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AN OUTLINE OF NON-ABELIAN COHOMOLOGY IN A TOPOS:

(I) THE THEORY OF BOUQ UETS AND GERBES

by John DUSKIN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

V ol. XXIII - 2 (1982)

3e COLLOQUE SUR LES CATÉGORIES

DÉDIÉ A CHARLES EHRESMANN

Amiens, Juill et 1980

In this paper we will outline an alternative approach to the non-

abelian cohomology theory of a topos developed by Grothendieck and Giraud

given in Giraud (1971). We will show that the study of this somewhat com-

plicated theory is entirely equivalent to the study of a certain simple and,

fortunately, quite manageable subcategory of the category of groupoid ob-

jects of the topos which we have chosen to call bouquets. The result is

an «internalization» of the theory much as has classically been possible
for H1 . Full details of the proofs will appear elsewhere as will a separate

discussion of H2 for group coefficients. (Cf. Johnstone (1977) for an in-

troduction as well as a detailed presentation of the «yoga of internal cat-

egory theory» which our development uses.) As is fitting in this memorial

series dedicated to the work of Ehresmann, we note that it was he who first

emphasised the crucial role of groupoids in the definition of non-abelian

cohomology [Ehresmann (1964)].

In all that follows we will assume that the ambient category E is

a Grothendieck topos, i. e. the category of sheaves on some U-small site.

It will be quite evident, however, that a considerable portion of the theory

is definable in any Barr-exact category [Barr (1971)] provided that the

term «epimorphism» is always understood to mean «(universal) effective

epimorphism ».

THE CATEGORY OF BOUQUETS OF E.

D EFINITION 1. By a groupoid object of E we shall mean, as usual, a dia-

gram 6 :



166

in E such that for any object T in E , the diagram

possesses a groupoid structure in ENS (i. e., a category structure in which

every arrow is invertible) for which any arrow f ; T -&#x3E; U in E , by restric-

tion, defines a functor

By a functor $ : § - 62 o f gro upoid objects we shall mean a com-
mutative diagram

such th at

defines a functor of the corresponding groupoids in ENS . By an equival-
ence of 6y with 62 we shall mean functors

such that HomE (T ,K) has HomE ( T , 9) as a quasi-inverse.

DEFINITION 2. By an essential equivalence of C1 with e 2 , we shall

mean a functor F : G1 -&#x3E; G2 which satisfies the following two conditions :
(a) F is fully faithful ( i. e. the commutative diagram
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is cartesian); and

(b) F is essentially epirnoiphic (i. e., the canonical map T. prA 2 .’
01 x S A2 -&#x3E; 02 obtained by composition from the cartesian square

is an epimorphism).

Since this epimorphism does not necessarily split, an essential

equivalence does not necessarily admit a quasi-inverse.

DEFINITION 3. A groupoid object

will be called a bouquet of E provided it satisfies the additional two con-

ditions :

(a) 6 is (locally) non empty (i. e., the canonical map Ob(G)-&#x3E; 1 into

the terminal object of E is an epimorphism); and

(b) 6 is connected (i. e., the canonical map

is an epimorphism).

EXAMPLES O F BOUQUETS. Clearly every group object G of E (consider-

ed as a groupoid object for which Ob(G) -&#x3E; 1 is an isomorphism) is a bou-

quet of E , as is any group object of the category E/X provided X -&#x3E; 1 is

an epimorphism (such a group object is considered as a groupoid of E for

which the source and target arrows A -&#x3E;S T X coincide). The corresponding

groupoid will be called a locally given group. Slightly less trivially, any

homogeneous space 0 under a group action a: 0 X G -+ 0 may be consider-
ed as defining a bouquet using the groupoid
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defined by the group action. In particular, if p: G1 ... G2 is an epimorphism
of group objects of E and E is a torsor under G2 (i. e., principal homo-

geneous space), then the homogeneous space defined by restricting ,the

group action to G1 defines a bouquet of E which will be called the co-

boundary bouquet of the torsor E ; it will play a crucial role in extending
the classical exact sequence of pointed sets associated with any short
exact sequence of groups of E.

As a moments reflection will show, the concept of a bouquet is

closely related to that of a group, for if both the epimorphisms

split (as in ENS for example), then the bouquet is simply a category ob-

ject which is equivalent to a group, which may then be taken as the group
of automorphisms Aut( s ) of any internal object defined by a splitting s
of 0- 1 (any two such groups are isomorphic). Of course, in general
0-- 1 may be split without A --&#x3E;-&#x3E;O X O being split. In this case, what

w e obtain is only an essential equivalence of 6 with a group o bje ct, via

- is : Aut(s ) c..... 6 and any two such groups are only locally isomorphic.
In any case the epimorphism O-&#x3E; 1 is locally split since if we

pullback 6 along the epimorphism 0-&#x3E;--&#x3E; 1 we obtain a bouquet GO in

E/0 for which the diagonal A : O-&#x3E; 0 X 0 defines a splitting (in E/0) of

the canonical map prO: Ob(GO) -&#x3E; O into the terminal object 0 of E/0.

