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0. INTRODUCTION.

The work of Professor Ehresmann was rooted in geometry and was

concerned with its interrelations between various parts of mathematics.

I have also been concerned, though in a more modest way, with the

same aspects of mathematics, principally at the undergraduate, or even pre-

college level. As a professional geometer my point of view is that the prin-

cipal role geometry plays in the mathematical education of the student is

that of providing an immensely rich source of natural motivation, rather

than as an ideal system for displaying the power of abstract reasoning. For

the latter purpose I think it is more appropriate to look to algebra or ana-

lysis.

In this paper I will give some examples of the way I have attempted
to present concrete geometry to students and to link it to group theory and

elementary real analysis.

In Section 1 a hexaflexagon is used to motivate the introduction of

some very practical folding techniques on straight strips of paper such as

adding machine tape or the gummed tape ordinarily used to seal packages.

Knowing these techniques would enable you to approximate (to any desired

degree of accuracy) a regular polygon having, say, 2n ± 1 sides, by sim-

ply folding straight strips of paper in an appropriate iterative sequence1.
1. O f course ruler and compass constructions are only «perfect in the mind&#x3E;&#x3E;. This

important aspect is frequently overlooked when applying geometric concepts to the

real world. Although the folding sequence s mentioned here never guarantee perfec-
tion they are convergent sequences, and as long as you fold approximately correctly
each fold will produce a better approximation to its limit than its predecessor. On
the other hand, as we all know, in real life the student’s ruler and compass cons-
truction frequently diverges, the accuracy of the final result often being a function
of how recently the student has sharpened his or her pencil.
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The mathematical by-products of the material covered in this section in-

clude group theory and limits. One relevant theorem on limits, of the kind

we recommend for student discussion, is contained in Appendix A at the end

of the paper.

Section 2 is an account of how the folded tape described in Section

1 can be used to construct some special polyhedra. The construction of such

polyhedra then leads very naturally to group theory and combinatorics.

Section 3 closes this paper with a brief mention of some research

questions that have grown out of this concrete approach to geometry.

I wish to acknowledge helpful conversations with Peter Hilton during
the preparation of this paper.

1. ITERATIVE FOLDING SEQUENCES.

FIGURE 1

A straight strip of ten equilateral triangles scored so that they flex

along the nine edges connecting them ( as shown in Figure 1) can be folded

into an hexagon by «valley folding» each of the transversals marked with a

single dot and by «mountain folding&#x3E;&#x3E; the transversal marked with a double

dot. The resulting configuration, with the two overlapping end triangles glu-
ed together, is well known as a tri-hexaflexagon. It was invented in 1939 by
Arthur H. Stone and is the ancestor of many hundreds of polygon·like figures
that can be made to lie in a planes yet, when flexed appropriately in 3-dim-

ensions, will reveal new faces in an almost hypnotic way ( see [1] through

[7] for details about constructing this and other flexagons).
To gain an appreciation for the esthetic qualities of this particular
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model you should color one «face» (i.e., the collection of six equilateral

triangles that lie within a hexagonal boundary when the flexagon is flat) in

some symmetrically pleasant way; then turn the model over and color the

other visible face&#x3E;&#x3E; with another design. Then to bring out the third face&#x3E;&#x3E;

valley fold along one of the two sets of three axes radiating from the center

of the hexagon at 120 degrees from each other, and bring those three axes

together below the hexagon (see Figure 2). If you have chosen the right

FIGURE 2

set of axes for your valley folds the hexagon will come apart at the top in

a rotating fashion and lie flat to reveal the third (uncolored) hexagonal

face&#x3E;&#x3E;. If your flexagon does not come apart at the top when you try this

you must choose the other set of three axes to fold as valley folds. This

model can easily be shown to be a concrete representation of the symmetric

group S3 with the elements of the group being the transfonnations in space
that permute the three visible faces&#x3E;&#x3E; of the model ( [8] and [9] provide
details of the group theory for this and other flexagons ).

