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A CARTESIAN CLOSED EXTENSION OF A CATEGORY OF

AFFINE SCHEMES

b y Paul CHE RENA CK

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIF FÉRENTIELLE

Vol. XXIII - 3 (1982 )

The main result shows that there is a slight extension ind-a f f of

the category a f f of reduced affine schemes of countable type over a field
k which is cartesian closed. Objects which correspond to the jet spaces
of Ehresmann [ 5] but in the context of affine schemes are employed (Sec-
tion 4) to define the internal hom-functor in ind-aff. In addition we show
that ind-af f is countable complete and cocomplete. Certain commutation

properties for the inductive limits which define the objects of ind-a f f are

derived. Using the internal hom-functor in ind-aff one can place a topology
on the collection of all scheme maps between two affine schemes X and

Y . Then under certain restrictions the scheme maps f: X -&#x3E; Y which are

transversal to a closed subscheme of Y are shown to form a construct-

ible subset of the collection of all scheme maps from X to Y . The methods

used here show how one might begin to extend results (see [6]) on trans-

versality for smooth mappings between differentiable manifolds to the set-

ting of affine schemes.

Let wh ere is

the polynomial ring in a countable number of variables. All objects in

ind-a f f can be identified as we shall see with subsets of kN . They will
have the topology inherited from their structure as ind. lime of objects of

a ff in the category of ringed spaces. The topology is not necessarily that

induced from kN . See Example 1.11.

The meaning of cartesian closedness for a category is found in Def-

inition 3.4.

Objects of ind-aff are called ind-affine schemes.
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To avoid confusion a closed set will always be a closed subset of

kN and the closure of a set will be the smallest closed subset of kN cont-

aining it unless one specifies that that set is closed in some ind-affine

scheme and thus not necessarily in kN .
We say that ind-aff is a slight extension of a f f since the objects

of ind-aff form (as one can see using Proposition 1.4) the smallest col-
lection of subobjects of kN containing all linear (see Definition 1.3) and

closed subsets of kN and intersections of these. Compare this to the some-
what larger extension of Demazure and Gabriel [4], page 63.

Let X C kN . X (k) denotes the set of k valued points of X . A

morphism f: X (k) -) Y (k ) is a tuple (fn)n c Z where fn is a polynomial
in k[ X1 ... , Xn , ...]. Let v be the category of all X ( k ) with X in a f f
and morphisms between such objects. Then, if k is algebraically closed

and uncountable since the Hilbert Nullstellensatz holds for affine rings

k[ X] , X an object of aff (see Lang [10] ), V will be isomorphic to aff
and hence y’ also has a slight extension which is cartesian closed. Other-

wise one must make some suitable adjustment of V.

We mention briefly one of the possible applications of the theory

developed here. Using the cartesian closedness of ind-a f f and supposing

is the intemal hom-functor in ind-aff, one can form the loop functor

by setting E (X) = Xk n F where F is the closed subscheme of kN prov-
ided by the condition that the basepoint * c k is mapped to the basepoint
* of X . As ind-aff has coequalizers, one can form the cone functor

by letting C (X) be the coequaliz er of the maps

where i is the inclusion and * maps everything to the basepoint (*, *) of

k X X . Then one can show (adding basepoints) that C is left adjoint to E
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and thus associate to C or E homotopy groups IIn (X , Y) . For the details
of this construction see Huber [9]. The direction in which one might want

to take this theory can be seen in [2].

We outline the paper. In Section 1 we provide in Proposition 1.4

three different descriptions of the objects of inri-aff as subsets of kN . Vfie

use the more convenient description as required. The objects of ind-af f are
then given the structure of ringed spaces and the mappings between them

are described. A map f: X - Y in ind-aff is required to preserve the fil-

tration th at X and Y have as objects in ind-aff. We show (Proposition
1.10) that this is not a severe restriction. In section 2 we show that in ri-aff
has countable limits and coproducts in a fairly straightforward way. In Sec-

tion 3 we show that an external hom-functor on a f f to ind-aff (see the first

paragraph of 3 for the definition of this concept) can be extended to an

internal hom-functor on ind-a f f provided that the inductive limits defining

objects of ind-a f f satisfy certain commutativity relations. The existence

of an external hom-functor on a f f to in-aff is demonstrated in Section 4.

The necessary commutativity relations are to be found in Section 5. The

reason for proving the results in Section 3 first is to emphasize that the

methods appearing here might be used to form a cartesian closed category
in a more general context. Categorical methods have made this a more con-

cise paper.