Thus, in E/0, GO is essentially equivalent to the group Aut(A ) c..... 60.
But A ut (A) in E is isomorphic to the subgroupoid C -&#x3E; 0 of automorph-

isms of 6, defined by the cartesian square

Consequently, we h ave the following characterization :

THEOREM 1. A bouquet of E is a groupoid object of E which is locally

essentially equivalent to a locally given group (which may be taken to be

the subgroupoid C of internal automorphisms of 6 considered as a group
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object in E/0 ).

Note that every functor G -&#x3E; G2 of bouquets is essentially
epimorphic, thus 9 is an essential equivalence of bouquets iff it is fully
f aithful. We will designate by BOUQ ( E ) the subcategory of CAT ( E )
whose objects are the bouquets of E and whose morphisms are essential

equivalences of bouquets.

THE LIEN OF A BOUQUET.

Since every bouquet is locally essentially equivalent to the locally

given group of its internal automorphisms, the question immediately arises:

is there a glo bally given group with which the bouquet is locally essential-

ly equivalent? If 6’ is such a bouquet and G is the given global group,
then there exists a bouquet 6: A -&#x3E;O which is essentially equivalent
to 6’ and which is supplied with an isomorphism p : 6 X Go of group

objects in E/0 . Since this means that we have a cartesian square
m -

in E which makes 6 the localization of G over 0 , it should follow that

we could recover G from the group Cy by means of a descent datum some-

how supplied intrinsically by the bouquet 6. Now there is indeed a natural-

ly occuring candidate for the provision of such a descent datum : the can-

onical action oaf 6 on 6 by inner isomorphisms. Thus consider the diagram
- D Fft

In the category E/A , we have the group isomorphism



170

given by the assignment

As a «gluing» it is easily seen to satisfy the «cocycle condition »

when restricted to the category E/A xo A . Thus in order that it define a

true descent datum d: pr1*(S)-&#x3E; pr2* (S) in E/O X O it is necessary and

sufficient that it have the same restriction when pulled back along the two

projections of the graph of the equivalence relation associated with the

epimorphism  T , S&#x3E;: A-&#x3E;-&#x3E; 0 X 0 . Since this equivalence relation consists

of the object of internal ordered pairs of arrows X f-&#x3E;g Y which have the

same source and target, int (6) defines a descent datum on E iff for all

a: X -+ X and all pairs ( f, g ) , f a f-1 - g a g-1 , i. e. « inner isomorphism»
be independent of choice of representative. But since

and f g-1 : Y - Y is an automorphism this can occur only if Ant (Y) is

abelian for all Y , i. e. iff S -+ 0 is an abelian group obj ect on E/O , a

clearly untenable assumption if we wish to consider bouquets which are

locally essentially equivalent to the localization of a given non-abelian

group (where S -&#x3E; 0 cannot be abelian).
What does survive here even if S -&#x3E; 0 is not abelian is based on

the observation that int( f) and int(g) while not identical for all f and g
do differ by an inner automorphism of Y (that defined by fg-1 ; Y - Y) and
thus are equal modulo an inner automorphism. This necessitates the re-

placement of the fibered category of locally given groups with a new fibered

category called the liens o f E .

This new fibered category is defined as follows : First we define

the fibered category LI ( E ) of pre-liens of E . Its fiber at any object Xof

E has as objects the group objects of E/X . Its morphisms, however, con-

s is t of the global sections (over X) of the coequalizer (i. e. orbit space)

of the sheaf of group homomorphisms of Gi into G 2 under the action of

G2 by composition with inner automorphisms of G2 . Under pullbacks this
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defines a fibered category over E in which morphisms still glue along a

covering even though their «true existence* may be only local over some

covering C -&#x3E;-&#x3E; X of X . We now define the fibered category LIEN (E) of

liens (or ties) of E by completing it to a stack so that every descent datum

in LI ( E ) over a covering X - Y is effective. An object of the fiber of

LIEN ( E ) over the terminal object 1 will be called a (global) lien o f E .
As we shall see when we discuss the Grothendieck-Giraud theory later in

this paper it will be convenient to regard a lien of E as represented by an

equivalence class under refinement of a descent datum in LI ( E ) on some

locally given group S-&#x3E;O over a covering 0 -&#x3E;-&#x3E; 1 of E, i. e., by some

given global section of Hex(pr*1 (S ), pr2 (S )) over 0 X 0.
Clearly, from our preceding analysis, for any bouquet 6, the can-

onical action by inner isomorphisms supplies S -&#x3E; 0 with such a descent

datum and hence defines not a global group but rather a global lien which

is unique up to a unique isomorphism. It will be called the lien of the bou-

quet 5 and will be denoted by lien (6). If F : G1 -&#x3E; G2 is an essential

equivalence of bouquets, then l i en (G1 -&#x3E; lien (62
We now give the following

