CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

ANDRÉE CHARLES EHRESMANN Partial completions of concrete functors

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, nº 3 (1981), p. 315-328

http://www.numdam.org/item?id=CTGDC_1981_22_3_315_0

© Andrée C. Ehresmann et les auteurs, 1981, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

PARTIAL COMPLETIONS OF CONCRETE FUNCTORS

by Andrée CHARLES EHRESMANN

INTRODUCTION.

If f and g are differentiable maps between manifolds M and M'. the equation f(m) = g(m) may not define a submanifold of M; two differentiable maps toward M may not have a pullback unless they are transversal. Such difficulties have hindered a categorical study of Differential Geometry; e.g., differentiable categories /50/ are only those internal categories in the category \mathfrak{D}^r of manifolds whose domain and codomain maps are submersions. Is it not possible to embed \mathfrak{D}^r into an «adequate» category? Charles was mainly motivated by this question and inspired by his many works on completions of posets and of local categories /47,55,76,85, 86/ when he wrote his paper / 107/ in the mid-sixties: here he constructs «optimal» extensions of a concrete functor $P: H \rightarrow E$ into a concrete functor which initially lifts a given class of singleton sources («spreading» functors) or of limit cones («completions») in E. For exemple, the smallest spreading extension of $\mathfrak{D}^n \rightarrow \mathrm{Ens}$ equips each subset of a manifold M with a structure which has been independently worked out (without categorical aims!) by Ngo Van Qué [6], Aronszajn and Marshall [5].

Later on, several authors tackled analogous problems, often with a view to embedding the category of topological spaces in an initially complete cartesian closed category (Antoine, Chartrelle, Day, Wyler,...); generalizing results of Banaschewski and Burns on completions of posets, Herrlich describes in [2] the smallest - or Mac Neille - and the largest or universal (preserving initial lifts) initial completions of P; for the bibliography, we refer to [3] where most papers on initial completions (Adamek, Herrlich, Strecker; Börger; Hoffmann; Tholen...) are summarized. Recently

universal completions of P have been constructed by Adamek-Koubek [1] and, without transfinite induction, by Herrlich [4].

Here all these results are unified: Given a class Γ of cones in E, and a class Δ of initial cones in H, the concrete functor $P: H \rightarrow E$ is extended into a concrete functor with initial lifts of cones of Γ , and for which the cones of Δ remain initial; two «optimal» solutions, the Mac Neille Γ -completion and the universal (Δ, Γ)-completion of P, are constructed by methods making the most out the ideas of Charles /55, 107 / and Herrlich [2, 4]. If Γ is «not too large» these solutions live in the same universe as P.

HYPOTHESES. There is given a category E (the «base category») and a class Γ of cones in E; let Ind Γ be the class formed by the indexing categories of the cones $\gamma \in \Gamma$. Cone always means projective cone.

We denote by $P: H \rightarrow E$ a concrete (i.e., faithful and amnestic) functor, by S, S',... the objects of H, by E, E',... the objects of E. These notations come from the primitive case where P is the forgetful (Projection) functor from the category of Homomorphisms between Structures of some kind to Ens.

 \mathcal{U}_{0} and \mathcal{U} are two universes such that $\mathcal{U}_{0} \in \mathcal{U}$; the elements of \mathcal{U} are large sets, or classes, those of \mathcal{U}_{0} are small sets. We suppose P lives in \mathcal{U} (as does for instance the forgetful functor $\mathfrak{D}^{n} \rightarrow \text{Ens}$).

1. PARTIAL COMPLETIONS.

In this section, we recall definitions, and state some results on cones and initial lifts which are used in the sequel.

A. Commutative hull of Γ .

Let γ be a cone in E with vertex E and basis $\phi: I \rightarrow E$, abbreviated in $\gamma: E \Rightarrow \phi$. If the indexing category I is discrete, γ is called a *source*, and also denoted by $(\gamma(I) | I \in I)$; for instance E defines the the singleton source $E^* = (Id_E)$.

To the cone γ is associated the source $(\gamma(I) \mid I \in I_o)$ indexed by the class I_o of objects of I; this source is written $\gamma_o: E \Rightarrow \phi_o$. We denote by Γ_0 the class of all sources γ_0 , for $\gamma \in \Gamma$.