Let X, Y, W be non-singular affine irreducible schemes of finite

types over k , let W be parallelisable in Y and X be parallelisable (see
Section 6 for definitions). YX(k) is identified with the scheme maps

f : X -&#x3E; Y . Let k be an algebraically closed field. Then in Section 6 we

demonstrate that the set TW of all f such that f is transversal to W is

constructible in YX( k) . YX (k) can be viewed as the directed union of

certain closed algebraic subvarieties AT of kN(k) . Let E nA L denote
the set of maps in Ar which extend (see Section 6) to scheme maps from

the projective model of X to that of Y . Then with some limitation we show

that TW n E n Ar contains an open subset of E n Ar .



294

For schemes the reader might refer to [7, 8] ; for category theory

to [11] ; for notions of transversality to [6].
For further applications of ind-affine schemes, see [ 3].

1. DE FINITION OF ind-aff.

Vfe present a definition of ind-affine schemes and then derive some

properties of ind-affine schemes.

DEFINITION 1.1. By a closed linear subscheme of

we mean a closed subscheme of kN whose defining ideal is generated by
linear polynomials in k[ X1, ..., Xn, ...] .

Let X be a subset of kN and let Y C X be a closed subset of kN
for which there is a minimal closed linear subscheme HY of kN such that

Y = XnHy . Note that the existence of a minimal HY follows from the

existence of one HY . Let TX denote a maximal subset of the set consist-
ing of all such HY with HX = u H (H c TX ) a fixed set.

DEFINITION 1.2. We say that TX is directed if H, K c TX implies that
for some M c TX we have H U K C M .

DEFINITION 1.3. A subset H of kN is said to be full Linear if:

a) Let V be a closed linear subscheme of kN . Then V(k) C H im-

plie s V C H.

b) H (k) is a vector subspace of kN (k) .
c ) H is the union of closed linear subschemes.

PROPOSITION 1.4. The following are equivalent:
i) X n HX = X ; T x is directe d.
ii) XnH = XnH for H c Tx. Xc HX. TX is directed.
iii) X = X1 n H1 where X1 is a closed affine subschemes and H 1 is

a full linear subset of kN. TX is the se t of HY such that HY C H1. 
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i =&#x3E; iii: As HX is the union of closed linear subschemes in TX and

TX is directed, HX (k) is a vector subspace of kN(k) . Suppose that
H(k) C H x where H is a closed linear subscheme. One can by Zorn’s
Lemma if TX contains no maximal element restrict to the case where

{Li I (Li c TX) is a countable family totally ordered by inclusion such

that

Note that the linear polynomials in k [ X I ’ ,..., Xn,.] form a vector space

of countable dimension. But an easy argument then shows that H (k) =

(LinH)(k) for some i and thus H(k) C Li (k) for some i. But then

H C Li CHX.
iii =&#x3E; ii: Every point P E X belongs to some closed linear subscheme

contained in H1 . Let TX consist of all closed linear subschemes HY con-

tained in H1 . Then X C HX . It is not difficult to show :

L EMMA 1.5. I f 11, K are closed linear subschemes o f kN there is a closed
linear subscheme H + K containing H and K and such that

Let H, K C Tx. Clearly H, K C H1 and, as H 1 is full linear,

H + K C H1 . There is a minimal closed linear subscheme L c T X such that
L nX =(H+K)nX. Clearly L 3 H, K. As every HY C HX is contained

in H1’ T X must be maximal. A s every H c TX is contained in H1 ,

DEFINITION 1.6. An ind-affine subset o f kN is a subset X of kN, sat-

isfying any one of the equivalent conditions of Proposition 1.4.

R EMA RK. The collection of ind-affine subsets is closed under arbitrary
intersection but the union of two full linear subschemes need not be an

ind-affine subset.

The additional structure which makes an ind-affine subset X into

a ringed space will now be introduced.
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The set T X can be viewed as a category where the arrows are

inclusions. There is a functor FX : T X-&#x3E; Rngsp from TX to the category

of ringed spaces assigning the affine scheme Hn X to H for each H C TX,
and inclusions to inclusions. The inductive limit of FX is a ringed space
whose underlying set is X .

Note that one obtains the same inductive limit if one replaces TX
by the category whose objects are of the form H nX (H f TX) and arrows
inclusions. Also there may be several TX for the same X . Whether they
define the same element of Rngsp is not clear. If X is expressed X =

X1nH1 as in Proposition 1.4, then TX will be the collection of all Hy
which are closed linear subschemes contained in H 1. H n X is the affine

scheme whose ideal is A + B where A is the ideal of H and B is the

ideal of X . Thus H n X need not be reduced.