DEFINITION 4. Let L be a given global lien. We define the category

BOUQ( E; L ) as the subcategory of BOUQ ( E ) consisting of those bou-

quets of E which have lien isomorphic to L (together with essential equi-
valences as morphisms). Ike will designate the class of connected com-

ponents of this category by H 2( E ; L ) and call it the second cohomology
class of E with coefficients in the lien L. If E is a site, we define

H 2( E ; L ) as H2( E -; L) where E- is the associated topos of sheaves

over the site E .

If G is a sheaf of groups, then we define the (unresttzcte d) second

cohomology class o f E with coefficients in the group G as H2(E ;lien (G))
and point this class by the class of the group G , considered as a bouquet
whose lien is that of G .

In general H2 (E ;L) may be empty. However, if 6 is a bouquet
with lien L which admits a global section s : 1 - Ob (6), then, since
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aut G(s ) -&#x3E; G is an essential equivalence, L -&#x3E; lien (aut G (s )), and L

is represented by a global group. Such a bouquet will be said to be neutral.
A class in H2(E;L) will be said to be neutral if at least one of its re-

presentatives is neutral. If L -7 lien (G ) , then the (neutral) class of G will
be called the trivial or unit class of H 2( E ; lien (G)) .

H 2( E ; L ) is not, in general, functorial on morphisms of liens and

H2( E ; lien (G)) does not, in general, lead to a continuation of the coho-

mology exact sequence of groups and pointed sets associated with a short

exact sequence of groups in E . We will rectify this at a later point by con-

sidering a smaller class of members of BOUQ (E ) associated with a given
group G .

We now will define a neutral element preserving bijection of the

above defined H2(E;L ) with the set of the same name defined in Giraud

(1971 ).

BOUQ U ETS AND GERBES.

Recall the following

D E FINITION 5. If E is a U-small site for some universe U , then a gerbe
(over E) is a fibered category F over E which satisfies the following
conditions :

(a) F is a stack (fr. champ), i. e., both objects and arrows in the

fibers over any covering glue ;

(b) F is fi bered in U-small groupo ids, i. e. for each obj ect X in E ,

the category fiber FX is a U-small groupoid;
( c ) there is a covering of E such that each of the fibers over that

covering are non empty; and

(d) any objects x and y of a fiber FX are locally isomorphic.

From (a) it follows that for any object x in FX , the presheaf

AutX (x) on E/X is, in fact, a sheaf and that for any isomorphism f: x -&#x3E; y

in FX , the induced group isomorphism of AutX (x) with AutX( y) is un-

ique up to an inner automorphism. Thus conditions (c) and (d) define the

existence of a global lien over E (which is unique up to a unique isomor-
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phism) and is called the lien o f the gerbe F . For any lien L , Grothendieck

and Giraud make the following

DEFINITION 6. The second cohomology set of E with coefficients in the

lien L, H2Gir (L), is the set of equivalence classes under cartesian equi-
valence of fibered categories of those gerbes of E which have lien L . If

G is a sheaf of groups, then H2 Gir(lien(G)) is pointed by the gerbe
TORSE(G) o f G-to rso rs over E , whose fiber at any X in E is the group-

oid of torsors (i. e., principal homogeneous spaces) in E/X under the

group Gx . 
’:BJe now intend to establish a mapping of our H2(E; L) into

H2Gir, ( E;L) which will turn out to be a bijection. To do this we must ex-
tend the standard definition of torsor under a sheaf of groups to that of a

torsor under a sheaf of groupoids. Recall that this is done as follows:

Let 3: A -&#x3E;O be a groupoid in a topos E. By an internal (can-

travariant) functor from G into E (or a (right-) operation of 8 on an object
E of E, or more simply, an G-object o f E) we shall mean an object E

of E supplied with an arrow p, : E -&#x3E; 0 together with an action

such that for all T E Ob (E), HOmE (T, S) defines a right action ot the

groupoid HomE(T,5) on the set HomE (T, E)-&#x3E; HomE(T,O) in the

usual equivariant set theoretic sense.

Using the obvious definition of G-equivariant map 0 f such G=o objects (or
infernal natural trans formation) we obtain the category OPER ( E ; 6) (also

denoted by E6°p) of 6-objects of E and equivariant maps of 6-objects.
For each X of E we also have the corresponding category of 5...objects
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of E above X , defined by OPER(E/X; GX) . Under pullbacks this defines
the corresponding fibered category OPERE (6) of 6-objects over E .

