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ABSTRA CT PRO ARROWS I

by R. J. WOOD

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFFRENTIELLE

Vol. XXIII -3 (1982 )

0. INTRODUCTION.

In any 2-category K one can do a certain amount of « formal categ-

ory theory». For example one can define extensions, liftings, adjoints, mo-

nads, etc... and prove various simple propositions about them. There are

now numerous examples in the literature. We draw the reader’s attention to

Propositions 1 and 2 in [S &#x26; W], for they will be used in the present paper.
Most such results, with minor modifications, also hold in the more general
context of an arbitrary bicategory.

Clearly K has to possess additional structure and/ or enjoy certain
properties in order to capture within it many results which hold in CA T .

Identification and study of several structures and properties has been car-

ried out in various papers. «Yoneda structures » (Street and Walters [S&#x26; W] )

«the calculus of modules» (Street [S1]) and «elementary cosmoi» (Street

[S2]) provide examples of what we have in mind. Indeed, this paper leans
heavily on the considerations of the above authors.

Let set denote the category of sets in some universe and let SET

denote the category of sets in another universe which contains the first

as an element. If CAT = cat(SET ) , then set is an object of CAT, but

SET is not. Let K = CAT and let A and B be objects of K ; then

K (A, B ) = BA , the usual functor category. (It is also an object of K )
The category of profunctors from A to B is given by

Of fundamental importance is the full subcategory 
W’e have
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A cospan A-&#x3E; f M-g B in CAT is said to be admissible if the composite

is in m ( A, B) . An arrow B g M is admissible if the cospan M-&#x3E;M-g B is.

Abstractly given admissible arrows and, for admissible A , abstract

Yoneda arrows A -) 9 A were the starting point for the axiomatic investiga-
tions in [S&#x26;W]. In subsequent work we will require admissible cospans,

51 and a left 2-adjoint of T for the 2-categories K that we consider. This

suggests a slight retreat from [S&#x26; ,’] to a middle-of-the-road abstract m

as above. m is also easier to work with than P in the same way that mon-

oidal categories are easier to work with than closed categories. Recasting

[S&#x26;W] in this guise shows that size considerations are quite a secondary
feature for many formal concepts and we thus arrive at the subject of
this paper.

More explicitly, our starting data is a K , together with a homomor-

phism of bicategories ( ) * : K - m, subject to axioms suggested by
CAT , PROF ( PROF being the bicategory of profunctors mentioned ab-

ove). Simple variants of this paradigmatic example are provided by
K = V -CA T (m = enriched profunctors )
K = S-indexed-CAT ( lh = indexed profunctors) .

We should point out though that like P in [S&#x26;W] our data is not grounded
in a universal property, so that even for the K above considerable flexibi-

lity is possible. With slight modifications the examples in [S&#x26;W] apply
here. Considering set as a locally discrete bicategory, set - rel , where

rel is the bicategory of sets and relations, yields an example as does also

SET -&#x3E; CAT- P ROF .

A remark about our first axiom is in order. We have demanded that

m be biclosed and yet our results about proarrows presented here do not

depend on it. Elsewhere we will make use of this axiom and others relating

N to the spans and to the cospans of K . For the present Axiom 1 serves

only as a notational convenience (as does Axiom 4) so the following is

also an example: K = the opposite of the 2-category of toposes and geom-
etric morphisms, fll = the 2-category of toposes and left exact functors.
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Regarding a left exact functor between toposes as a progeometric morphism
provides further insight into the « glueing constructions and the «left exact

cotriple constructions. Indeed, the corresponding constructions for profun-
ctors are well known. These matters will be dealt with axiomatically in the

sequel mentioned above.

All definitions in this paper are relative to ( ) * as introduced in

Section 1. K denotes a fixed bicategory, although in practice it is usually
a 2-category. Even when the latter is the case, m is usually just a bicat-

egory. We have suppressed all mention of the coherent isomorphisms.