D EFINITION 1.7. An ind-affine scheme is a ringed space of the form :

limindFX . The category of ind-affine schemes (denoted ind-aff) consists
of all ind-affine schemes together with morphisms ft (X, OX ) - ( Y, Qy)
of ringed spaces which are induced from morphisms kN -) kN in a f f , the

category of reduced affine schemes of countable type over k , and such

that for H C TX there is a K E T Y such that f (HnX ) C K n Y. We will

usually write X instead of (X, OX) .
Let X be an ind-affine scheme. From the definition of lamind FX

it follows YC X is closed iff Yr,H, H E TX is a closed affine subset of kN.
We will show that under certain weak conditions if f ; X -&#x3E; Y is a

map between two objects in ind-a ff which is the restriction of a map bet-

ween 0 in a f f , then f is a map in ind-aff.

LEMMA 1.8. Let Y be an fnd-a f fine scheme, X an irreducible o bject in

a ff and f: X - Y the restriction o f a map between kN in aff. Then there

is a K E TY such that f(X) C YnK.

P ROO F. X = Uf -1 (Yn K) (K C T X) . As X is irreducible, one of the

f-1 ( YnK) contains the generic point of X and hence X = f-1 ( YnK).
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DEFINITION 1.9. An ind-affine scheme X is irreducible if for each Hc TX
there is a K E TX with K DH and X n K irreducible.

P ROPOSITION 1.10. Let f:X -&#x3E; Y be a set map between ind-affine scltemes,
which is the restriction o f a map between kN in aft, and X irreducible.

Then f induces a map in ind-aff.

P ROO F. Let H C TX . There is a KC TX such that KDH with Xn K ir-

reducible. Then Lemma 1.8 implies that f(KnX) C Y n L for some L E TY,
and hence that f(HnX) C YnL. Restricted to HnX, f is a map in

Rngsp from H n X to Y n L . Taking direct limits one obtain s a map f :
X - Y in in d-aff. Q. E. D.

E x AMPL E 1.11.. The topology on X n H need not be that induced from the

Zariski topology on kN . Consider kk (k) which is the set of all (ai) with

a 
i 

in k, i E N and a . 
i 

= 0 for all but finitely many i.

Let kn(k) be the set of all (a.) in kk(k) such that

and II : n k k(k) -&#x3E; k n(k) the projection. Choose a subset C = {Pj}jC N of
kk (k) such that C n (k n(k) ) consists of finitely many points and n n (C)
is dense in k n(k . It is easy to see that this is possible. Also every
closed linear subset K of k n(k) is contained in kn (k) for some n (just
consider the echelon form of the linear equations defining K ) . Hence by
definition C is closed in k k(k) which has a topology as the inductive

limit of the Zariski topologies on the kk(k)n K . On the other hand as the
closure of C in kN (k ) is kN (k ) , C cannot be a closed subset of k k(k)
for the topology induced from kN(k) . If k is the complex numbers, then

clearly C will be closed for the inductive limit topology in k k but not for

the topology induced from kN .

2. COUNTABLE LIMITS AND COLIMITS IN ind-aff.

We show that indra f f has countable limits by showing that it has

countable products and equalizers.
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P ROPOSITION 2.1. ind-aff has countable products.

PROOF. Let {Xi}i C N be objects in ind-aff. Xi = Xi r)H. i where H. i is

full linear and X. is the closure of X. in kN . One considers (see Remark
i 1

2.6) X X , as a closed affine and X H. as a full linear subset of kNXN =
i . i

SP,,(k[xji]) where the Xi are indeterminates. But kN xN = kN (by diag-
onal counting) . Hence

is an object in ind-a f f. Let p.: x Xi -&#x3E; X L be the projection map. Let

f : Z - Xibe ind-affine maps. It is easy to see that the pi and the unique
map f; Z -&#x3E; Xi such that pi of = fi belong to inalaff. Q.E.D.

P R O P O SI T IO N 2.2. ind-aff has e qu al i z e rs .

PROOF. Let f, g; X=&#x3E;Y belong to ind-aff . Let

Then taking unions over H E TX,

where the last equality follows from the fact that f (Q) - g (Q) for Q E E
as f, g are induced by maps between kN in a f f . Thus E can be given
the structure of an ind-affine scheme. Clearly the inclusion i : E -&#x3E; X is a

map of ind-affine schemes.

Let h : Z -&#x3E; X be a m ap in in d-a f f such th at foh = goh. For K E T Z
there is a H E TX such that h (Z n K) C X n H . There is an L in T y such

that

But EnH is the equalizer in a f f o.f the restricted maps

and hence there is a unique map cK : Z n K -&#x3E; E n H such that i o c K = h

on Z n K . Taking direct limits one obtains a unique map c : Z - E such

that i o c = h . The uniqueness of c follows from the fact that a map such

as c must induce the c K again. Q. E. D.
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a f f has countable products and equalizers but not countable co-

products. On th e o th er h and :

P ROPO SIT IO N 2.3. ind-aff has countable copro ducts.

