CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

S. B. NIEFIELD Cartesian spaces over T and locales over $\Omega(T)$

Cahiers de topologie et géométrie différentielle catégoriques, tome 23, nº 3 (1982), p. 257-267

<http://www.numdam.org/item?id=CTGDC_1982_23_3_257_0>

© Andrée C. Ehresmann et les auteurs, 1982, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CARTESIAN SPACES OVER T AND LOCALES OVER $\Omega(T)$ by S. B. NIEFIELD *

ABSTRACT. Recall that an object Y of a finitely complete category \mathfrak{A} is *cartesian* if the functor $-\times Y: \mathfrak{A} \to \mathfrak{A}$ has a right adjoint, denoted ()^Y. If Y is a space over a sober space T, one can consider the cartesianness of

1. Y in the category Top/T of topological spaces over T,

2. \hat{Y} (the soberification of Y) in the category Sob/T of sober spaces over T, or

3. $\Omega(Y)$ (the locale of opens of Y) in the category $Loc/\Omega(T)$ of locales over the locale $\Omega(T)$ of opens of T.

The goal of this paper is to establish the equivalence of these three conditions.

1. INTRODUCTION.

Recall that a continuous lattice is a complete lattice A such that $a = V\{b \mid b \le a\}$, for every $a \in A$, where $b \le a$ (read «b is way below a») if whenever $a \le VS$ for some directed subset S of A, we have $b \le s$ for some $s \in S$.

A space Y is cartesian in Top (by Freyd's Special Adjoint Theorem [5]) iff $-\times Y$ preserves colimits, iff $-\times Y$ preserves coequalizers ($-\times Y$ preserves coproducts in any case) iff $-\times Y$ preserves quotient maps. Such spaces were characterized by Day & Kelly [2] as those spaces Y such that $\Omega(Y)$ is a continuous lattice, or equivalently (cf. 2.4 [19]) $\Omega(Y)$ satisfies

$$U = \mathbf{V} \{ \Lambda H \mid U \in H \subset \Omega(Y), H \text{ Scott-open} \}$$

where a subset H of a complete lattice A is Scott-open if it is upward closed and meets every directed subset $S \subset A$ such that $VS \in H$. Note that * The research for this paper was supported by a Killam Postdoctoral Fellowship. a sober space is cartesian iff it is locally compact [8].

Recall that a frame [3, 20] (localic lattice [1] or complete Heyting algebra [4, 16]) is a complete lattice A satisfying the distributive law

$$a \wedge VS = V\{a \wedge s \mid s \in S\}$$
 for all $a \in A$, $S \subset A$.

A frame homomorphism is a finite meet and arbitrary sup preserving map. An object of the dual category is called a *locale* [11]. The notation and terminology of this paper is essentially that of [13].

In [9], Hyland shows that a locale A is cartesian in Loc iff it is locally compact (i.e. a continuous lattice). But such locales are necessarily spatial [10]. Thus, a locale is cartesian iff it is isomorphic to $\Omega(Y)$, for some cartesian space Y.

Let T be any space. In [17], we show that a space Y over T is cartesian in Top/T iff

(*) given $y \in U \in \Omega(Y_t)$, there exists $H \in \prod_{t \in T} \Omega(Y_t)$ such that $U \in H_t$, H is Scott-open and binding, and ΩH is a neighborhood of y in Y, where Y_t denotes the fiber of Y over t (i.e. $p^{-l}t$ with the subspace topology); H is Scott-open if H_t is for all $t \in T$; H is binding if $\{t \mid U_t \in H_t\}$ is open in T whenever U is open in Y; and ΩH is the subset of Y whose fiber over t is ΩH_t (i.e. the intersection of the family H_t in the power set of Y_t). Note that the set $\prod_{t \in T} \Omega(Y_t)$ with the Scott-open binding subsets as opens is the exponential $(T \times 2)^Y$, where 2 denotes the Sierpinski space. Among corollaries we show that a locally compact space over a Hausdorff space T and the inclusion of a locally closed subspace are cartesian in Top/T. Note that although (*) has been useful (as exemplified by the above mentioned corollaries), a less technical condition might also be desirable, for example one that provides some insight into cartesianness in $Loc/\Omega(T)$.