Thanks go to Bob Pare for helpful discussions.

1. A BST RA CT PROARROWS.

A homomorphism of bicategories (see (B] ) ( ) * : K -&#x3E; m is said to

equip K with abstr,act proarrows if the following axioms are satisfied :

AXIOM 1. ll is biclosed.

AXIOM 2. For every arrow f in K, f * has a right adjoint f * in m.

AXIOM 3. ( ) * is locally fully faithful.

Any homomorphism of bicategories ( ) *: K - m admits a factor-

ization K - 7 - m where the objects of I are those of K,

and the rest of the data is obvious.

P ROPOSITION 1. With notation as above, i f K - m equips K with abstract
p roarrows, so does K -&#x3E; 7.

We henceforth assume

AXIOM 4. The objects of m are those of K and ( ) 
* 

is the identity on

objects.

Horizontal composition in N will be denoted by 0 and all compo-

sites in K and in ? will be written in diagrammatic order. For arrows

4J t A , B, T: B -&#x3E; C and r ; A - C in m, the following will serve to il-

lustrate our notation for the biclosed structure :
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TAUTOLOGY 2.

is a right lifting in t and

is a right extension in m .

For f : A -&#x3E; B in K , we denote the unit of the adjunction f * -i f*
in ? by f: 1A - f*X f *. Recall from [S&#x26; W] that

is the unit for an adjunction iff the diagram is an absolute left lifting iff the

diagram is an absolute left extension. Thus, for a transformation

in K we can define T 
* to be the unique transformation in m satisfying the

equality
A A

This yields a homomorphism ( ) *: K coop -&#x3E; m.

Axiom 3 asserts that, for all objects A and B and all arrows

f, g: A=&#x3E; B in K, there is a bijection as indicated by the first horizontal
line below. The second bijection is then trivial.
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For and g: M - B in K it will sometimes be illuminating
to write

PROPOSITION 3 (Yoneda). For b: X -&#x3E; B in Yx:

P ROOF. (i)

( ii ) Similarly. I

COROLL ARY 4. For b: X -&#x3E; B and j : A - B in K,

The above isomorphisms of arrows in t are a strong intemalization

of the bijections which precede Proposition 3.

In any bicategory, an arrow A : X -&#x3E; Y is said to be left (resp. right)
continuous if A respects all right liftings (resp. extensions) . So, in sym-

bols, A is left (resp. right) continuous iff AX(W =&#x3E;T) = W=&#x3E; ( AX T)

(resp. ( T = P) X A = (T X A) P ) for all appropriate rand q1 (resp.

r and 0 ). In one form or another the following «very formal adjoint arrow

Theorems is classical:

LEMMA 5. In any biclosed bicategory an arrow is a left (resp. right) ad-

joint iff it is le ft (resp. rigltt) continuous.
P ROO F. The « only if » part is true in any bicategory. Conversely assume

that A : X -&#x3E; Y is left continuous. Define T = A=&#x3E; 1 Y : Y - X. A res-

pects the lifting so, by (a dual of) Proposition 2 in [S&#x26; W], A -1 T. 

2. INDEXED LIMITS.

, a P-in dexe d colimit for s
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is an arrow P . s : M -&#x3E; C in K and a transformation

such that the indicated diagram is right lifting. So if P. s exists it is char-

acterized, uniquely up to isomorphism, by (4$ .  s) * = O P s* .

For W : A - M in ? and s : A - C in K , a W-indexed limit for s
is an arrow I T, s 1: M -&#x3E; C in K and a transformation

such that the indicated diagram is a right extension. If {W, s} exists we

have{W,s}* = s*=W.
For K as in [ S&#x26; W] it may happen that M - A in N can be re-

placed by j : M -&#x3E; 9A in K. When this is the case our definition of P. s

easily translates into the definition of col ( j, s ) given there (if 4J . s is

« admissible») . The way in which col (j,s) captures the colimit-like no-

tions of enriched category theory has been discussed in [ S&#x26; W] . A more

detailed account of an important special case is given in [ B &#x26; K] . Here

we will just indicate how the above notion of limit applies to «ordinary

limits» in CAT, V-CAT, S-indexed-CAT (see [P&#x26;S]), etc. A similar dis-

cussion can be found in [ B&#x26; K].