We outline a proof. Let X . 
i 

( i c N ) be ind-affine schemes. Shift the

Xi so that they do not contain the origine 0,E kN . Construct an embedding
s. : X. -&#x3E; kN xN where on k valued points sj(xj) = (yjm ) and

i i i I m

Let C =Usi(X i). The objects of Tc are of the form X Hi where H. C Txi i i 1 i
It is easy to see that C = C nHC and that the s i are ind-affine maps def-

ining a coproduct structure on C .

Finally we show that ind-a f f has countable colimits by showing:

P R O P O SIT I O N 2.4. ind-aff has coequalizers.

P ROO F.. Let f, g: X =&#x3E; Y be two maps in ind-aff. f, g induce maps

1, g: X =&#x3E; Y in aff and f, g have a coequalizer q ; Y - Q’ in a f f . Sup-
pose that H E TY . Let

be the composition of the inclusion and natural quotient maps of affine

rings. Choose a basis {qi} iC N for k[Q’]. Then k [ Q’] = k[ qi] and Q’
can be imbedded as a closed affine subscheme of kN in terms of the gen-
erators {q i} i c *N of k[ Q’] . Let LH be the closed linear subscheme of

kN defined by the condition that Zi. ai.qi. is sent to 0 under r* . Then the
L H are directed by inclusion (for H, K c T Y there is an M c T y such that

L HU LK C LM) and hence L = U LH (H c TY) is a full linear subset of
kN . Let Q = Q’n L . Q is an ind-affine scheme. As

q (Y) C Q. Clearly q : Y -&#x3E; Q is a map of ind-affine schemes. Note that

q(Y) =Q’.Hence Q’ = Q.
Let c ; Y - Z be a map in ind-a f f and c : Y - Z be the corresponding

map on the Zariski closures. Suppose that c o f = c o g and hence that
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c o f = c o g , Then there is a unique map h: Q -&#x3E; Z such that h o q = c .
Let H c TY . There is a K C TZ such that c(Yn H) C Zn K. Consider the

diagram

where h*, c * and c H are the k-algebra maps corresponding to lt, c, and

the restriction c ; Y n H -) ZnK respectively, and where u 1’ u2 are the

natural quotient maps. The inner diagrams commute and thus so does the

outer. As ul is surjective,

which implies that A restricts to a map sending Q n LH into Z nK and

thus to a map h in ind-aff sending Q to Z . Clearly lt o q - c . h is un-

ique since it must be the restriction of h. Q. E. D.

From the above follows :

T HEO REM 2.5. ind-aff is countably complete and cocomplete.

R EM A RK 2.6. To any vector space U of kN (k) one can associate a full

linear subset V* of kN by enlarging it to include points of closed linear

subschemes H of kN such that H (k ) is a subspace of h . By X H i (i EN )
in Proposition 2.1 we mean not the set theoretic product which may not be

full linear but (X Hi (k) ) * ( x now in scts ) . We use this convention

as required.

3. THE EXTENSION OF EXTE RNAL HOM-FUNCTORS IN aff, TO INT-
ERNAL HOM-FUNCTORS IN ind-aff.

All hom-sets are those of ind-a ff unless specified otherwise.
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We suppose that there is a bifunctor (as will be shown in 4)

such that a natural equivalence

(where X, Y, Z are restricted to objects in aff ) exists. In this situation

B(X, Y) is called an external hom-functoron aff to ind-aff.
Let Y be an object in in d-a f f and Y = limind (Y n H) where the

inductive limit is taken over H E TY . Let X be affine. Extend the bifunc-
tor B on objects by letting Y X = lamind (Y n H) X where the inductive

limit is taken over H E T y . We’ll see that Y X is an object of ind-aff later
in Proposition 5.2. Let f: Y - W belong to ind-aff . For each H E TY there

is a K E T W such that f (Y n H ) C K n W and thus a map

in ind-a f f . Taking inductive limits one obtains a map f X: yX -&#x3E; WX. Let

g : Z - X be a map in a f f . T aking inductive limits of the maps

one obtains a map Yg: Y X -&#x3E; yZ .
One readily verifies that defining fX and Y g as above one has

extended the bifunctor B to a bifunctor

See R em ark 5.6.

Let now Define

where the projective limit is taken over K E Tx . Y X is not necessarily

an ind-affine scheme (the proofs would be shorter if it was). Both Y Xand
Yx (as X is reduced; see Proposition 5.5) can be viewed as subsets of

DEFINITION 3.1.

