset U_{\underline{I}}, U_{\underline{r}} \neq \varnothing$ by assumptions. Q.E.D.

EXAMPLE 6.7. One can see that even in the simplest cases, for instance C^{C} and $W=\{0\}$, that T_{W} is not an open subset of $Y^{X}(k)$. For instance let P_{2} be the collection of polynomials $f(X)=a X^{2}+b X+c$. Then the collection of f not transversal to $\{0\}$ corresponds to the set N of (a, b, c) such that

$$
b^{2}-4 a c=0 \quad \text { if } a \neq 0, \quad a=b=c=0 \quad \text { if } a=0
$$

If P_{2} is identified with k^{3} then clearly $T_{2}-N$ is not open with respect to the Zariski topology on k^{3} nor the usual topology if $k=\mathrm{R}$ or C .

Grants to the Topology Research Group from the University of Cape Town and the South African Council for Scientific and Industrial Research are acknowledged.

P. CHERENACK 26

BIBLIOGRA PHY

1. T. BROCKER, Differentiable germs and catastrophes, Cambridge Univ. Press, Cambridge, 1975.
2. P. CHERENACK, Basic aspects of unirational homotopy theory, Questiones Math. 3 (1978), 83-113.
3. P. CHEKENACK, Internal hom-sets in an extension of affine schemes over a field, in Algebraic Geometry, Proc. Summer Meet. Copenh. 1978, Springer.
4. M. DEMAZURE \& P. GABRIEL, Groupes algébriques I, North Holland, 1970.
5. C. EHRESMANN, Les prolongements d'une variété différentiable I, C. R.A.S. Paris 233 (1951), 598-600.
6. M. GOLUBITSKY \& V. GUILLEMIN, Stable mappings and their singularities, Springer, 197?.
7. A. GROTHFNDIECK, Eléments de géométrie algébrique I, Springer, 1970.
8. R. HARTSHORNE, Algebraic Geometry, Springer, 1977.
9. P.]. HUBER, Homotopy theory in general categories, Math. Annal. 144 (1961) 361-385.

1C. S. LANG, Hilbert's Nullstellensatz in infinite dimensional space, Proc. A. M. S. 3(1952), 407-410.
11. ミ. MAC LANE, Categories for the working mathematician, Springer, 1971.
12. F^{2} L. VANDER W'AFREEN, Modern Algebra, Ungar Publ. Co, Nea-York, 1940.

Department of Mathematics
University of Cape Town
7700 RONDEBOSCH
SOUTH AFRICA