If $\gamma_I: \phi(l) \Rightarrow \phi_I$ is a cone indexed by I_I for each $l \in I_0$, the source

$$(\gamma_I(J), \gamma(I): E \rightarrow \phi_I(J) \mid (J, I) \in \sum_{I \in I_0} I_{I_0})$$

is called the *composite source* of $((\gamma_I)_{I_0}, \gamma)$, denoted $(\gamma_I)_{I_0} \circ \gamma$. For instance: $(\phi(I)^{\bullet})_{I_0} \circ \gamma = \gamma_0$; if I = 1 and $\gamma(I) = f$, then $(\gamma_I)_1 \circ \gamma$ is the source $\gamma_I \circ f = (\gamma_I(J), f \mid J \in I_{I_0})$.

DEFINITION. A class Σ of sources in E is said commutative if

1° $E^{\epsilon} \Sigma$ for each object E of E,

2° $\gamma \in \Sigma$ and $\gamma_I \in \Sigma$ for each $l \in I = I_0$ imply $(\gamma_I)_I \circ \gamma \in \Sigma$.

PROPOSITION 1. Let Σ be a class of sources in E; the smallest commutative class of sources Σ° containing Σ is constructed by transfinite induction. If Ind Σ and each I ϵ Ind Σ belong to the universe \mathcal{U} , so does Ind Σ° .

 Δ . Σ° is the union of the transfinite increasing sequence $(\Sigma_{\lambda})_{\lambda}$ defined by induction as follows:

$$\begin{split} \Sigma_0 &= \{ E^* \mid E \in E_o \} \cup \Sigma ; \quad \Sigma_\alpha = \bigcup_{\lambda < \alpha} \Sigma_\lambda \quad \text{for each limit ordinal } \alpha , \\ \Sigma_{\lambda + 1} &= \{ (\gamma_I)_I \circ \gamma \mid \gamma \in \Sigma_\lambda, \gamma_I \in \Sigma_\lambda \quad \forall I \in I \}. \end{split}$$

The construction stops at the limit ordinal larger than the ordinal of I, for each I $\epsilon \ln d \Sigma$. ∇

DEFINITION. The smallest commutative class of sources containing Γ_o is called the *commutative hull of* Γ , denoted by Γ^o .

EXAMPLES. The class Sour E of all sources in E is commutative and it is the commutative hull of the class Cone E of all cones in E. If A is a class of morphisms of E, the class /A/ of singleton sources (a), $a \in A$ has for its commutative hull the class /A'/ corresponding to the sub-category of E generated by $A \cup E_o$.

B. Initial lifts.

Let $P: H \to E$ be a concrete functor. A morphism h from S to S' in H is written $g: S \to S'$, where g = P(h). If θ is a cone in H with vertex S and basis Φ and if $\gamma = P\theta$, we also denote θ by $\gamma: S \Rightarrow \Phi$. A *P*-cone indexed by I is a pair (Φ, γ) , where $\Phi: I \rightarrow H$ is a functor and $\gamma: E \Rightarrow P\Phi$ is a cone. An *initial lift of* (Φ, γ) is an object S of H such that:

1° $\gamma(l): S \to \Phi(l)$ is in H for each $l \in I_o$,

2° If $f: E' \rightarrow E$ in E and if $\gamma \circ f: S' \Rightarrow \Phi$ is a cone in H, then f lifts into $f: S' \rightarrow S$ in H.

As P is concrete, such an S (if it exists) is unique; it is then denoted by $il(\Phi, \gamma)$; so $\gamma: S \Rightarrow \Phi$ is an initial cone for P.

A *P*-source is a *P*-cone (Φ, γ) indexed by a discrete category I_o ; it is often identified to the family of *P*-morphisms (singleton *P*-sources)

$$(\Phi(I), \gamma(I) \mid I \in I_o).$$

The dual notion is a P-sink.