In Section 5 we will show that YX is an ind-affine scheme.
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In a manner analogous to that above (but dual) one obtains an ext-

ension of the bifunctor B to a bifunctor

where R is the category of ringed spaces. Let c : ind-aff -&#x3E; aff be the

functor which associates to X E ind-aff the closure X of X in kN and to

an arrow f ; X -&#x3E; Y the induced map f: X - Y in a f f . Then

is clearly a bifunctor. Letting B ( X, Y ) = B (X , Y) n B (X, Y ) one sees

that we have extended the bifunctor B to a bifunctor (see Remark 5.6 ) :

If ind-aff had the inductive and projective limits that we needed

above, we would have used only the following two lemmas in the proof that

ind-a f f was cartesian-closed. Their proofs are to be found in Section 5.

L EMMA 3.2. Let Z = limind (Zn L ) where the inductive limit is taken

over L c Tz and X, Y be affine. Then

LEMMA 3.3. Let X be ind-affine and Y = limind(YnH) (H c TY) . Then

D E FIN IT IO N 3.4. A category C is cartesian closed if there is a bifunctor

B : C X C - C, C has finite products and there is a natural equivalence

with X, Y, Z objects in C.

Then we show :

THEOREM 3.5. T he re is a natural equivalence

induced from the natural equivalence
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where X, Y, Z are objects in I = ind-aff and X, Y, Z denote the clos-

ure o f X , Y, Z in kN. Thus ind-aff is cartesian closed.
We omit the subscript I below.

P ROO F. Let X, Y be affine and Z as in Lemma 3.2. Then

using Lemma 3.2, the assumption that ( t ) holds for affines and the defin-

itions of mappings between ind-affine schemes.

Note that as the isomorphism between Hom( X, (Z nL) Y) and

Hom(X X Y, Zn L ) is induced from an isomorphism between Hom(X, 2 Y)
and Hom( X X Y, Z) , the isomorphism between

Hom(X,Z ) and Hom(XxY,Z)

is also induced from this isomorphism. See (**) of Remark 2.6.

Next let Y be affine and X , Z be ind-affine schemes. Let X =

Lim ind( XnK) with K C T x Th ere are commutative diagrams

and

where i1 ’ i2 , i1, i 2 are canonical embeddings and the natural isomorph-
isms which are the vertical mappings we have by the first part of the proof.

Again note that il, i2 are embeddings because X and X X Y are reduced.

As

and
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Hom(XxY,Z) = Hom(XxY,Z)n(limpro j Hom((XnK)XY, Z))

(using Lemma 3.3), there is a natural isomorphism between Hom(X, Z Y)
and Hom (XXY, Z) induced from the natural isomorphism (3 between

Hom(X, Z Y) and Hom(X X Y, Z) .
Next let X , Y, Z be ind-affine and Y = limind (YnH ) (H C T Y ) .

Then there are commutative diagrams

where i1 i2, j1’ j2 are canonical embeddings and the natural isomorph-
isms which are the vertical maps we have by the last part of the proof. As

(use Lemma 3.3) there is a natural isomorphism between Hom(XX Y, Z)
and Hom(X, Z Y) induced by the natural isomorphism a above. Q. E. E.

4. CONSTRUCTING THE EXTERNAL HOM-FUNCTOR OF af f INTO
ind-aff .

All hom-sets are those in ind-aff.
We show that the bifunctor

described at the outset of Section 3 exists .

Let X, Y be affine. A morphism f : X -&#x3E; Y is given by a countable

number of coordinates f i E k[ X] . Suppose {e.}. J C N is a basis for k (X]
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and I (Y) is the ideal defining Y . If

then

implies F P (aji ) = 0 . We let U be the affine closed subscheme of kNXN
defined by the ideal J Y which is generated by

KNXN can be identified with kN (by diagonal coun ting) . Let

If t = (t .) consider the ideal A 
t generated by the Xj 

i for j &#x3E; t . Then

H =uH 
t (t C T ) where H = Spec(k[ Xji]/A ) is a full linear subset of kN.

REMARK. (UnHt (k) can be naturally identified with the set of maps

f E Hom(X, Y) such that if Hence

Un Ht might be described as a t-jet scheme, and this point of view plays
an important role in Section 6.

DEFINITION 4.1. YX = U nH = Lim ind(UnHt ) .
It can be seen that a change of basis {ej}jCN corresponds to a

linear map (each coordinate a linear polynomial) mapping YX onto an iso-

morphic copy.

g induces a map in in d-a f f which on k valued points is

defined by ; . Clearly with this defintiion of 
a functor in Y from af f to ind-aff.