For each global section [x] : 1 -&#x3E; 0 of 0 , we have the correspond-

ing intemal representable functor defined by [x] which is defined using
the fibered product 1 xT A SPrA -&#x3E; O for «total space» and the composi-
tion in 6 to define the action. In sets this just gives the category G [x ]
of 5-objects above the object [x].

We have the following immediate result:

THEOREM 2.In order that an internal functor (6-object) be representable,
i. e., isomorphic to (5/[x] for some global section [x] : 1 -&#x3E; 0, it is ne-

cessary and sufficient that it satisfy the following two conditio ns :

(a ) th e canonical map  prE , S&#x3E; : E xT A -&#x3E; E x E is an isomo1phism
( i. e., the action 6 is a principal action ); and

(b ) the canonical mapping E -&#x3E; 1 admits a splitting s : 1 - E (i. e.,

E is globally non emp ty).

We now make the following

DEFINITION 7. By an G-to rsor of E above X we shall mean an 5x-object
of E/X which is locdly representable, i. e., becomes representable when

restricted to some covering of E/X .

For the canonical topology on E , this is entirely equivalent to the

following two conditions on the defining diagram in E :

(a ) the canonical map E xT A -&#x3E; E xX E is an isomorphism; and

(b ) tlae canonical map p : E - X is an epimorpltism.

A torsor is thus representable iff it is split, i. e., p admits a

section s : X , E .
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Again, since this definition is stable under change of base we have

the corresponding fibered category TORSE (6) of 6-torsors o f E whose
fiber at any X is just TORS( E/X; 6X). If 6 is a group object in E ,

we immediately recover the usual definition of 6- objects of E and G-tor-
sors of E. Note also that a group, as a category, has up to isomorphism

only one representable functor, which is just Gd i. e. 6 acting on itself
on the right by multiplication.

As with the case of group objects, OPER(E ; 6) is functorial on

functors F : G1 -&#x3E; G2 of groupoids :

is just defined by «restricting the 6 2 action » on the object P0: E -&#x3E; 02 to

that of 6 on E Xp0 O1 Pr -&#x3E; O1. Also, as with groups, OPER (E ,F) has
a left exact left adjoint which carries torsors under 6 Z to torsors (above

the same base) under 52: Its restriction to the corresponding categories
of torsors will be denoted by

We now may state the principal result of this section:

THEOREM 3. Let E be a Grothendieck topos (over some U-small site) and

6 a groupoid object of E. Then:
lo The fi bered category TORSE (C5) is a U-small stack o f groupoids

over E (i. e., each of the fibers is a U-small groupoid and descent data on

6-torsors defined over a covering is always effective (on both objects and

arrows).

20 I f G is a bouquet, then TORSE ((5) is a gerbe whose lien is iso-

morphic to the lien of 6.

30 If F: v G1 -&#x3E; G2 is an essential e quival ence, then

is a (full) cartesian equivalence o f fibered categories.

That 6-torsors over a covering glue is diagram chasing exercise

from the theory of Barr-exact categories. That every morphism of 6-torsors
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above X is an isomorphism is a consequence of the well known theorem

which appears on Grothendieck (1962). That each of the categories
TORS( E/X; 6) is equivalent to a small U-category follows from the fact

that the groupoid of torsors which are trivialized when restricted to a given
covering is equivalent to the groupoid of simplicial maps («Cech cocycles»)
and homotopies of simplicial maps from the nerve of the covering into the
nerve of the groupoid 6. If 6 is a bouquet, then the epimorphism 0 ---" 1

furnishes a covering of E for which the fiber TORS( E/0; G) contains

the split torsor defined by the identity map I d: O -&#x3E;O. The epimorphism
A - 0 X 0 furnishes a covering which makes any two torsors in a given
fiber locally isomorphic. That the lien of 6 is isomorphic to the lien of

TORS (G) follows from the fact that the sheaf S -&#x3E; 0 of internal automor-

phisms of 6 is isomorphic to the sheaf of automorphisms of the split tensor

defined by Id: O -&#x3E; O. That essential equivalences define cartesian equi-
valences of the corresponding fibered groupoids of torsors is based on an

analysis of the construction of this functor which is through ((twisting’)

the given torsor by the 51 -object above 02 defined through

This 51-object is an 51-torsor above 02 iff F is an essential equival-
ence. Note that 13 has a quasi-inverse iff this torsor is split.

EX AMPL E. If p : A ... B is an epimorphism of group objects and T a given

B-torsor with a (T) the associated coboundary bouquet, TORS(a(T))
is cartesian equivalent to the gerbe of liftings of T to A , as defined in

Giraud (1971).