2. CARTESIAN SPACES AND LOCALES.

Throughout this section we shall assume that T is a sober space. LEMMA 1. If Y is a sober space over T such that $\Omega(Y)$ is cartesian over $\Omega(T)$, then $\Omega(X) \times_{\Omega(T)} \Omega(Y) \approx \Omega(X \times_T Y)$ for every sober space X over T.

PROOF. It suffices to show that $\Omega(X) \times_{\Omega(T)} \Omega(Y)$ has enough points. Consider the pullbacks

Now, $-\times_{\Omega(T)}\Omega(Y)$ preserves coproducts and epimorphisms being left adjoint. Thus, $(\amalg_{x \in X}\Omega(1))\times_{\Omega(T)}\Omega(Y)$ can be expressed as a coproduct of locales of the form $\Omega(1)\times_{\Omega(T)}\Omega(Y)$, and f' is an epimorphism since f is. But, $\Omega(1)\times_{\Omega(T)}\Omega(Y)$ is cartesian in *Loc* (since pulling back along any morphism preserves cartesian objects [17]), and hence spatial. Therefore $\Omega(X)\times_{\Omega(T)}\Omega(Y)$ is spatial, and the desired result follows. \Box

Suppose Y is a space over T,

 $U \in \Omega(Y)$, $G \in \Omega(T)$ and $H \subset \amalg_{t \in T} \Omega(Y_t)$.

We shall say that U is an element of H over G, written $U \in H$ if $U_t \in H_t$ for all $t \in G$. We also define ΛH by

 $\Lambda H = Int(\Omega H)$ where $(\Omega H)_t = \Omega H_t$.

A continuous map $p: Y \to T$ of spaces induces a geometric morphism $p: Sh Y \to Sh T$ on the categories of set-valued sheaves on Y and T, respectively. Now, p_* preserves internal locales [16]. In particular, $p_*\Omega_Y$ is an internal locale in Sh T, where Ω_Y denotes the subobject classifier in Sh Y. For the basic theory of internal locales in a topos we refer the reader to [14].

THEOREM 2. The following are equivalent for a continuous map $p: Y \to T$ such that the canonical morphism $\Omega(Y_t) \to \Omega(\hat{Y}_t)$ is an isomorphism for all $t \in T$, where the latter denotes the fiber over t of the soberification \hat{Y} of Y.

- a) $\Omega(Y)$ is cartesian in Loc/ $\Omega(T)$.
- b) \hat{Y} is cartesian in Sob/T.
- c) Y is cartesian in Top/T.
- d) $U = V \{ \Lambda H \cap p^{-1} G \mid \bigcup_{\substack{\epsilon \\ G \\ binding \\ \epsilon}} H \subset \prod_{t \in T} \Omega(Y_t), H \text{ Scott-open and}$

for all $U \in \Omega(Y)$.

e) $p_*\Omega_Y$ is locally compact (i.e. a continuous lattice) as an internal locale in ShT.

PROOF. $a \Rightarrow b$: Suppose that X and Z are sober spaces over T. Then

$$\begin{split} Sob/T(X\times_{T}\hat{Y},Z) &\approx Loc/\Omega(T)(\Omega(X\times_{T}\hat{Y}),\Omega(Z)) \\ &\approx Loc/\Omega(T)(\Omega(X)\times_{\Omega(T)}\Omega(\hat{Y}),\Omega(Z)) \\ &\approx Loc/\Omega(T)(\Omega(X)\times_{\Omega(T)}\Omega(Y),\Omega(Z)) \\ &\approx Loc/\Omega(T)(\Omega(X),\Omega(Z)\Omega(Y)) \\ &\approx Sob/T(X,pt(\Omega(Z)^{\Omega(Y)})), \end{split}$$

where the second and fourth isomorphisms follow from Lemma 1 and a respectively, and pt denotes the right adjoint to Ω . Therefore, \hat{Y} is cartesian in Sob/T.