The hexaflexagon is, of course, interesting enough to pursue as a

mathematical object in its own right 1, However, our purpose here is to use

1 Martin Gardner informed me, in 1971, that he had in his possession a lengthy ma-

nuscript, by Anthony S. Conrad and Daniel K. Hartline, exploring numerous possibi-
lities for other flexagons. That manuscript is dated May, 1962, and Dover Press

would like to publish it, but they are unable to locate either of the authors. If any
readers know these men, please ask them to contact either the author of this paper,
Martin Gardner or Dover Press - otherwise this manuscript is not likely to ever ap-

p ear in print.
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it to motivate other constructions with straight strips of paper. To that end

let us suppose that we begin with a long strip of paper having parallel edges
and further suppose that we wish to fold it into equilateral triangles. There

is, of course, a perfectly good way actually to construct an angle of 17/3

by folding, but suppose we don’t know that and that we begin with some

arbitrary angle x0 (as shown in Figure 3 ( a ) ) and treat it as though it were

ul3. The first step would be to bisect, by folding, the ( obtuse 1 ) angle at
the top of the tape (the result would appear as shown in Figure 3 ( b) ) ;

next, bisect, by folding, the resulting obtuse angle produced to the right
of that on the bottom of the tape ( the result would appear as shown in Fig-
ure 3 (c)) : etc. Of course there was nothing special about the angle xo

chosen in Figure 3 ( a) and it is the case that for any arbitrary xo the acute

angles on tape folded in this manner will always converge to TT/3.

FIGURE 3

1 All of the examples shown in this paper are illustrated using an initial angle, Xo )
between 0 and TT/2, but this is only so that the next obtuse angle will always be
to the right of xo on the tape. This simplifies the description of the folding pro-
cess. Both the folding and the mathematics are, of course, still valid for Xo between
77 / 2 and qT .
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This result can be proved in a variety of ways, depending on the

level of mathematical sophistication you wish to employ. A fairly direct
and elementary approach would be to make use of what we already believe
to be true from our observations. Thus, assume that the initial angle xo is

TT/3 + E , where c may be regarded as error. Thus from the angles surround-

ing the vertex at the top of the tape in Figure 3 ( b) we see that

hence

And, likewise, from Figure 3 ( c ) (using the angles surrounding the vertex

at the bottom edge of the tape) it follows that

Thus we see that every time a correct fold is made the previous error is cut

in half. In general, if x k-1 + 2 xk = 17 , with initial condition xo = 17/3 + f,
then, by a straightforward mathematical induction,

and thus
n-&#x3E;oo

It is natural to ask what would happen if this folding process were

generalized. We will take two steps towards that goal, here, and leave the

complete generalization along with some questions to investigate (in Sec-

tion 3 ) for the reader to contemplate.

First, one can very quickly verify that if you begin as before with

an arbitrary angle xo and successively fold n times at each new obtuse

angle created in the right hand direction of the tape, then the smallest an-

gle on the tape converges to 1T/(2n+l). ( Figures 3 and 4 (a) exemplify
this in the cases of n = 7 and n = 2 , respectively.) If we take portions
of this tape following, say x7, you can use it to construct good approxi-
mations (of n different sizes) of regular (2n+1 )-gons. In the case of n = 2
for example, folding the tape on successive short transversals yields the

pentagon shown in Figure 4 (b) and folding the tape on successive long
transversals gives a construction for the hollow&#x3E;&#x3E; pentagon shown in Fig-
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FIGURE 4
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ure 4 (c) (of course when n = 1 the 3-gons are just the triangles of the

tape its elf ) .

Verification that these assertions are true follows with an argument

analogous to that above; for details see Appendix A.

Notice that when n = 3 the resulting tape can be used to construct

approximations to regular 9-gons (which are impossible to construct with

a ruler and compass ! ), and when n = 4 the tape can be used to construct

approximations to regular 17-gons (which might have been of interest to

Gauss, whose sensational discovery of a ruler and compass construction of

a regular 17-gon is legendary).

As a second step towards generalizing the convergent iterative fold-

ing sequences on parallel tape you could begin with our usual arbitrary an-

gle of xo at the bottom edge of the tape and fold always on the obtuse an-

gles produced towards the right hand end of the tape in the following way: 

( i ) fold n times on the obtuse angles lying on the top edge of the tape,
thus dividing those obtuse angles into n+1 successive angles of sizes

2n-1 xi’ 2n-2xi , ... , 2xi , xi , xi ( where i is odd);
( ii ) fold m times on the obtuse angles lying on the bottom edge of the

tape, thus dividing those obtuse angles into m+1 successive angles of

s iz es 2m-1xj, 2m-2 xj,..., 2 xj, xj, xj (where j is even).

For the sake of discussion let us call this an (n, m)-folding se-

quence and assume that n  m . Then the following equations hold: 

Now, because n G m it follows that the smallest angle on this tape will be

determined by lim x . If we assume that such a limit exists then it wouldk-&#x3E;oo 2k 
follow that

and also exists, so that by solving the simultaneous linear

equations
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J. PEDERSEN 8

FIGURE 5
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for A we would anticipate that the value for

A proof of this, together with the companion statement

will be found in Appendix A.