To the *P*-cone (Φ, γ) indexed by I is associated the *P*-source (Φ_0, γ_0) , where $\Phi_0: I_0 \rightarrow H$ is the restriction of Φ to the objects of I. PROPOSITION 2. Let (Φ, γ) be a *P*-cone. It has an initial lift iff the *P*-

source (Φ_{0}, γ_{0}) has one; in this case, $il(\Phi, \gamma) = il(\Phi_{0}, \gamma_{0})$. ∇

The following proposition (whose proof is straightforward) is important for the sequel. Let (Φ, γ) be a *P*-cone indexed by I and (Φ_I, γ_I) be a *P*-cone indexed by I_I such that $\gamma_I: \Phi(I) \Rightarrow \Phi_I$ is a cone in H, for *I* in I₀. We denote by $(\Phi_I, \gamma_I)_{I_0} \circ (\Phi, \gamma)$ the *P*-source

$$(\Psi, (\gamma_I)_{I_o} \circ \gamma)$$
 where $\Psi: \sum_{I \in I_o} I_{I \circ} \to H: (J, I) \mapsto \Phi_I(J).$

PROPOSITION 3 (Commutativity of initial lifts). If $\Phi(I) = il(\Phi_I, \gamma_I)$ for for each object I of I, we have

$$il(\Phi,\gamma) = il((\Phi_I,\gamma_I)_{I_0} \circ (\Phi,\gamma))$$

as soon as one of these terms is defined. ∇

DEFINITION. P is called Γ -complete if each P-cone (Φ, γ) with $\gamma \in \Gamma$ admits an initial lift.

From Propositions 1, 2, 3, it follows by transfinite induction:

COROLL ARY. If P is Γ_{0} -complete, then it is Γ -complete and Γ° -complete, where Γ° is the commutative hull of Γ .

We consider the category of concrete functors over E, whose objects are the concrete functors $Q: K \to E$ and whose morphisms $F: Q \to Q'$, where $Q': K' \to E$, are the functors $F: K \to K'$ such that Q'F = Q. It has a non-full subcategory formed by the Γ -morphisms, which are the morphisms $F: Q \to Q'$ such that $F(il(\Phi, \gamma)) = il(F\Phi, \gamma)$ whenever (Φ, γ) is a Qcone with $\gamma \in \Gamma$ which has an initial lift.

COROLLARY. If $F: Q \rightarrow Q'$ is a Γ_0 -morphism, it is a Γ -morphism and if Q is Γ_0 -complete, a Γ^0 -morphism.

C. Γ -density et Γ -generation.

Here $Q: K \rightarrow E$ is a concrete functor, H a full subcategory of K and $P: H \rightarrow E$ is the restriction of Q.

DEFINITION. H is called Γ -dense for Q if each object K of K is the initial lift of a P-cone (Ψ, γ) with $\gamma \in \Gamma$ and Ψ valued in H. If H is Sour E-dense, it is said initially dense.

PROPOSITION 4. The following conditions are equivalent:

 1° H is initially dense for Q.

2º For each $K \in K_o$ the source $(k: K \rightarrow S \mid S \in H_o)$ is initial for Q.

3° Let K, K' be objects of K and $g: Q(K) \rightarrow Q(K')$ a E-morphism; then we have $g: K \rightarrow K'$ in K iff

 $f: K' \rightarrow S$ in K and $S \in H_{\circ}$ imply $f.g: K \rightarrow S$ in K.

If they are satisfied, the insertion $H \longrightarrow K$ preserves final lifts. ∇

The dual notion is «finally dense». It will be used in Section 2 through the third characterization above (introduced in /107/ under the name «Q is P-generated»).

DEFINITION. We call Γ -hull (resp. strict Γ -hull) of H for Q the smallest full subcategory (resp. smallest subcategory) H' of K containing H and $il(\Psi, \gamma)$ for each Q-cone (Ψ, γ) with $\gamma \in \Gamma$ and Ψ valued in H'. If H' = K, we say that Q is Γ -generated (resp. strictly Γ -generated) by H.

If Q is Γ -complete, so is its restriction to H'. If H is Γ -dense for Q, then Q is Γ -generated by H (but not conversely).

PROPOSITION 5. The Γ -hull C and the strict Γ -hull B of H for Q are constructed by transfinite induction; they are in the same universe U as H if so are Ind Γ and each I ϵ Ind Γ .