 $b \Rightarrow d$: Suppose $U \in \Omega(Y)$. Note that condition (*) (see Introduction) holds for \hat{Y} since the proof in [17] that cartesianness implies (*) involves only sober spaces over T. If \hat{U} denotes the image of U under the isomorphism $\Omega(Y) \rightarrow \Omega(\hat{Y})$, then (by (*)) given $y \in \hat{U}_t$, there exists

$$\hat{H} \subset \amalg_{t \in T} \Omega(\hat{Y}_t)$$

such that $\hat{U}_t \in \hat{H}_t$, \hat{H} is Scott-open and binding, and $\prod \hat{H}$ is a neighborhood of γ in \hat{Y} . It easily follows that

(1) $\hat{U} = V\{\Lambda \hat{H} \cap \hat{p}^{-l} G \mid \hat{U} \in \hat{H}, \hat{H} \text{ is Scott-open and binding}\}$

for \hat{U} clearly contains the right hand side, and by the above remark every $\gamma \in \hat{U}$ is contained in $\Lambda \hat{H} \cap \hat{p}^{-1} G$, for some \hat{H} , where $G = \{t \mid \hat{U}_t \in \hat{H}_t\}$. Note that G is open since \hat{H} is binding.

It remains to show that we can remove the "s in (1). Using the isomorphisms $\Omega(Y_t) \rightarrow \Omega(\hat{Y}_t)$, it suffices to show that for $H \subset \coprod_{t \in T} \Omega(Y_t)$,

the soberification of $Int_Y(\Omega H)$ is precisely $Int_Y^{\circ}(\Omega \hat{H})$ where \hat{H} is the image of H under the map $\prod_{t \in T} \Omega(Y_t) \rightarrow \prod_{t \in T} \Omega(\hat{Y}_t)$. But $U \subset H$ iff $U_t \subset V_t$ for each $V_t \in H_t$, iff $\hat{U}_t \subset \hat{V}_t$ for each $\hat{V}_t \in \hat{H}_t$, iff $\hat{U} \subset \Omega \hat{H}$.

 $d \iff c$: This follows easily from Theorem 2.3 of [17], since d is equivalent to (*).

d \Rightarrow e: First we claim that it suffices to show that for every $U \in \Omega(Y)$ (i.e. a global element of $p_*\Omega_Y$), we have $U = V\{V \mid V \ll U\}$, where the right hand side is the sup in $p_*\Omega_Y$. To see this we note that if Y is cartesian in Top/T, then $p^{-1}G$ is cartesian in Top/G, for every open subset G of T, and so the desired property also holds for locally defined elements. Recall that if S is a subset of $p_*\Omega_Y$, then

$$VS = U\{V \in \Omega(Y) \mid (\exists G \in \Omega(T))(V \in S(G))\}$$

[15]. Thus, we must show that

 $U = U\{V \in \Omega(Y) \mid (\exists G \in \Omega(T)) (V \le U \cap p^{-1} G \text{ in } p_*\Omega_Y|_G)\}.$

But, using d, it suffices to show that $\Lambda H \cap p^{-1} G \ll U \cap p^{-1} G$ in $p_* \Omega_Y |_G$, for all $H \subset \coprod_{t \in T} \Omega(Y_t)$ such that $U \in H$ and H is Scott-open and binding. Note that $H \cap p^{-1} G \ll U \cap p^{-1} G$ in $p_* \Omega_Y |_G$ if for every globally defined ideal I (i.e. downward closed and directed subset) of $p_* \Omega_Y |_G$,

(2) $U \cap p^{-1} G \subset VI \implies$ $(V t \in G, \exists G' \in \Omega(T))(t \in G' \subset G \land \Lambda H \cap p^{-1} G' \in I(G'));$

for then $V \in l(G)$ (since l is a sheaf), as desired. But then a straightforward «localization» gives the corresponding property for locally defined ideals.

Suppose *l* is a globally defined ideal of $p_*\Omega_Y|_G$ such that $U \cap p^{\bullet l} G \subset l$. If $t \in G$, then

$$U_t \subset \mathrm{U}\{V_t \mid V \in I(G'), t \in G'\}.$$

Now, $U_t \ \epsilon \ H_t$ and H_t is Scott-open, so there exists G' containing t such that $V \ \epsilon \ I(G')$, and $V_t \ \epsilon \ H_t$, since the set of all such V_t is directed. Let $G'' = \{ t \mid V_t \ \epsilon \ H_t \} \cap G'$. Then $t \ \epsilon \ G''$, and

$$\Lambda H \cap p^{-l} G'' \subset V \cap p^{-l} G'' \epsilon l(G'').$$

Therefore, (2) is verified.