Figure 5 (a) shows the folded tape when n = 7 and m = 2. The

smallest angle on this tape approaches 77/7 and if you take portions of this

tape past, say x6 , and fold on all transversals except the shortest ones

you get the regular hollow&#x3E;&#x3E; 7-gon shown in Figure 5 (b). Likewise, if you

fold this tape on all transversals except the medium length ones you obtain

the regular 7-gon shown in Figure 5 (c); and if you fold on all transversals

except the longest ones it produces the star&#x3E;&#x3E; shaped 7-gon of Figure 5 ( d ).
Observe that if n = 1 in (*), the smallest angle on this tape will

approach TT/(2m+1-1). This tape will have m+1 kinds of transversals

and when m is even if you fold that tape consistantly leaving transversals

of any one kind unfolded, it will produce a regular (m + 1 )-gon ( which may
be solid, hollow, or a star shaped polygon); but, when m is odd, then in

order to produce the regular (m+1 )-gons you must fold the tape so that you

only fold on one particular kind of transversal.

The generalizations of iterative folding sequences can be carried

further ( see Section 3 ), but we will now use the tape for other kinds of con-

structions. Having observed that single pieces of straight strips of paper
can be folded to outline the boundary of certain regular polygons in the

plane the natural question arises: 

Can several straight strips of paper be o ri ented in spac e so that they
will either cover the surface, or outline the edges, of a regular polyhedron?

We explore some of the various possibilities in Section 2.

2, WOVEN COVERINGS OF THE REGULAR CONVEX POLYHEDRA (PLA.
TONIC SOLIDS 1).

1 Those convex polyhedra for ’which all face s are regular, of the same size and sha-
p e, forming the same arrangement about each vertex.
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J. PEDERSEN 10

FIGURE 6
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It is easy to see ( though not at all easy to discover, see [ 10- 12])
the following

THEOREM. I f you construct each o f the Platonic solids with n congruent

straight strips, each of a different colo r, such that

(a) every edge is crossed at l east once by a strip (that is, no edge
i s an op en slot ),

(b) every face is completely covered by at least one thickness o f some

s trip,

(c ) every color has an equal area exposed on the model’s sur face,
then it is possible to construct

Figure 6 shows a typical pattern piece for the required strips and

an illustration of the completed model for each of the five solids. In each

case it is assumed that the shaded portion of the straight strip will overlap ’
the other end of the same strip so that on the completed model the strips
are cylindrical-like rings braided together in space. The construction for

the tetrahedron, the cube and the octahedron is relatively simple and I en-

courage the reader to go ahead and make the pattern pieces out of some fair-

ly substantial paper and assemble them using the requirements imposed by
the statement of the theorem. The icosahedron and dodecahedron may prove

more difficult to assemble and explicit instructions for their construction

( along with instructions for constructing the more simple polyhedra) can be

found in [10] through [12].

Having constructed these models they can be used to exemplify
Euler’s formula connecting the number of vertices ( v ), edges ( E ) and

faces ( F ) ( that is,

V - E + F - 2 for any homeomorph of a sphere)
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or Descartes’s formula for the sum of the angular deficiencies 1 at each ver-

tex for any given polyhedron (which is always 4TT for any homeomorph of
a sphere ) 2 ,

Although the relation and generalization of these classic formulae

make very interesting mathematics they would take us too far from the theme

of this particular paper which involves looking at the relationship of con-

crete geometric models to group theory and combinatorics. In order to cite

just one striking example of this connection let us look at a model that was

not mentioned in the theorem, at the beginning of this section. Figure 7

shows a cube woven from four identical strips, each containing seven ( in-

cluding the overlapping tab) right isoceles triangles. This model, which

will be referred to as a diagonal cube, is an esthetically pleasing woven

covering of a cube and it represents, as will be shown, the concrete manif-

estation of some very beautiful mathematics.

Consider how the diagonal cube relates, for example, to all proper

rotations in space of the cube 3. There are 24 such rotations consisting of

1 identity,
6 rotations about axes joining opposite edges

1 The angular deficiency at any given vertex is defined to be the difference bet-

ween 27T and the sum of all the face angles surrounding that vertex, thus the ang-
ular deficiency at a vertex of the cube is 2n - 3(TT/2) = 7T / 2.