 Δ . C and B are respectively the union of the transfinite increasing sequence $(C_{\lambda})_{\lambda}$ and $(B_{\lambda})_{\lambda}$ defined as follows:

 $C_0 = H = B_0,$

 $C_{\alpha} = \bigcup_{\lambda < \alpha} C_{\lambda}$ and $B_{\alpha} = \bigcup_{\lambda < \alpha} B_{\lambda}$ for each limit ordinal α ,

 $C_{\lambda+1}$ is the full subcategory of K with objects $il(\Psi, \gamma)$ where (Ψ, γ) is a Q-cone, $\gamma \in \Gamma$ and Ψ valued in C_{λ} ,

 $B_{\lambda+l}$ is the subcategory of K generated by all the morphisms $\gamma(l): il(\Psi, \gamma) \rightarrow \Psi(l)$ for each $l \in I_o$,

 $g: K_{\lambda} \rightarrow il(\Psi, \gamma)$ whenever $\gamma \circ g: K_{\lambda} \Rightarrow \Psi_{\circ}$ is a cone in K, where (Ψ, γ) is any Q-cone with $\gamma \in \Gamma$ and $\Psi: I \rightarrow K$ valued in B_{λ} . The construction stops at the first limit ordinal greater than the ordinals of I for each $I \in Ind \Gamma$. ∇

COROLLARY. If Q is Γ -generated by H, then H is Γ° -dense for Q.

Proof by induction on C_{λ} using the commutativity of initial lifts.

D. Γ -completions.

DEFINITION. A Γ -completion of $P: H \rightarrow E$ is defined as a concrete Γ complete functor $Q: K \rightarrow E$ of which P is a full restriction. The Γ -completion is Γ -dense (resp. initially dense) if so is H for Q; it is (strictly) Γ -generated if K is the (strict) Γ -hull of H for Q.

An order is defined on the Γ -completions of P as follows:

Q < Q' (say Q is Γ -smaller than Q') iff there exists one unique Γ morphism $F: Q \rightarrow Q'$ extending the identity on H.

We are going to construct completions which are optimal for this order.

EXAMPLES. 1. Sour E-completions have been considered by several authors, e.g. Herrlich [2,4] under the name: *initial completions*.

2. If A is a class of morphisms of E, the /A/-completions of P are called A-completions; they are the A-spreading functors extending P which are dealt with in /107/.

3. If E is a complete category and Lim E is the class of all its small limit-cones, Lim E-completions, just called *completions of P*, are constructed in Adamek-Koubek [1] and Herrlich [3]. More generally, if μ is a partial (multiple) choice of limit-cones on E and Γ the class of limitcones distinguished by μ , we find the μ -completions studied in / 107/.

2. MAC NEILLE COMPLETIONS.

In this section, we construct a Γ -completion of $P: H \rightarrow E$ which is both finally dense and Γ -generated; such a Γ -completion is called a *Mac Neille* Γ -completion of P (by analogy with Herrlich's Mac Neille initial completions, named after the Mac Neille completions of posets).

In /107/, Charles constructs the Mac Neille A-completion of P for A a subcategory of E (Theorem 2, 3) and, using it, the Mac Neille μ -completion of P (Theorem 5, 6), which he calls «smallest prolongations of P». His method, which generalizes for any class Γ of cones, may be sketched as follows: To H he adds «formal initial lifts» of cones of Γ and as many morphisms as possible for getting a faithful (non-amnestic) functor in which these formal initial lifts become initial lifts; so H is Γ -dense and finally dense for the associated concrete functor $Q: K \rightarrow E$ (this condition entirely characterizes Q). In the case $\Gamma = /A/$, this functor is the Mac Neille Acompletion of P. For μ -completions or more generally, the construction has to be transfinitely reiterated, because Q is not Γ -complete. (In fact, Charles gets Q as a Mac Neille \overline{A} -completion of a certain extension of P.) Now we remark that Q is Γ -complete whenever Γ is equal to its commutative hull Γ° thanks to the commutativity of initial lifts; in this case, an object of K, which is an equivalence class of P-sources, may be identified to the union of these P-sources, hence to a closed source in Herrlich's sense [3]; so, for $\Gamma = Sour E$, Q is exactly the Mac Neille initial completion P_A as constructed by Herrlich in [2].

Whence the idea of the following proof: we first construct the Mac Neille Γ° -completion of P; the Γ -hull of H in it then gives the Mac Neille Γ -completion of P (constructed by induction via Proposition 5).