 $e \Rightarrow a:$ First, $p_*\Omega_Y$, being locally compact, is cartesian in the category Loc(ShT) of internal locales in Sh(T) [9]. But Loc(ShT) is equivalent to $Loc/\Omega(T)$ via an equivalence that identifies $p_*\Omega_Y$ and $\Omega(Y)$. [14]. This completes the proof. \Box

COROLLARY 3. If Y is a sober space over T, then Y satisfies the hypothesis, and hence the conclusion of Theorem 2.

PROOF. This follows immediately since $\hat{Y} \approx Y$. \Box

COROLLARY 4. If T is a T_D -space (i.e. points of T are locally closed), then any space Y over T satisfies the hypothesis, and hence the conclusion of Theorem 2.

PROOF. Suppose $t \in T$. Then the inclusion $t: I \to T$ is cartesian in Top/T [17]. To see that $\Omega(Y_t) \approx \Omega(\hat{Y}_t)$ it suffices to show that $(T \times 2)^t$ is sober, where 2 denotes the Sierpinski space, for then

$$\begin{split} Top/T(\tilde{Y}_t, T \times 2) &\approx \ Top/T(\tilde{Y}, (T \times 2)^t) \approx \ Top/T(Y, (T \times 2)^t) \\ &\approx \ Top/T(Y_t, T \times 2) \,. \end{split}$$

Now, as a set,

$$(T \times 2)^{t} = \coprod_{s \in T} \Omega(t_{s}) = T \amalg I,$$

where $t: I \rightarrow T$. The closed subsets F are described as follows. If $I \in F$ then $t \in F$ (since the fiber over t is Scott-closed). Also, $F \cap T$ is closed in T, and if $I \notin F$, then $F \setminus \{t\}$ is closed in T (since \hat{F} is binding). Then it is not difficult to show that the irreducible closed subsets are those of the form $F \cup \{1\}$, where $t \in F$ and F is irreducible in T, $F = \{\overline{t}\}$, and F not containing t such that F is irreducible in T. In the former case, the generic point is the generic point of F if $F \neq \{\overline{t}\}$, and I if $F = \{\overline{t}\}$. In the latter cases, the generic point is the generic point of Fin T. \Box

Next, we would like to compare the exponentials in the relevant categories when Y is as in the above theorem. We begin with a lemma.

LEMMA 5. Let Y be a cartesian space over T such that $\Omega(Y_t) \approx \Omega(\tilde{Y}_t)$,

for all t. If X is a space over T, then $X \times_T Y = \hat{X} \times_T \hat{Y}$.

PROOF. First, we consider the case where T is a one point space. The exponential $2^{\hat{Y}}$ or $2^{\hat{Y}}$ in *Top* is the lattice of opens $\Omega(Y)$ with the Scott-topology, and hence is sober [7]. Thus, it follows that $Z^{\hat{Y}} \approx Z^{\hat{Y}}$ is sober, for all sober space Z since it is a limit of sober spaces. Therefore

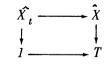
$$Top(\widehat{X \times Y}, Z) \approx Top(X \times Y, Z) \approx Top(X, Z^{Y}) \approx Top(X, Z^{Y})$$

$$\approx Top(\widehat{X}, Z^{\widehat{Y}}) \approx Top(\widehat{X} \times \widehat{Y}, Z)$$

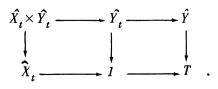
for all sober spaces Z, and the desired result follows.

Next, we show that the canonical map $f: X \times_T Y \to X \times_T \hat{Y}$ is an equalizer in Top, for $\hat{} = pt\Omega$, the morphism $\Omega(X \times_T Y) \to \Omega(X) \times_{\Omega(T)} \Omega(Y)$ is an equalizer in Loc (its inverse image is clearly a surjection), and pt preserves finite limits being a right adjoint. Thus, it suffices to show that f is an epimorphism. Consider the following commutative diagram

where the bottom squares are pullbacks, the top isomorphism follows from the first part of the proof (since \hat{Y}_t is cartesian in *Top* being the pullback of a cartesian object over *T* and $\hat{Y}_t \approx \hat{Y}_t$) and the bottom isomorphism follows from the commutativity of