2 Since Descartes died in 1650 and Euler lived from 1707 to 1783 it might be sup-

posed that Euler was familiar with Descartes’ formula. In fact, Descartes’ formula

was not printed till a hundred years after Euler’s death, and there is no evidence

that Euler rediscovered Descrates’s formula, though he came very close (see [13,
14, 23] ). Euler’s discovery of his own formula does not appear to have been accom-

panied by a satisfactory proof. P61ya [ 13, 14] has given an easily accessible proof
of the equivalence of the two formulae, in the sense that the angular deficiency is

equal to 2TT-(V-E+F). This equivalence may be regarded as the forerunner of the
celebrated Gauss-Bonnet Theorem ( see [21], particularly Section 4). Today, it is

clearly understood that the Euler formula is a topological invariant for any (2-dim-

ensional) polyhedron ( see, for example, [22] ). This whole story offers us a superb
example of the fascination to be gained from a study of the history of mathematics!

3 See [15] for a determination, on p age s 149 - 154, o f all finite group s of proper no-
tations in 3-space.
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(a) The diagonal cube, with (c) 

(b) one of the four strips, from which it is made,
and ( c) the way in which they are laid out at the beginning of the braiding.

FIGURE 7

8 rotations about axes joining opposite vertices,
9 rotations about axes joining opposite faces.

This collection of rotations is easily seen to be S4 by simply observing
that all possible permutations of the four strips of the diagonal cube are

accounted for with the rotations listed.

It is a very elementary exercise to compute that the number of ways

4 colors can be arranged, 4 at a time, in a circle is 6 ; and, likewise, that

the number of ways 4 colors can be arranged, 3 at a time, in a circle is 8.

All of these combinations appear on the diagonal cube! When a diagonal
cube is constructed from strips of four different colors the centers of the

6 faces are all surrounded by different arrangements of the 4 colors and

the 8 vertices are all surrounded by different arrangements of 3 colors each.

Having given us this much information the diagonal cube is still not

ready for retirement. If you study Figures 8 ( a ) and 8 ( b) you may be able
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FIGU RE 8

( a ) Extending the face plane s of an octahedron

( b) The use of the diagonal cube to visualize the unbounded regions
formed by the extended face planes of the octahedron.
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to see how the diagonal cube may be used to count the various kinds of un-

bounded regions created when the face planes of the regular octahedron are

extended in space ( see [16] for details ). The complete count ( including
the bounded regions ) is :

1 octahedron

+ ( a ) 8 regular tetrahedra on its faces

+ ( b ) 6 unbounded tetrahedral regions from its vertices

+(c) 24 un bounded wedges from the edges of the eight tetrahedra
which do not coincide with edges of the original octahedron

+ ( d ) 8 unbounded trihedral regions from the outside vertices of the
eight tetrahedra

+ ( e ) 12 un bounded regions having two finite faces on ad jacent te-
trahedra and four infinite faces

= 9 bounded regions -t- 50 unbounded regions
= 59 regions.

""’hat this model exemplifies is that models braided together with

cylindrical-like strips, having a maximum number of two thicknesses (holes
are now permitted, like those that appeared in the «hollow» polygons) can

be used to count the number of unbounded regions created by extending the

planes determined by the edges of those straight strips. Thus, as another

example, the «golden dodecahedrons in Figure 9 can be used to account for

the 122 unbounded regions created in space when the 12 planes defined by
the edges of the six strips of that model are extended in space (see [16, 17,

18]). Of course one might wish to know what would happen if you looked

closer to the «cores of this configuration, rather than at the infinite regions.
You could then argue that since you have the intersection of 12 planes in

space you know they might contain the faces of a 12 faced polyhedron. This

would not be sufficient to guarantee that they intersect to form the faces

of the regulat pentagonal dodecahedron ( since many other 12 faced polehe-
dra are known to exist). It is the fact that the original configuration belongs
to the proper rotation group A5 that provides the necessary information from

which we can conclude that the 12 planes must contain the faces of the
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FIGURE 9
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regular pentagonal dodecahedron. In a similar way we could have deduced

that the 8 planes determined by the four bands of the diagonal cube must

contain the faces of the regular octahedron.

Many other woven models exist and many other connections between

the models and combinatorics can be made. We will be content to let these

examples serve our present purpose and close by proposing some open ques-
tions.

3. RESEARCH QUESTIONS.

( A ) It is clear from Section 1 that it is possible to approximate, by

folding, regular polygons having 2n i. 1 sides.

( ? ) Which rational multiples of 17 can be constructed by folding tape,

iteratively as described in Section 1 ?

( ? ) Which regular polygons cannot be constructed from tape folded iter-

atively ?

( B ) The icosahedron woven from five strips of 11 equilateral triangles

each does not itself possess icosahedral symmetry. This is clear since the

10 triangles that « count» in each of the 5 strips provide a total of 50 tri-

angles ; and since the number of faces on the icosahedron, namely 20, does

not divide 50 there is no way those 50 triangles can be distributed with the

same number covering each face. In fact, the 5 triangles about the «North

and South poles&#x3E;&#x3E; are covered by 3 triangles each and the 1 Q triangles around

the  equators &#x3E;&#x3E; are covered by 2 triangles each.