THEOREM 1. P admits a Mac Neille Γ -completion $P_{\Gamma}: H_{\Gamma} \rightarrow E$, which

lives in the universe U if so do P, Ind Γ and each I ϵ Ind Γ .

 Δ . Construction of the Mac Neille Γ° -completion $V: M \rightarrow E$ of P: If (Φ, γ) is a *P*-source, we denote by $(\Phi, \gamma)^*$ the opposite *P*-sink [3]:

$$(S, f: P(S) \rightarrow E \mid S \in H_o, \gamma \circ f: S \Longrightarrow \Phi),$$

where E is the vertex of γ . Let M_o be the class of the P-sinks of the form $(\Phi, \gamma)^*$ for some P-source with $\gamma \in \Gamma^o$; the vertex of γ is denoted by V(M). If M and M' are in M_o , there'll be a morphism $g: M \to M'$ in M mapped by V on g iff

(S, f) in M implies (S, g, f) in M'.

This defines the concrete functor $V: M \rightarrow E$. We identify H to a full subcategory of M by identifying $S \in H_o$ to the *P*-sink

$$(S, id_{P(S)})^* = (S', h \mid h: S' \rightarrow S \text{ in } H).$$

So H becomes finally dense for Q; it is also Γ° -dense, because the object M is the initial lift of each P-source (considered as a V-source!) (Φ,γ) such that $M = (\Phi,\gamma)^*$. Hence V is a Mac Neille Γ° -completion of P if it is Γ° -complete; this is true: let (Ψ, θ) be a V-source with $\theta \in \Gamma^{\circ}$, indexed by I; for each I in I, we have

$$\Psi(l) = (\Phi_{I}, \gamma_{I})^{*} = il(\Phi_{I}, \gamma_{I}) \text{ for some } \gamma_{I} \in \Gamma^{\circ};$$

as Γ° is commutative $(\Phi_{I}, \gamma_{I})_{I} \circ (\Psi, \theta)$ is a *P*-source σ whose dual *P*-sink σ^{*} is in M_o, so that $\sigma^{*} = il(\sigma) = il(\Psi, \theta)$ (by Proposition 3).

- Let H_{Γ} be the Γ -hull of H for V, and $P_{\Gamma}: H_{\Gamma} \to E$ the restriction of V. It is Γ -complete (Corollary, 1), and H is still finally dense, H_{Γ} being a full subcategory of M. Hence P_{Γ} is a Mac Neille Γ -completion of P. If $Ind\Gamma$ and all $I \in Ind\Gamma$ are in the universe U, then so does $Ind\Gamma^{\circ}$ (Proposition 1), which implies M and H_{Γ} are also in U. ∇

REMARK. M is a full subcategory of the Mac Neille initial completion P_4 so that H_{Γ} may also be defined as the Γ -hull of H for P_4 . However M is in U while P_4 may not; conditions for it to be in U are given in [3].

The «optimality» of P_{Γ} will be deduced from the following proposition, which generalizes Theorems 3 and 6 of /107 / and has a similar proof.

THEOREM 2. Let $Q: K \to E$ be a Γ -generated Γ -completion of $P: H \to E$ and $Q': K' \to E$ be a finally dense Γ -completion of $P': H' \to E$. Let $F: P \to P'$ be a morphism satisfying the «lifting-cones» condition:

If $\Phi: I \rightarrow H$ is a functor with $I \in Ind \Gamma$, each cone in H' with basis $F \Phi$ is the image by F of a cone in H with basis Φ . Then F extends in a unique Γ -morphism $F': Q \rightarrow Q'$.

 $\Delta. K = \bigcup_{\lambda} C_{\lambda} \text{ (Proposition 5) and } F' \text{ is defined by induction on } C_{\lambda}\text{:}$ If F' is defined on C_{λ} and if $K = il(\Phi, \gamma)$ with $\gamma \in \Gamma$ and Φ valued in C_{λ} , we take $F'(K) = il(F'\Phi, \gamma)$; since Q' is finally dense, F'(K) does not depend on the choice of (Φ, γ) , and $g: K \to K'$ in $C_{\lambda+1}$ implies that $g: F'(K) \to F'(K')$ in K'. Whence F' is defined on $C_{\lambda+1}$. ∇

COROLLARY 1. The Mac Neille Γ -completion P_{Γ} of P is the Γ -smallest finally dense Γ -completion of P and the Γ -largest Γ -generated one; in particular, two Mac Neille completions are isomorphic.