and the pullback



Note that $\hat{Y}_t \approx Y_t$ since \hat{Y}_t is sober (Sob is closed to pullbacks) and $\Omega(Y_t) \approx \Omega(\hat{Y}_t)$. Now, g is an epimorphism since $\coprod_{t \in T} X_t \rightarrow X$ is, and \hat{Y}_t preserves coproducts and epimorphisms. But $\hat{X} \times_T \hat{Y}$ is cartesian over \hat{X} (being the pullback of a cartesian object over T), and so g' is also an epimorphism. Therefore, f is an epimorphism, and the proof is complete. \Box

COROLLARY 6. If Y is as in Theorem 2, and Z is a sober space over T, then the exponential Z^{Y} in Top/T is sober, and hence isomorphic to the exponential $Z^{\hat{Y}}$ in Sob/T. Moreover, $\Omega(T \times 2)^{\hat{\Omega}(Y)} \approx \Omega((T \times 2)^{\hat{Y}})$. PROOF. First, we note that $Z^{\hat{Y}} = Z^{\hat{Y}}$ as exponentials in Top/T. Thus, it suffices to show that $Z^{\hat{Y}}$ is sober. But if X is any space over T we have

$$Top/T(X, Z^{Y}) \approx Top/T(X, Z^{Y}) \approx Top/T(X \times_{T} Y, Z)$$

$$\approx Top/T(X \times_{T} Y, Z) \approx Top/T(\hat{X} \times_{T} \hat{Y}, Z) \approx Top/T(\hat{X}, Z^{\hat{Y}})$$

where the third isomorphism holds since Z is sober. Therefore, $Z^{\overline{Y}}$ is sober. When $Z = T \times 2$, we know $\Omega(T \times 2)^{\Omega(Y)}$ has enough points [9] and $pt(\Omega(T \times 2)^{\Omega(Y)}) \approx (T \times 2)^{\overline{Y}}$. Therefore,

$$\Omega(T \times 2)^{\Omega(Y)} \approx \Omega((T \times 2)^{Y}). \quad \Box$$

Note that we do not know whether Ω preserves exponentials in general.

COROLLARY 7. The following are equivalent for a locale A over $\Omega(T)$:

- a) A is cartesian in Loc/ $\Omega(T)$.
- b) $A \approx \Omega(Y)$ for some cartesian space Y over T.
- c) A is locally compact as an internal locale in ShT.

PROOF. $a \Rightarrow b$: Consider the pullback

where f' is an epimorphism since A is cartesian over $\Omega(T)$ and f is

an epimorphism. Thus, it suffices to show that $\Omega(1) \times \Omega(T)^A$ has enough points, for all $\Omega(1) \rightarrow \Omega(T)$. But, $\Omega(1) \times \Omega(T)^A$ is cartesian in *Loc* (it is the pullback of a cartesian locale over $\Omega(T)$) and the desired result follows.

 $b \Rightarrow c$: follows from $c \Rightarrow e$ of Theorem 2.

 $c \Rightarrow a$: Note that the proof of $e \Rightarrow a$ of Theorem 2 does not use the assumption that the locale in question is spatial. Thus, the same proof applies. \Box

COROLLARY 8. If T is a Hausdorff space and A is a locally compact locale over $\Omega(T)$, then A is cartesian in $Loc/\Omega(T)$.

PROOF. We know that $A \approx \Omega(Y)$ for some locally compact sober space Y over T. But, such a space is cartesian over T [17], and the result follows from Corollary 7. \Box

COROLLARY 9. The inclusion of a sublocale A of $\Omega(T)$ is cartesian iff it is locally closed (i.e. the intersection of an open and a closed sublocale).

PROOF. This follows immediately from Corollary 7, $a \iff b$, and the analogous result for spaces [17]. \Box

Note that Corollary 9 is proved in [18] for an arbitrary base locale.

Let <u>Top</u> denote the 2-category of toposes, geometric morphisms, and natural transformations between their inverse images [12]. The following proposition relates the above results to exponentials in Top/ShT.

PROPOSITION 10. Let A be a locale over $\Omega(T)$. Then $Sh B^{ShA}$ exists in <u>Top</u>/ShT for all locales B over $\Omega(T)$ iff A is cartesian in $Loc/\Omega(T)$. Moreover, $Sh B^{ShA} \approx Sh(B^A)$.