Now let E be a U-small site and E- its associated category of

sheaves. From Theorem 3 it follows that for any bouquet 6 with lien L ,

the restriction TORS(E; G) of the gerbe TORS( E"; 6) to E (whose fiber

for any representable X is just TORS( E-/a( X); G) where a (X) is the
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associated sheaf) is a gerbe over E whose lien is also L . Moreover, if

61 and G 2 lie in the same connected component of BOUQ( E-, L) then

TORS(E, G1) is cartesian equivalent to TORS(E; 62 ). Thus we have

THEOREM 4. The assignment 6l-+ TORSS(E; 6) defines a functor

which induces a map ping

which clearly preserves base points if L -&#x3E; lien (G) and also neutral clas-
ses (a gerbe is said to be neutral iff it admits a cartesian section).

We now may state the main result of this paper:

THEOREM 5. The mapping

is a bijection which carries the equivalence class of neutral elements :

H 2( E; L )’ bi je ctively onto H2 ( E ; L ) ’, the e quivalence class o f neutral

elements of H2 (E;L).
We will establish this theorem by defining a functor

which will induce an inverse for T .

To this end recall [Giraud (1962)] that if F is a category over E

then for each object X in E we may consider the category CartE (E/X , F )
whose objects are cartesian E-functors from the category E/X of objects of

E above X into F and whose morphisms are E-natural transformations of

such E-functors. If FX denotes the category fiber of F at X , then eval-

uation of such a cartesian functor at the terminal object Id: X -&#x3E; X of E/X

defines a functor

which is an equivalence of categories provided F is a fibration. If E is

U-small and F is fibered in U-small categories, then the assignment

X l-&#x3E; CartE ( E/X, F ) defines a presheaf of U-small categories and thus
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a category object of E" which will be denoted by Cart E ( E/-, F) . The

split fibration over E which it determines is denoted by SF and is called

the (right) split fibration E-equivalent to F .

Now suppose that E is a U-small site. Since the associated sheaf

functor a : E^-&#x3E; E- is left exact we may apply the functor to the nerve of

category object Cart E ( E/ - , F) and obtain a sheaf of categories togeth-

er with a canonical functor (in CA T ( E^))

(The split fibration over E determined by aCartE ( E/-, F ) is denoted by
KSF .) We may now state :

THEO REM 6. 10 I f F is fibered in groupoids, then CartE ( E/-, F ) (as
well as a CartE( E/ - , F ) ) is a groupoi d (an d conversely).

20 I f F is a stack then a: CartE ( E/-, F ) -&#x3E; a Cart E ( E/-, F ) is an

equivalence o f categories in E^ (and conversely).
30 If F is a gerbe with lien L , then a Cart E ( E/ - , F ) is a bouquet

with lien L in E- (an d conve rsel y) .

On the basis of Theorem 6 we see that the assignment

defines a functor

and this a mapping

which we claim provides an inverse for T ; H2( E; L) , H2 L ) .
In order to prove Theorem 6 and complete the proof of Theorem 5,
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we shall now discuss certain relations between «internal and external com-

pletenes s » for fibrations and category objects.

R EMARK. We note that a portion of the « internal version » of what follows

(specifically Theorem 7...) was discovered by Joyal (1974) and later, but

independantly, by Penon (1979). It is also closely related to work of Bunge
(1979) establishing a conjecture of Lawvere (1974). Our principal addi-

tion is the relation between internal and external completeness (Theorem

6, 2°).

EXTERNAL AND INTERNAL COMPLETENESS.

The informal and intuitive definition of a stack which we have used

so far (« every descent datum on objects or arrows is effective » or «objects
and arrows from the fibers over a covering glue*) [Grothendieck (1959)]

implicitly uses the respective notions of fibered category defined via a

pseudo-functor F( ): Eo -+ CAT as formalized in 1960 [Grothcndieck

(1971)] and covering as defined in the original description of Grothendieck

topologies formalized in Artin (1962). For the formal development of the

theory, however, both of those notions are cumbersome and were replaced

by the intrinsic formulation of Giraud (1962, 1971 ) which replaces «cover-

ing » by « covering sieveo (which we shall view as a subfunctor R c.-. X of

a representable X in E ^ as in Demazure (1970)) and notes that every des-

cent datum over a covering of X corresponds to an E-cartesian functor

from the category E/R of representabl es of E A above the covering pre-

sheaf R (isomorphic to the corresponding covering seive of X) into the

fibration (E-category) defined by the pseudo-functor F( ) [cf. Grothen-

dieck(1971)].