( ? ) Is it possible to weave together 5 straight strips ( connected to

make the required cylindrical-like rings) so that every face of the completed

polyhedron is covered by the same number of strips ?

(C) [16] employs baseless antiprisms ( the cylindrical-like bands in

Figures 8 and 9 ) braided together to form «Platonic arrangements&#x3E;&#x3E; that de-

lineate unbounded regions in space defined by the parallel planes of the anti-

prisms’ bases.

(?) Are there braided models suitable for delineating the unbounded
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regions created by extending the face planes of the Archimedean solid

(D ) The braided models used to determine the parallel divisions of

space for the extended face planes of the octahedron and dodecahedron are

not the only braided models possible for that purpose. For example, four

identical straight strips can be braided to form a model which looks like a

truncated octahedron (with holes instead of square faces) and the inter-

section of the planes determined by the edges of the braided strips is the

regular octahedron.

(?) What are all such possible braided models for each of the Platonic

solids having faces which lie in parallel planes?

( E ) Grunbaum and Shephard have discussed, in detail, weavings of

straight strips in the plane (see [19] and [20] ). They discuss there a fin-

ite number of regular types of weavings in the plane (with an infinite num-

ber of varieties within each type). In particular they discuss two very com-

mon types of weaves called twills and satins. Each of these has a similar

appearance on both sides of the weave (differing at most by reflections).

( ? ) Can designs like satins and twills be woven on the surface of po-
lohedra 2 ? If so, which polyhedra admit this kind of weaving and what de-

termines whether or not twills and satins are admissible weaves? Will the

weaves always appear similar on both sides (i.e., inside and outside)?
Will it always be necessary to use three (or more) colors to achieve the

desired effect?

These represent just a few of the many questions which have come

from the concrete models presented in this paper. It seems fairly certain

that the answers to these questions however must utilize group theory, com-

binatorics and perhaps many other mathematical concepts. In this sense

1 Archimedean solids are those convex polyhedra for which all faces are regular,
with edges of the same length - though different face s are not necessarily of the
same shape; moreover, the faces form the same arrangement about each vertex.

2 You might cut each of the three strip s in Figure 6 (b) into, for example, 5 paral-
lel strips and weave those together to form a checkerboarded cube, or a twill cube,
etc.
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these questions serve to emphasize the coherence of the entire mathematical

discipline and, in particular, they highlight the fact that geometry plays a

key role in mathematics as a rich source of ideas and questions, that is,
as a source of inspiration.

APPENDIX A.

In this appendix we prove a general result which implies the various

results cited in Section 1 on the construction of certain angular measures

by means of iterative folding sequences on parallel tape. This theorem, and

its proof, can be appreciated by any student of the elements of real ana-

lysis.

THEOREM A. L et a sequence {xk}, k - 0, 1 , 2, ..., be generated by the
recurrence relation

then

(ii) if I a | 1 , xk diverges to infinity unless Xo = b/(1 + a) when
the sequence is stationary at b/(1 +a);

(iii) if a = -1, xk = xo- k b and so diverges to infinity unless b =0;

(iv) i f a = 1, xk = Xo, k even; xk = b - x,, k odd; so xk oscillates

f init el y.

PROOF. (i) Set xk = bl(i + a) + Yk . Then

so that Yk-1 + aYk = 0 . It follows that yk = (-1/a)k Yo so that yk -&#x3E; 0 as

k -&#x3E; oo, Hence xk -&#x3E; b/(1 +a).
We may leave to the reader the demonstration of the remaining parts

of this theorem, observing only that the result in case (i) does not depend
on the initial value x0. It is instructive to observe that this is also almost

true of case (ii), there being a single exceptional starting value, namely

b/(1+a).
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It is, of course, only case ( i ) which arises in our paper-folding se-

quences. Our theorem tells us that we would, using the specified rules for

folding, always converge to the desired angle, but naturally the rate of con-

vergence would depend on our initial angle not being too wild&#x3E;&#x3E;. Since an

angle is always between 0 and *T , it never can be too terribly wild; and

since, in our folding experiments, |a I is always a power of 2, the rate of

convergence is always rapid.

We reduce the (n , m)-folding sequence to Theorem A by writing:

uk = x2k, vk = x2k+1. Then

SO

and s im ilarly

Thus

Further generalizations of the (n, m )-folding procedure, which will

doubtless occur to the reader, may be handled by a device similar to that

a bove ,
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