P ROOF. Recall that $Loc/\Omega(T)$ is equivalent to the category \underline{LTop}/ShT of localic toposes over ShT [14]. Moreover, the latter is a reflective subcategory of \underline{Top}/ShT [14], via a reflection R which satisfies

$$R(\underline{E} \times_{Sh} T ShA) \approx R(\underline{E}) \times_{Sh} T ShA$$

for all toposes \underline{E} over Sh T [18].

If A is cartesian over $\Omega(T)$, then

$$\underline{\underline{Top}} / Sh T (\underline{\underline{E}} \times_{Sh} T Sh A, Sh B) \approx \underline{\underline{LTop}} / Sh T (R(\underline{\underline{E}} \times_{Sh} T Sh A), Sh B)$$

$$\approx \underline{\underline{LTop}} / Sh T (R(\underline{\underline{E}}) \times_{Sh} T Sh A, Sh B)$$

$$\approx \underline{\underline{LTop}} / Sh T (R(\underline{\underline{E}}), Sh(B^{A}))$$

$$\approx \underline{Top} / Sh T (\underline{\underline{E}}, Sh(B^{A}))$$

where the third isomorphism holds since \underline{LTop}/ShT is equivalent to $Loc/\Omega(T)$.

The converse follows from an appropriate 2-categorical version 1.31 of [6]. \Box

Department of Mathematics Union College SCHENECTADY, N.Y. 12308 U.S.A. CARTESIAN SPACES OVER T AND LOCALES OVER $\Omega(T)$ 11

REFERENCES.

- 1. J. B ENABOU, Treillis locaux et paratopologie, Cahiers Topo. et Géom. Diff. I (1957/58), Exposé 2.
- 2. B.J. DAY & G.M. KELLY, On topological quotients preserved by pullbacks and products, *Proc. Cambridge Phil. Soc.* 67 (1970), 553-558.
- 3. C.H. DOWKER & D. PAPERT, Quotient frames and subspaces, Proc. London Math. Soc. 16 (1966), 275-296.
- 4. M.P. FOURMAN & D.S. SCOTT, Sheaves and logic, Lecture Notes in Math. 753 (1979), 302-401.
- 5. P. FREYD, Abelian categories, Harper & Row, New York 1964.
- 6. P. FREYD, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.
- 7. G. GIERZ & al, A compendium of continuous lattices, Springer, 1980.
- K.H. HOFFMANN & J.D. LAWSON, The spectral theory of distributive continuous lattices, Trans. A.M.S. 246 (1978), 285-310.
- 9. J.M.E. HYLAND, Function spaces in the category of locales, Continuous lattices, Lecture Notes in Math. 871, Springer (1981), 264-281.
- 10. J.R. ISBELL, Function spaces and adjoints, Math. Scand. 36 (1975), 317-339.
- 11. J.R. ISB ELL, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
- 12. P.T. JOHNSTONE, Topos Theory, L.M.S. Math. Mono. 0, Acad. Press 1977.
- 13. P.T. JOHNSTONE, Tychonoff's Theorem without the axiom of choice, Fund. Math.
- 14. P.T. JOHNSTONE, Factorization and pullback theorems for localic geometric morphisms, Inst. Math. Pures Univ. Cath. Louvain, Rapport 79 (1979).
- 15 P.T. JOHNSTONE, The Gleason cover of a topos, II, J. Pure and Appl. Alg. to appear.
- 16. C.J. MIKKFLSEN, Lattice-theoretic and logical aspects of elementary topoi, Aarhus Univ. Various Publ. Series 25 (1976).
- 17. S.B. NIEFIELD, Cartesianness: topological spaces, uniform spaces and affine schemes, J. Pure and Appl. Alg. 23 (1982), 147-167.
- S.B.NIEFIELD, Cartesian inclusions: locales and toposes, Comm. in Alg. 9 (16) (1981), 1639-1671.
- D.S. SCOTT, Continuous lattices, Lecture Notes in Math. 274, Springer (1972) 97-137.
- 20. H. SIMMONS, A framework for topology, Proc. Wroclaw logic Conference 1977 North-Holland (to appear).