Thus every descent datum on arrows, respectively, on both objects
and arrows is effective iff the canonical restriction functor
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is fully faithful, respectively, an equivalence o f categories for every cover-

ing subfunctor R 4 X in the topology o f the site.
The corresponding terminology for a fibration F - E over a site

E is then

DEFINITION 8. A fibration F is said to be precompl ete, respectively, com-

plete, provided that for every covering sieve R 4 X of a representable
X , the canonical functor

is fully faithful, respectively, an equivalence of categories.

Since every fibration is determined up to isomorphism by its asso-

ciated pseudo-functor, we see that a stack is just a complete fibration.

We now look the «internal version» of this notion. Let E be a topos

and G: A -&#x3E; 0 a category object in E. The presheaf of categories defin-

ed by the assignment

considered as a pseudo-functor defines a split fibration (its « extemaliza-

tion &#x3E;&#x3E; Ex (G) -&#x3E; E) which has as objects the arrows x: ,Y -&#x3E;O of E and for

which an arrow a : .x -&#x3E; y of projection f: X - Y in E is just an arrow:

a: X -&#x3E; A such th at sa = x and Ta = yf. ·

Such an arrow is cartesian iff a is an isomorphism in the category

the fiber at A . Now let

be the nerve of a covering p : C- X. It is not difficult to see that a des-
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cent datum on Hom E (-, G) over the covering C - X is nothing more than

a simplicial map d : C, IX -+ G

i, e,, an intemal functor from the groupoid CxCH -&#x3E; C into 6. Similarly,
a morphism of such descent data is nothing more than a homotopy of such

simplicial maps, i.e., an internal natural transformation of such internal

functors. Consequently, a datum is effective iff there exists an arrow

x: X -&#x3E; 0 such that the trivial functor defined through x p : C-* 0 is iso-

morphic to d . Thus Ex (6)- E is compl ete (for the canonical topology)

if f for every, epimorphism C -- X, the canonical restriction functor

is an equivalence of categories. But if (5 is a groupoid, we have already
noted that Simpl E (C. / X, G) is equivalent to the category of 6-torsors

above X which are split when restricted along C-- X , while HomE(X,6)
is equivalent to the category of split 6-torsors above X . Under refinement,
we thus obtain that Ex (G)-&#x3E; E is complete iff the canonical functor

is an equivalence of categories, i. e., every torsor splits. Finally note that

the canonical functor defined by p :

is an essential equivalence and thus this same property is linked to an

« injectivity» property of 6 with respect to essential equivalences. In sum-
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mary, we have the following

THEOREM 7. For any topos E and any groupoid object G in E, the fol-
lowing statements are equivalent:

10 Ex (G)-&#x3E; E is a complete fibration, i. e., every descent datum is

effective.
20 For any co vering

the fully faithful restriction functor

is an equivalence of groupoids (i. e., Cech cohomology is neutral).
3° For an y o bject X in E, the fully faithful functor

is an equivalence of groupoids (i. e., every locally representable functor is

repres entabl e).
40 Fo r any essential equivalence of groupoids H : F1-&#x3E; 75 2 the fully

faithful functor

is essentially surjective, i. e., given any functors F: F1 -&#x3E; G, there exists

a functor F: F2 -&#x3E; 6 such that F H -&#x3E; F.

The linkage of 4 with the others uses the canonical torsor under

F1 defined by the essential equivalence H . A similar theorem holds for

category objects, locally representable functors, and existence of adjoints.

DEFINITION 9. A groupoid which satisfies any one and hence all of the

equivalent conditions of Theorem 7 will be said to be (internally) complete.
A functor c: G-&#x3E; G will be called a completion of 6 provided any other

functor G -&#x3E; (S into a complete groupoid (I factors essentially uniquely

through G.

Such a completion is essentially unique and we have the following:

COROLLARY 1. If 6 is complete, then:
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(a) Any essential equivalence H: G-&#x3E; F admits a quasi-inverse
.

(b) c: G -&#x3E; G is a completion of G iff 6 is complete and c is an

essential equivalence.

We are now in a position to return to our original situation where
E is a U-small site and F - E is a fibration fibered in U-small groupoids.
We have the following

L EMM A 1. (a) For any presheaf P in EA, one has a natural equivalence
of groupoids

(b) As a groupoid object in E ^, CartE ( E/-, F ) is complete in the

canonical topology on EA.

Here E/P - E denotes the fibered category of representables above

P . It is, in fact, the restriction to E of the fibration

where is the discrete groupoid object defined by the object P of

EA. Of course

As an immediate corollary, we have the following as a literal trans-

lation of the original external definition of cornpleteness :

CO ROLL ARY 2. The fibration F -&#x3E; E is precomplete, respectively, com-

plete in the topology o f E i ff the following two equivalent conditions hold:

(a) For every covering subfunctor R C-&#x3E; X o f a representable X , the

canonical restriction functor

Nat(X, Cart E(E/-,F)) -&#x3E; Nat(R, CartE(E/-,F))
is fully faithful, respectively, an equivalence o f categories.