. g induces a map j

i be a basis for k [ T] .

where L§J’ (a( ) is a linear function in (ai) . Define a map
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ind-a f f by setting Yg(jai) = (Lm(jai)) on k valued points. Note that if

one changes the basis I d mi mC N then the map in ind-aff obtained differs
from the first map by the isomorphism between the two copies of V in-
duced by this base change. Thus with this definition of Y g a functor
X

Y : aff -&#x3E; ind-aff in k is obtained.

and h : Y - W be maps in aff . As

one sees that and hence that

is a bifunctor.

THEOREM 4.2. There is cz natural equivalence

Tlaus B is an external hom-functor on af f to ind-aff.

, be a basis of k [,k] , resp. k [Y] .

11 y - is the h-th tuple of an element of Hom (,XxY, Z) write

Then the m appings in Hom (X X Y, Z ) correspond to the set of all (i ahj ) 
(kN xxNxN is identified w ith kN ) s ati sfying :

except for a finite number of h, j.

Let w.. =Z bib .e xb be the i j-th coordinate of an element in Hom(X, Z Y).ij t hje h 
As a consequence of the definition of Z Y (j &#x3E; ti implies W if = 0 ) the

b I ; satisfy condition B. Let
If Y 

be the i-th coordinate of an ele-

and thus the b ’ - satisfy condition B. Conversely it is clear that to every
bihj satisfying A and B there is a unique element of Hom(X, ZY) . Thus
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th ere i s a «natural identific ation » of both Hom (X X Y , Z ) and Hom (X , ZY)
with the set of all (aihj.) satisfying A and B. We leave it to the reader to

see that from this «natural identification» there comes a natural isomorph-
ism between Hom(XX Y,Z) and Hom(X,Z Y). Q.E.D.

5. COMMUTATION PROPERTIES OF THE INDUCTIVE LIMIT.

We prove the lemmas and show that the hom-functor exists as re-

quired in Section 3. The lemmas describe commutation properties of the

inductive limit with certain operations. Before we begin the proof of Lemma

3.2 we will describe the inductive limit Z Y = limind (ZnL )Y where Y

i s affine an d L f T z.
First (Z (, L ) Y =UZ n L n H where H is a fixed full linear subset

of kN , L c T Z and U ZnL is defined by the ideal ,j ZnL where H and

UZNL are chosen as they were in Definition 4.1. Clearly J Zn L = JZ + JL’
and thus UZ nL = uzn UL. Let

A s UL is a closed linear subscheme and the UL n H are directed by in-

clusion the following lemma implies that M is a full linear subset of kN .

L EMMA 5.1. Let A (k) c M be a Zariski closed subset o f M(k). Then
A c U L for some L E Tz if A is a closed linear subscheme o f kN .

P ROOF. Recall that the relation

provides the generators and linear polynomials Fp(aji) for I L when the

F are restricted to a set of linear generators of I (L) and p varies. Let

E 
L 

be the ideal generated by linear F in I (L) or where Fp vanishes on
A for all p and E = n E L . The closed linear subschemes which are the

zero sets of E and E L are related by V(E) = uV(EL). Clearly

v(EL) C L . Hence:
10 V(E) c uL (L C TZ ).

From the definition of TZ and 1o follow s
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20 V ( E) = R for some R E T z .
It is not difficult to see that

3 °E is the ideal generated by linear polynomials F where Fp van-
ishes on A for all p or F vanishes on HZ .
Next we show

40 F or R as in 20, A C UR .
As A C u (UL) if A n U R 1: A there is a K E TZ (K 3 R) and a point
Q E UK n A such that Q $ UR . Hence one can find a linear polynomial

G C I(R) such that the G p vanishes on U R but Gp (Q) # 0 for some p. 

Then by 3° G $ E. This contradicts 2o. Q. F. D.

Let B =UZnM.
PROPOSITION 5 . 2. B - Z Y .

P ROO F . Let QL be the set of all closed linear subschemes of UL n H .
Then

Here as before all hom-sets consist of morphisms in ind·a ff bet-

ween two objects in ind-a f f.

P ROPO SITION 5.3 (L emma 3.2 ). L et Z = limind (Zn L) where the limit

i s taken over L E TZ an d X , Y be a f fine. Then

Hom(X , limind((ZnL ) Y) ) = limind Hom (X, (ZnL ) Y).
P ROO F. Note that the inductive limit in sets here is just union. Let f:
X - ZY be a map in ind-affine schemes. Then for D = Z Y and some K c T D
f(X) C Z Yn K. Lemma 5.1 implies that KCUL n H for some L E TZ.
Hence
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PROPOSITION 5.4 (L emma 3.3). Let X be an ind-affine scheme and
Y=lim ind(YnH) (HCTY). Then

P ROO F. Let X = X n HX as in Proposition 1.1.