For many K we have CA TxK-&#x3E;K, (D,X) i-&#x3E; D X satisfying

i.e., K is «CAT-tensored », or we have some fragment of such. In this case

the « ordinary» limit Lim f: X -&#x3E; Y of a D-diagram f: D - K (X, Y ) of ob-

jects of Y defined over X is given by {(! X)*, fl, where ! X : D X - X in
*.

K is given by tensoring ! ; D - 1 with X and f ; D X - Y is the transpose

of f .
I T, s } may be said to exist weakly if I T, s I * enjoys the universal
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property merely with respect to arrows in N of the form t *: M - C. Let
*

K = V -CAT , for suitable V , in the discussion above and let ( 1.:: K -) m
be as expected. Then weak existence of {( ! X )*, f} , for X the unit V-cat-

egory, coincides with existence of lim f in Yo , the underlying category of

Y , while true existence coincides with the usual notion of existence in

Y . We will not pursue the question « When does weak existence imply exist-
en ce ? » in this paper.

%le return now to our general considerations.

PROPOSITION 6. For 1’:N,M in m, P : M -&#x3E; A in m and s : A - C in

K, if P ,s exists, then r. (P . s ) = (T X P ) . s when either side exists.

Similarly, for suitable T and A in A I ’II, s }} = { T XA, s } when

either side exists.

PROOF. In general:

T=&#x3E;(P=&#x3E;A)=(TXP)=&#x3E;A and (A=W)=A=A=(WXA).

Using the first isomorphism the first result follows from

(T. (T. s ))* T =&#x3E; (P =&#x3E; s *) and ((TXP).s) *= (T X P)=&#x3E; s*

Similarly, the second result follows using the second isomorphism.

P ROPO SITION 7. For a : X -&#x3E; A in K and s : A - C in K:

PROOF.

where the second isomorphism is the Yoneda isomorphism of Proposition 3.
9

An arrow f : C - D in K is said to preserve $ ’ s (resp. I T, s } )
when the defining lifting (resp. extension) diagram is respected by f *
(resp. f * ).

P ROPOSITION 8. 1 f f has a right (resp. left) adjoint in K, it preserves
any indexed colimits (resp. limits) for which this makes sense.

P ROO F. If f -i u, then f * -i u * and Lemma 5 applies. Similarly if t -i f ,
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PROPOSITION 9 (Fornaal criterion for representability). For P: A , B in

m, the following are equivalent:
(I) P = f* for f: A -&#x3E; B in K.

(ii ) P. 1B exists, is isomorphic to f and (D is left continuous.

(iii ) P.1B exists, is isomorphic to f and P respects the lifting which

defines (D - 1B .
PROOF. (i)-&#x3E; (ii).

by Proposition 7 and since P= f* -I f *, P is left continuous by Lemma 5.

( ii) -&#x3E; (iii). Trivial.

(iii) -&#x3E; ( i ). We have that

is a right lifting respected by P. Applying Proposition 2 of [S&#x26;W],

P-I f* . But f*-I f* , hence P = f*.
For arrows

in K , an immediate consequence of Axioms 2 and 3 is that f -i u in K iff

f*= U* in m. . (Recall that the latter in our hom » notation is A [f, 1] =

B [1 ,u] . It follows that 4 [b f,a] B [b, au] for all a: X-&#x3E; A and b:

Y -&#x3E; B.) We leave the reader the simple task of formulating the duals of

Proposition 9 and its corollary below.

COROLLARY 10 (Formal adjoint arrow Theorem). For f: B - A in K, the

following are e quivalent :
(i ) f has a right adjoint u in K.