(b) For every covering C : (Xa -&#x3E; X) a (I in the topology of E , the
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canonical restriction functo r

defined by the projection o f the nerve

onto X is fully faithful, respectivel y, an equivalence o f categories.
This is immediate since (Xa -&#x3E; X ) a E I is a covering iff the image

of II Xa P-&#x3E; X is a covering subfunctor.

We may now return to the proof of Theorem 6, part 2. We shall break

it into several parts.

L EMMA 2. A fibration F -&#x3E; E is precomplete iff any one and hence all o f
the l’ollouing equivalent conditions hold:

(a) F’or any ohject X in E and arrow

ill E A, the presheaf above X defined by the cartesian square

i s a shea f (above X).

(b) For any X c Ob( E) and any pair o f objects x, y in FX’ the pre-

sh eaf HomX (x,y) on E/X de fin e d by
r

i s a sheaf’(in the in duce d to polo g y on E/ X ) .

(c ) I f for any presheaf P L(P ) designate s the preshea f whose value

at X is given by

(so that LL(P) is the asso c,iated s hea f functor at P) and l ; P , L P is

the canonical map, then the canonical functor
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is frzlly faith ful.
(d) the canonical functor

is fully faith ful.

L EMMA 3. 1 f F -&#x3E; E is p recomplete and fibered in groupoids, then the fol-
lowing statements are equivalent:

is essentially epimorphic.

admits a quasi-inverse in CAT ( Eo ).

is an e quivalence o f cate gories in CAT ( E A) . 

The essential observation in the proof of this Lemma is that

Cart E ( E / -, F ) is always complete in the canonical topology on E ^ and

hence any essential equivalence out of it always admits a quasi-inverse

(Theorem 7, 40 ).

Combining these results we have

L EMMA 4. F - E is complete iff any one (and hence all) o f the following
e quival ent con ditions hold :

is an essential equivalence.

is an e quivalence.

is an equivalence.

Thus Theorem 6, 2°, is established.

It only remains to do Part 3°. But this is almost obvious since the
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two additional defining conditions for a gerbe are immediately seen to be

equivalent to the pair of assertions that the natural transformations

are covering in the topology on E" induced by that of E, i. e., from a well-
known theorem of Grothendieck topologies [Demazure (1970)] iff

are epimorphisms in E -. The preceding lemmata combined with 70 now

give two corollaries:

COROLLARY 3. I f F - E is externally complete, then a Cart E (E/-, F)
is (internally) complete in E" (i. e., every torsor under a Cart E ( E/-,F)
splits.

CO ROLL ARY 4. I f F - E is complete, then one has a chain o f cartesian

equival ences

Vie can now restate and complete the proof of Theorem 5 with a re-

finement. For this, let C BOUQ( E ; L ) be the subcategory of the category
BOUQ( E ; L ) consisting of these bouquets which are (internally) com-

plete. Let 7ro C BOUQ (E ; L ) be its class of connected components, which

is just the same as its equivalence classes under actual equivalence since

every essential equivalence here is necessarily an equivalence.

THEOREM 5’. The 2-functor a CartE ( E/-, -) de fines a weak 2-equival-
ence o f the category GERB (E ; L ) with BOUQ( E ; L ) and a (full) 2-

equival ence o f the category GERB (E; L ) with C BOUQ ( E ; L ).

From it one deduces bijections on the classes of connected com-

ponents

In effect, Corollary 4 establishes for each gerbe F a cartesian E-

equivalence
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which takes care of one composition. For the other composition let 6 be

a bouquet of E and Ex E (G) -&#x3E; E be the restriction to E of the extemal

fibration which it defines. The assignment to any object x: X - 0 of

Ex E (G) of the split torsor above X under 6 defines a fully faithful cart-

esian functor

which is covering since any torsor under 6 is locally split. One thus ob-

tains functorially a fully faithful covering functor in E"

Cart E ( Spl ) : Cart E ( E / - , EXE (6)) - Cart E (E/-,TORS E (G)).
Since for any presheaf of categories 6 one has an essential equivalence (!)

(in E^), one has by composition a fully faithful covering functor

and a commutative diagram in CAT (E^)

in which a G is an isomorphism and ac an equivalence. But E G is a cover-

ing iff a EG is essentially epimorphic; thus we have a canonical essential

equivalence in CAT ( E")

which thus admits a quasi-inverse iff 6 is internally complete, and the

theorem is established.

REMARK. Since a Cart E(E/-,TORSE (G)) is internally complete and

c is an essential equivalence a Cart E (E/-, TORSE (G)) may be taken as
the (internal) completion of G , for any functor from 6 into a complete
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groupoid must factor uniquely through c . Thus in any Grothendieck topos

any groupoid has a completion. If we only have an elementary topos (with-
out generators), the fibered category TORS (E5) furnishes an extemal com-
pletion for 6 which may be too large to be intemalized.