Let A be linear closed in HXx HY . Then there is a H c TY, K c TX such

that A C K X H . Let Q H be the set of all closed linear subschemes cont-
ained in Hx X H . Then f or f ixed H

where the inductive limit is over L E QH . Applying limind taken over

H c T y the left side of (1) becomes

which equals X x Y. Q. E. D.

We show now the last requirement for the fundamental result of this

paper.

PROPOSITION 5.5. Y X is an affine scheme for ind-affine schemes X, Y.

P ROO F. Let X = lim ind (XnK ) (K c T X). As we have seen in Section 4

the, maps b ; y X-&#x3E; yXnK induced by the inclusions X nK.... X are lin-

is easily seen to be an ind-affine scheme

, See ( * ) of Remark 5.6 ). We show that

and

There is a commutative diagram

for each K . It is easily seen that c K is surjective and hence the induced

are injective. As the k[ R K] are directed by
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inclusion

Suppose f C k [ R] but f$k[RK] . Recalling the definition of SX , we

see that f is a polynomial in a finite number of variables aj where ( cji) c

R (k ) arises from (î, de. ) c Hom (X, kN ) and the e . form a basis for
L i

k [ X] . As X is dense in X there is a K such that

is a variable in f for some i I

is linearly independent in k [ X n K] . One has thus a basis for k [ R K] such

that cK is projection and cK (aji) = aji if d i is a variable in f . But then

f E k[ RK] . Thus limind k[ RK] = k[ R] and hence R - limproj RK8
Taking projective limits, diagram ( ++) becomes

A s the horizontal arrows are injective, so are a and b . Thus

(note that strictly speaking one should speak of pullback rather than inter-

section). If 

then b(P) - ( bK(P)) C x yXnK and hence P c IF. Q. E. D.

R EM A R K 5.6. Let Y be affine and Z be ind-affine (as in the discussion

preceding Lemma 5.1). Then

and hence

Let f: Z - W be a map in ind-a f f and f : Z - k the corresponding map in

a f f . Then f Y : ZY -) If Y is induced from 1 Y and hence f Y is the restric-

tion of a map in a f f between kN . Because f(Z r1 L ) C W n K for some

K C T W and Lemma 5.1, f Y respects filtration in Z Y and hence belongs
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to ind-af f . g: X - Y in ind-aff induces

which is the restriction of Zg ; UZ n H -&#x3E;UZ n H’ and hence Z g is the
Z

restriction of Z g . Again Lemma 5.1 implies that Z g preserves filtration.

Next let X, Y be ind-affine. Suppose that f: Y -&#x3E; W, g: Z - X are

in in d-a f f and f ; Y -&#x3E; if, g ; Z -&#x3E; X are the corresponding m aps in aff
Then from the definition of YX via the bK it follows that f X (resp. Y g)
is the restriction of f X (resp. Yg ). Because the b K are linear and hence
m ap closed linear subschemes to closed linear subschemes, the filtration

preserving maps f xnH (resp. y g(L) where g(L ) is the restriction of

g to Z n L for some L C TZ and g (Z n L ) C X nH for some H (TX) lift
to filtration preserving map f X (resp. Y g) . The fact that

follows from the commutativity of

(which commutes because we have shown that dK = YI is the restriction

of b K = Yj where I: X n K -&#x3E; X is the inclusion ).

6. TRANSVERSA L1TY IN YX.

Let X, Y, W be affine non-singular irreducible schemes of finite

type over an alge braically closed field k, W a closed proper subscheme

of Y and f: X - Y a map of schemes. For an affine non-singular scheme

Z of finite type over k by TZ Z we denote the tangent space to Z at z ,

For the notions that we use see [1, 6]. We assume that k is algebraically
closed.

DEFINITION 6.1. f is transversal to W if for each x c X(k), f(x) $ or
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D EFINITION 6.2. W is parallelisable in Y if there is a map of schemes

a : Y - ( km) r such that for each y E W(k), a ( y) is an r-tuple of vectors

generating Ty W. The map a will be called a parallelising rrtap. We say
X i s parall eli sabl e if X is paralellisable in X .

If W is not parallelisable in Y it is not difficult to find a finite

open covering {U.} of Y such that U. n W is parallelisable in U.

Recall that Y X(k) is just the collection of all scheme maps f:
X, Y. Let {b} be a basis for k[ X] . The elements of Y X(k) have the

P 
where a " c k, for fixed q one has

and

DEFINITION 6. 3. A subset C of Y X(k) is constructible if, for all r,

C (’)A is constructible, i. e., if for some n c N ,

where K 
m 

is closed and U 
m 

is open in kN(k) (m = I , ..., n).