COROLLARY 2. The Mac Neille Γ -completion P_{Γ} of P is fully embedded in any finally dense Γ -completion Q' of P.

Indeed, if $F = Id_{\rm H}$ and Q finally dense, F' above is a full embedding. REMARK. Corollary 2 says that P_{Γ} is also the smallest finally dense Γ completion of P for the preorder on completions:

 $Q \leq Q'$ iff there exists a full embedding $Q \rightarrow Q'$ (not a Γ -morphism!) extending the identity on H.

For this preorder, Herrlich proves that P_4 is in fact the smallest initial completion of P; this stronger result comes from the duality Theorem for initially complete functors, which has no analogon for a general Γ .

As in / 107/, Theorem 2 is easily adapted to characterize the strict Γ -hull H_{Γ} of H for V (or for P_{Γ}). We say that a Γ -completion Q : K \rightarrow E of P is weakly dense if K = K' whenever :

for each $S \in H_0$, we have: $g: S \rightarrow K$ iff $g: S \rightarrow K'$ in K.

THEOREM 3. The restriction $P_{\Gamma}^{*}: H_{\Gamma}^{*} \to E$ of P_{Γ} is the unique (up to isomorphism) Γ -completion of P which is both weakly dense and strictly Γ -generated; it is the Γ -smallest weakly dense Γ -completion and its Γ -

largest strictly Γ -generated one. ∇

3. UNIVERSAL PARTIAL COMPLETIONS.

In this section Δ denotes a given class of initial cones in H for $P: H \rightarrow E$ such that $P \delta \epsilon \Gamma$ for each $\delta \epsilon \Delta$. Let $\Delta_o = \{ \delta_o \mid \delta \epsilon \Delta \}$; by Proposition 1, Δ_o is a class of initial sources for P.

DEFINITION. A Γ -completion $Q: K \to E$ of P is called a (Δ, Γ) -completion of P if the insertion $H \subset K$ sends (all δ in) Δ on initial cones. It is called a *universal* (Δ, Γ) -completion if it also satisfies:

Let $Q': K' \to E$ be a Γ -complete concrete functor and $F: P \to Q'$ be a morphism sending Δ on initial cones; then there exists one unique Γ -morphism $F': Q \to Q'$ extending F.

The universal (Δ, Γ) -completion is unique (up to isomorphism) if it exists, and it is strictly Γ -generated.

EXAMPLES. If $\Delta = \emptyset$, a universal (Δ, Γ) -completion is called a free Γ completion. If Δ is the class of all initial cones δ in H with $P\delta \in \Gamma$, a universal (Δ, Γ) -completion is just called a universal Γ -completion. The free and universal Γ -completions are proved to exist in /107/ for Γ associated to a subcategory A of E or to a partial choice μ of limits (Theorem 10), but no explicit construction is given in this last case. Herrlich describes the free initial completion P_2 and the universal initial completion P_3 in [1] and, in [4] the universal completion P^* (for $\Gamma = Lim E$), whose objects are the «complete sources». Adapting his method as in Section 2, we'll obtain the universal (Δ_0, Γ°)-completion U of P, with objects the Δ -complete P-sources; the Γ -hull of H for U is the universal (Δ, Γ)completion of P.

DEFINITION. A P-source $\sigma = (S_I, f_I \mid I \in I)$ is said Δ -complete if it contains the P-morphisms

(a) (S, h, f_I) for each $h: S_I \rightarrow S$ in H,

(b) (S', g) if there exists $(d_I : S' \rightarrow S'_I \mid J \in J)$ in Δ_o with

 $(S'_I, d_I \cdot g)$ in σ for each $J \in J$.

(Intuitively, σ is closed under left composition by H and factors through

the initial sources of Δ_{o} .)

PROPOSITION 6. Each P-source $\sigma = (\Phi, \gamma)$ is included in a smallest Δ complete P-source, denoted by $\Delta \sigma = (\Delta \Phi, \Delta \gamma)$, which is constructed by transfinite induction. We have il $\sigma = il \Delta \sigma$ as soon as one of them is defined.