Any sheaf of groups G is precomplete since any sheaf of categ-
ories is precomplete. Since a sheaf of groups has only one X-object it is

complete iff every torsor under G over X is isomorphic to the split torsor

Gd pulled back to X , i. e, iff the set of isomorphism classes of TORS(X;G)
has a single element. But this set is, by definition, H1 (X; G); thus a

group object G in E’ is complete iff HI (X; G) is triviaL

GROUP EXTENSIONS AND BOUQUETS OF E-SETS.

If F : F -&#x3E; E is a homomorphism of groups, then, viewed as group-
oids with a single object, it is easy to see that since every arrow of F

(being an isomorphism) is necessarily cartesian, F: F -&#x3E; E is a fibration
iff F’ is surjective, that is defines an extension of E by the kernel of F,

which is just the fiber Fe of F above the single object e of E. A cleav-

age of this fibration is then nothing more than a set-theoretic section of

F , which is a splitting iff it is a homomorphism of groups, i. e, if F ; F -&#x3E; E

is a split extension of E by its kernel. The corresponding pseudo-functor
which any cleavage defines is easily seen to be entirely equivalent to the

classical Schreier factor system defined by the extension and the classical

theorem that every group extension is determined up to isomorphism by such

a factor system is seen as a corollary of the Grothendieck theorem that

every fibration is determined up to isomorphism by an associated pseudo-
functor. Since, in general, not every group extension is split, this furnishes

a convincing example that not every fibration is split and thus one cannot,

in general, replace pseudo-functors with functors.

Never-the-less the Grothendieck -Giraud theory is applicable and

thus every fibration, including that determined by a group extension F is

E-equivalent to a split fibration S F determined by the externaliza tion of

its preshea f of cartesian functors, Cart E ( E/- , F ) ,
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But here SF is not a group, but rather a split fibration, fibered in group-
oids. The E-functor sub: F - SF , which is quasi-inverse to that defined

by evaluation and only depends on the choice of a cleavage, is fully faith-

ful and thus allows the complete recovery (up to isomorphism) o f the group
extension as the subgroup of automorphisms o f any one o f the objects o f SF.
This means that all information about group extensions is contained in the

category E" of presheaves on the group E, more commonly (equivalently)
known as the category of (right) E-sets.

More precisely, if F -&#x3E; E is a group extension, then Cart E (E/- , F )

is a bouquet of E-sets, i. e. , a non empty, connected E-groupoid and we

h ave :

THEOREM 6’. (a) The class of isomorphism classes of extensions of E

is in 7 -1 correspondance with the class of connecte d components (under
essential equivalence) o f the c ate gory o f E-bouq ue ts.

( b ) Moreover, if we make the essential identification o f « a bs tract

kernels» (i. e., homomorphisms of E into the group

with the liens of the category of E-sets, « 8 l-&#x3E; lien( 0) », then for any

extension F - E which induces 0: E , Out(N ) ,

and we have a bijection of sets

Ve content ourselves with showing how one directly passes from
E-bouquets to extensions of E. Thus let 6: A=::O be a bouquet of E
sets; then, by definition of the restriction of the extemalization of G to
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E, we have for any a c 0 that an arrow f : a -&#x3E; a of projection x c E is an

arrow f E A of the form f ; a -&#x3E; ax , where ax E 0 is the result of the action

of x c E on a . If f: a - ax and g ; a -&#x3E; ay , then g . f : a -&#x3E; ayx is an arrow

of projection y x which is given by the composition g x f :
r

in 6 . This multiplication is always associative with ida : a -&#x3E; ae ( = a ) as

unity element. The inverse of f: a -*a’ is given by the arrow

in G . Since G is non empty, there exists an a c 0 and since 6 is con-

nected, for any x c E an arrow f; a -&#x3E; a’ always exists, i. e.,

is a surjective homomorphism of groups. Note that the kernel of this map is

just the fiber N = Aut( a ) C 6. Again since 6 is connected, any two such

extensions are E-isomorphic.
In spite of its appearance, the so defined extension is not split in

general: Choose, for each x E E , an arrow s (x) : a -&#x3E; ax in 6, then, for

each f : a -&#x3E; ax , define n: a -&#x3E; a so that the square

is commutative in C . The mapping f l-&#x3E; (n, x) then defines a bijection of

F onto N X E . Then the mapping

defines a system of automorphisms for which the mapping

forms the corresponding factor set. The multiplication on E x N is then
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given by

If 6 has an invariant object ( ax = a for all x ) then the corresponding
extension is split.
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