P ROPOSITION 6.4. Let X be parallelisable and W be parallelisable in
Y . Then

f is transversal to A }

is constncctible.

P ROO F. Let x f X (k) and (3: X -&#x3E; ( kn)S be the parallelising map of X

where X C kn and s = dim X . Let a as above be the parallelising map of

If in Y and F: X -&#x3E; (k m)r the composite a o f . We restrict to f C A r nY X (k).
Form all rX r determinants from the array ((df )x (B(x)),F(x)) calling

these D1 (a q, x, r) , ... , Da(a pq, x, r) . Suppose th at F1’ ..., Fb generate

the ideal of ? and let
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Then clearly f C Ar will be transversal to W if, with c = a+ b,

do not have a common zero on X . The equations

define a closed subset S of Ar A X . Let p r; Ar X X - A, be the projection
on the first factor. Then by Chevalley’s Theorem [8, page 94] PI (Sr) is a
constructible subset of Ar and hence its complement Tw n Ar is also

constructible. Q. E. 1:.

Let Y* (resp. W*) be the projective scheme which is the closure

of Y’ (resp. W) in projective m-space Pm defined over k , Similarly let

X * be the projective scheme which is the closure of A in P . Suppose
that X*, Y * and T* are non-singular. Let F be an element of the proj-
ective ring of X * of a given degree and suppose that

There is a smallest integer m (r ) such that, for all f C ,YX(k)nA f car
be written in homogeneous coordinates

where Fm (r), C , ..., Gm are elements of the same degree in the projec-
tive ring of X*. We call f* the extension of f (relative to F and r ) if

Fm(r), Cl , ... , Gm do not have a common zero in X* Let

"’e write s &#x3E; r if s. &#x3E;r.for each i.
t

l’e assume that 13 (resp. a ) extends to a map

of schemes and that restricted to suitable covering affine opens 8* is a

parallelising map (resp. a * is a parallelising map of If’ * in Y * ) .

PROPOSI’lIOrJ 6.5. Let EnAr be the set o f elements in Y X(k)nAL uhic h

extend to scheme maps X*-&#x3E; Y *. Suppo se that E n.AI contains a map which
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extends to a scheme map X *-&#x3E; Y* which is transversal to W*. Then,

TWnEnAI contains an open non-empty subset of EnAr (with respect
to the subsp ace topology) .

P ROO F. Working in homogeneous coordinates let F*:X*-&#x3E; (pm)r be the

composite a *of * (where fe En Ar and f extends to f*: X*-&#x3E; Y*). Form
all rX r determinants of the array (x c X *) ((df*)x (B *(x ) ), F*(x ) ) re-
stricting to f c Arn E and call these

Suppose that F1 , ..., Fb are homogeneous polynomial generating the ideal
of W* and let

Then clearly if the

do not have a common root other than zero then ap c Ar n E n TW .
Let I(X*) be the homogeneous ideal defining X* in P n, and

q: k[ To , ... , Tn ] -&#x3E; k[ X *] the quotient by I (X*) . There are homogeneous

polynomials Ej (aPq, T , r) such that

) generate I ( X * ) and

Set e = d+ c. Then we apply the following result to be found in van der

Waerden [12, page 8].

LEMMA 6.6. e homogeneous polynomials with indeterminate coefficients
possess a resultant system of integral polynomial s b1 , ... , b 0 in these

coefficients such that for special values of the coefficients in an arbitrary

field the vanishing of the resultants is necessary and sufficient in order

that the homogeneous polynomials have a solution distinct from the zero

solution.

Applying this lemma to the Ej ( aq, T, r) for j = 1, ..., e in our
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case the indeterminate coefficients of the lemma being replaced by poly-
nomials in the aP obtained from the E. (aP, T, r) one obtains polynomials

in the aP such that: Let
q

Then U, = ( Ar n E ) - V is an open subset of E n Ar such that if ( cp q) E Ur
the equations Ei (cpq ,T,r ) = 0 ( j = 1, ... , e ) have no common root.

Thus TWnEnAr 3 Ur , Ur # 0 by assumptions. Q. E. D.

EXAMPLE 6.7. One can see that even in the simplest cases, for instance

CC and W = {0} , that TW is not an open subset of YX (k) . For instance
let P2 be the collection of polynomials f(X) = a X2 + bX + c . Then the

collection of f not transversal to to } corresponds to the set N of (a, b, c )
such th at

If P 2 is identified with k3 then clearly T2 - N is not open with respect

to the Zariski topology on k 3 nor the usual topology if k = R or C .
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