 Δ . The *P*-source $\Delta \sigma$ is the union of the transfinite sequence $(\sigma_{\lambda})_{\lambda}$ where $\sigma_0 = \sigma$, $\sigma_a = \bigcup_{\lambda < a} \sigma_{\lambda}$ for a limit ordinal *a*, and $\sigma_{\lambda+1}$ is deduced from σ_{λ} by adding elements of the form (a) and (b) above. For the last assertion, we prove by induction on σ_{λ} that, if the *P*-source $\sigma \circ g =$ $(\Phi, \gamma \circ g)$ lifts into a source $\gamma \circ g: S \Rightarrow \Phi$ in H, then the *P*-source $\Delta \sigma \circ g$ lifts into a source with basis $\Delta \Phi$ in H. ∇

THEOREM 4. P has a universal (Δ, Γ) -completion $U_{\Gamma}: L_{\Gamma} \to E$ which is Γ -generated, hence Γ° -dense. It lives in the universe \mathcal{U} if so do Ind Γ and each of its elements.

 Δ . 1. Construction of a (Δ_o, Γ^o) -completion $U: L \rightarrow E$ of P. Let L_o be the class formed by the Δ -complete P-sources L of the form (Proposition 6) $\Delta(\Phi, \gamma)$ for some $\gamma \in \Gamma^o$; let U(L) be the vertex of γ . If L' is also in L_o , then $g: L' \rightarrow L$ is a morphism in L mapped by U on g iff $(\Phi, \gamma \circ g)$ is included in L' (which implies $L \circ g \subset L'$). We identify H to a full subcategory of L by identifying the object S to

 $\Delta(S, id_{P(S)}) = (S', f \mid f: S \rightarrow S' \text{ in } H).$

As we have $h: L \to S$ in L iff (S, h) is in L, it follows that L is the initial lift of (Φ, γ) considered as a U-source, and that $\delta_0 \in \Delta_0$ remains an initial source for U. The fact that U is Γ° -complete is proved as in Theorem 1, thanks to the commutativity of initial lifts and of Γ° .

2. Universality of U. Let $Q: K \to E$ be a Γ° -complete functor, and $F: P \to Q$ a morphism sending Δ_{\circ} on initial sources. If there is a Γ° -morphism $F': U \to Q$ extending F, it maps L on $il(F\Phi, \gamma)$ and $g: L' \to L$ on $g: F'(L') \to F'(L)$. So we have just to prove that this F' is well-defined i.e., that

 $il(F\Phi', \gamma') = il(F\Phi, \gamma)$ if $\Delta(\Phi', \gamma') = L = \Delta(\Phi, \gamma)$.

Indeed $(F\Phi, \gamma)$ generates a $F\Delta$ -complete Q-source σ and $il \sigma = il(F\Phi, \gamma)$ (Proposition 6). From the construction of $\Delta(\Phi, \gamma) = (\Delta\Phi, \Delta\gamma)$, we deduce by induction that $(F\Delta\Phi, \Delta\gamma) \supset (F\Phi', \gamma')$ is included in $\Delta(F\Phi, \gamma)$ = σ . Therefore

$$\Delta(F\Phi',\gamma') = \sigma \text{ and } il(F\Phi',\gamma') = il \sigma = il(F\Phi,\gamma).$$

3. Universal (Δ, Γ) -completion of P. Let $U_{\Gamma} : L_{\Gamma} \to E$ be the restriction of U to the Γ -hull of H for U; it is a (Δ, Γ) -completion of P. To prove the universality, let $Q': K' \to E$ be a Γ -complete functor, and $G: P \to Q'$ a morphism sending Δ on initial cones. We consider the universal Γ° -completion $U': L' \to E$ of Q'; as $Q' \subset U'$ is a Γ° -morphism, hence a Γ -morphism, $G: P \to U'$ still sends Δ on initial cones and, by Part 2, it extends into a unique Γ° -morphism $G': U \to U'$. If G' maps L_{Γ} into the full subcategory K' of L' its restriction $G'': U_{\Gamma} \to Q'$ will be the unique Γ -morphism extending G. This is proved by induction on C_{λ} , where $L_{\Gamma} = \bigcup_{\lambda} C_{\lambda}$ (Proposition 5): suppose G' maps C_{λ} into K'; if L is an object of $C_{\lambda+1}$, we have $L = il(\Psi, \gamma')$, where $\gamma' \in \Gamma$ and Ψ valued in C_{λ} ; as $G'\Psi$ is valued in K' and Q' is Γ -complete, the Q'-cone $(G'\Psi, \gamma')$ has an initial lift for Q', which remains an initial lift for the universal Γ° -completion U', hence is equal to $G'(L) = il(G'\Psi, \gamma')$. It follows that G' maps $C_{\lambda+1}$ into the full subcategory K'. ∇