( i i ) f * ·1B exists, is isomorphic to u and f preserves all indexed

colimi ts.
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(iii ) f*. 1B exists, is isomorphic to u and f preserves it. n

We should perhaps remark here that «f preserves all indexed co-

limits » is in general a weaker statement than «f* is left continuous », since

there may be few indexed colimits with codomain B. The proof of Prop-
osition 8 shows of course that left adjoints have the stronger property.

Following [L] and [S1 ] an object B in R is said to be Cauchy

complete if, for every M , every left continuous P : M -&#x3E; B is isomorphic to

one of the form b*: M , B. An object B in K is said to be very total if,

for every M, P.1B exists for every P: M - B . So, immediately from Pro-

position 9, we have «very total implies Cauchy complete ». Suitably temp-

ering the notion of very total with size requirements yields the notion of

« total» in [S&#x26; W]. For many K this is a much more important concept and

will be dealt with in a later paper.

3. RELATIVE A DJUNCTIONS, POINTWISE EXTENSIONS.

A tran sform ation

in K is said to be a relative unit for s as a left adjoint o f t relative to

j if ( ) * applied to it yields a right extension diagram in m. I. e., iff

s*::::: j*= t*. Using Proposition 3 we can write this as B[s, 1]= C[j, ti -
Relative counits are defined similarly via ( ) *.

P ROPO SITIO N 11. Relative a d junc tion s are a bsalute liftings.

P ROO F. Consider the diagram above,

and
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An arrow j: A -&#x3E; B in K is said to be fully faithful if the trans-

formation j: 1A -&#x3E; j*X j* in m is an isomorphism. In other words, j is

fully faithful iff

is the unit for a relative adjunction (A[1,1] = B [j , j] ) .
For K = V -CA T f equipped with the usual ( )* : K - N ) it is easy*

to see that the above definition coincides with that of V-fully faithful. On

the other hand, to say that the diagram above is an absolute lifting diagram
is to say that the underlying functor of the V-functor j is fully faithful.

So for general K the converse of Proposition 11 does not hold.

PROPOSITION 12.1f

is an absolute left lifting and either j is a left adjoint or t is a right ad-

joint, then the diagram is a relative adjunction.

P ROOF. If j -f r then by Proposition 1 of [S&#x26; W] the following diagram
is an absolute left lif tin g :

It follows that s -I tr and B[s,1] = A[1,tr] =C[j,t]. If f J t we

have s m j f and B[s, 1] = B[jf, 1] = C[ j,t].
P ROPO SITION 13. For j : A - B in K, if j has a right ad joint (resp. left



289

adjoint) with unit TJ (resp. counit c), then the following are equivalent:
(i ) j is fully faith ful.
(ii) For all X the functor K(X, j) is fully faith ful.

( iii ) TJ (re sp. C) i s an isomo1phism.

P ROOF. ( ii) just says that

J

is an absolute left (and right) lifting, so the equivalence of ( i ) and ( ii )

follows from Propositions 11 and 12.

( ii) -&#x3E; ( iii ) . In case j -1 r with unit 7J , consider

By Proposition 1 of [S&#x26; W] the left triangle is an absolute left lifting ( (ii) )

iff the composite triangle is an absolute left lifting. Since 1 A -BlA the

latter is the case iff q is an isomorphism.

A transformation

in K is said to exhibit k as a pointwise left (resp. right) extension of f

along j if ( )* (resp. ( ) * ) applied to it yields a right lifting (resp. ext-

ension) diagram in m, i. e. iff k = j *. f (resp. k = { j*, fl).
In fact it is clear that ordinary extensions are just weak indexed

colimits and limits of the types above, so pointwise extensions are ext-

ensions.

PROPOSITION 14. For K in either case as above, i f j is fully faith ful,
then K is an isomorphism.

PROOF. For k = j*.f:
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