REMARKS. 1. Suppose $\Gamma = Lim E$. Then the universal completion U_{Γ} of P is (Γ -)dense (not only Γ -generated); this has been proved by Adamek-Koubek [1] via a construction which is transfinite only for morphisms, and by Herrlich [4] thanks to his one-step construction. His proof rests on the two facts:

A functor is complete as soon as it lifts products and equalizers;

Let $\sigma = \Delta(\Phi, \gamma)$ with $\gamma \in Lim E$; any *P*-source included in σ is also included in a *P*-source $(\bar{\Phi}, \bar{\gamma}) \subset \sigma$ with $\bar{\gamma}$ a limit-cone [4];

it is easily adapted, whatever be Δ , to prove that L_{Γ} reduces to the full subcategory C_I of L (Part 3 above), whence:

COROLLARY. The universal (Δ , Lim E)-completion of P is (Lim E-) dense.

2. The free initial completion of P is the largest initial completion, while its universal one is the largest preserving initial lifts initial completion [2]. This maximality property is no more valid for a general class Γ ; we only prove as in Theorem 4 the

PROPOSITION 7. Let $Q: K \to E$ and $Q': K' \to E$ be (Δ_o, Γ^o) -completions of P. If Q satisfies

(1) For each K in K_0 there exists a P-source (Φ, γ) with $\gamma \in \Gamma^\circ$ such that $\Delta(\Phi, \gamma) = (S', h \mid h: K \rightarrow S' \text{ in } K)$ and $K = il(\Phi, \gamma)$,

then there exists a morphism $Q \rightarrow Q'$ extending the identity on H.

COROLLARY. The universal $(\Delta_{\circ}, \Gamma^{\circ})$ -completion U of P is the largest $(\Delta_{\circ}, \Gamma^{\circ})$ -completion which satisfies (1).

Another maximality property of the universal (Δ, Γ) -completion is given in Comment 91-1 [0], Part IV-1.

3. The problem of «lifting singleton sources» may be translated in the world of internal functors in a category, leading to universal internal $(\Delta, / A)$ -completions; cf. /95, 96 / and Synopsis n° 5 [0], Part III-2.

 Many authors consider only concrete functors which are transportable. The preceding results are easily adapted to this case.

REFERENCES.

- 1. J. ADAMEK & V. KOUBEK, Completions of concrete categories, Cahiers Topo. et Géom. Diff. XXII-2(1981).
- 2. H. HERRLICH, Initial completions, Math. Z. 150 (1976), 101-110.
- 3. H. HERRLICH, Initial and final completions, *Lecture Notes in Math.*, Springer 719 (1979), 137-149. This paper contains an important bibliography.
- 4. H. HERRLICH, Universal completions of concrete categories, Proc. Conf. on categorical aspects of Topology and Analysis, Ottawa (1980).
- 5. C. MARSHALL, Lie derivatives in differentiable spaces, Rocky Mountains J. of Math. (to appear).
- 6. NGO VAN QUE, Du prolongement des espaces fibrés et des structures infinitésimales, Ann. Inst. Fourier XVII-1, Grenoble (1967), 157-224.

The numbers between // refer to the «Liste des publications de Charles Ehresmann», published in *Cahiers Topo. et Géom. Diff.* XX-3(1979) and in

0. Charles Ehresmann: Oeuvres complètes et commentées, Amiens, 1980-81.

In particular, the often cited

U. E. R. de Mathématiques Université de Picardie 80039 AMIENS CEDEX.

^{/ 107/} Prolongements universels d'un foncteur par adjonction de limites, Dissertationes Math. LXIV, Varsovie (1969), 1-72; reprinted in [0], Part IV-1.