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ON LOCALLY SIMPLY CONNECTED TOPOSES AND THEIR

FUNDAMENTAL GROUPS *)

by Michael BARR and Radu DIACONESCU

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII-3 (1981)

3e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

In SGA 1 Grothendieck introduced the notion of the fundamental group

of a scheme. In terms of a topos Grothendieck’s fundamental group classi-

fies finite coverings of the terminal object. There is some evidence that

in the context of schemes (in particular that of fields) all ( connected )

coverin gs may be finite. However in a general topos - in particular in the

sheaves on a locally simply connected topological space - there are gen-

erally infinite coverings and a workable theory of the fundamental group
should account for them.

In this paper we give a preliminary report on our investigation of

the fundamental group of a topos. We define the notion of a locally simply
connected topos and describe the group in that case.

If X is a topological space, the category Sh (X) is locally simply
connected in our sense iff X is locally connected and has a universal cov-

ering space.

We are working exclusively in the context of a molecular or locally
connected topos E . This means that every object E of E can be written

E = £Mi where Mi is a molecule, meaning that Mi cannot be written as

a sum of two proper subobjects. The Mi i are called the molecules or con-

nected components of E . Let A E be the set of all molecules of E . Then

A: E - Sets is a functor since under a map E - E’ the image of a mole-

cule of E cannot be spread across two or more molecules of E’, hence

we get A E -&#x3E; A E’ . Assume T = Hom(1, -): E -&#x3E; S = Sets has a left adjoint

*) This research has been supported by National Science and Engineering Research
Council of Canada as well as the D6partement de 1’Education du Qu6bec.
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0 , given by An = 11 ; then A is left adjoint to A . This is most easilyn

seen for molecules and extended by additivity of A . See [Barr- Paré] for

details.

Given that E is locally connected, it is not very restrictive to sup-

pose that E is connected ( i, e. A1 = 1 ). The reason is that correspond-

ing to 1 = ZCi we get a decomposition of E = iE/Ci (the sum in the

category of geometric morphisms) and every phenomenon of E can be stud-

ied on the individual components.

Throughout we will suppose E is a complete, connected molecular

topos.

D EFINIT ION 1. Let U and E be objects of E such that U has global

support ( i, e. U - 1 is epi). We say that E is a locally constant object
split by U if there is an n E S such that E X U An X U in E/U . ( We

write E =U A n to describe the above. ) We let Spl (U) denote the full sub-

category consisting of the locally constant objects split by U.

For convenience we will sometimes say that E is split by U if

E =U A n even if U does not have global support ( in which case E is not

necessarily locally constant).

L EMMA 1. L et U be a cover o f 1 in E. Then for any V, W C A ( U ) (i. e.,
V and W are conn ecte d compon ents o f U ) there i s a s et

such that for i = 1, ... , m, vi-1 X vi # 0.
PROOF. Let U = Z{Vi | Vi C A(U)}. Partition A(U) into two sets I

and J where I contains all indices t such that vi can be « chained) to

V in the above manner and J contains all the rest. Then 1# QS and if also

I # 0 we have

which implies that the images in 1 of Q Vi and 2 Vj. are disjoint and
iE I 

i jcj
since their sum is 1 this contradicts the connectedness of 1 .
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LEMMA 2. I f V -&#x3E; U is a m01phism in which V has global support, then

Spl(U) C Spl(V). The number of leaves&#x3E; n is the same for U and V.

P ROO F. Both squares

are pullbacks.

DEFINITION 2. Let V C A (U). We have for E E E an adjunction morphism

n = n(EXV): ExV-&#x3E; AA(EX) which gives

Adding this up over all h E A (U) we define a functor T = ZTV and

THEOR EM 1. L et E be a complete, connected, molecular topos, U an ob-

ject of E with global support and E an arbitrary object o f E. Then the

following are equivalent:
(i) E c Spl(U).
(ii) E is split by every V c A (U ).

(iii) TV E is an isomorphism for all V c A(U).
(iv) T E is an isomorphism.

(v) There is a morphism f: T E -+ E such that f . r E = p (projection).
(vi) There is for each V c A ( U ) a rnorphism

f V: TV E -&#x3E; E such that f V. t V E = p . 
PROOF. We will show that

( i ) =&#x3E; (ii): This is an immediate consequence of Lemma 2.

( ii ) =&#x3E; ( i ) : For any VlA(U) we have an

If also W C A(U) suppose that V X W# 0 and Y C A ( V X W ) .Then by pull-
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ing back as in the proof of Lemma 2, we have E X Y = ny X Y as well as
E X Y = A nW X Y, whence applying A, n y = nW . It follows from Lemma 1

nV = n does not depend on v .

( ii ) =&#x3E; ( iii ) : Let f : E X V - A n be the morphism such that

is an isomorphism. Let f: A( E X V ) -&#x3E; n be the map which corresponds
under adjointness. Then

commutes. Apply A and use the Frobenius isomorphism to obtain

whence 7 is an isomorphism. Hence so is A f X v and so is r E.

: Just add up over all v.

Compose f with Tv E - T E .
The composite

is the identity. If we pass to the connected topos El 1/, this becomes

E - A n - E . Apply A A to get

and with the middle map isomorphism we get successively that q E is mono

and epi.



We are now going to construct a left adjoint to Spl (U) C E . Let a
functor S and a natural transfonnation Q be constructed so that

is a pushout. It follows easily from the equivalence of ( i ), ( iv) and ( v)

above that E c Spl(U) iff o- E is an isomorphism iff orE has a left inverse.

We observe that since SE is constructed from pushout, - X U, A and A,
all of which commute with arbitrary colimits, so does S. Now let L U E =
L E denote the colimit of the diagram

THEOR EM 2. For any E C E, L (E) C Spl(U).
P ROO F. Ve use the above mentioned observation that S commutes with

colimit. Thus L (E) and SL (E) are the colimits respectively of the two

sequences below.

The map in one direction is induced by the vertical maps Q as shown. In

the other we use the identity maps as shown. The duals of the simplicial
face identities - which are evidently satisfied here -show that these both

induce maps. Moreover, since the transition maps coequalize all these face

maps, the same identities show that the composites induce the identity on

L(E) and SL (E) respectively.

PROPOSITION 1. The inclusion Spl(U)C E preserves equaliz ers.

P ROO F. Let

305
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be an equalizer in E with E’ and E" in 5p. For any v C A(U) , let
n be the equalizer of A( gX V) and A (hXV) . Then from

it follows that E X V = 0 n X V and the conclusion follows from theorem 1 (ii).

P ROPO SITION 2. Let

be a pullback. Then E has a complement in F iff E1 has a complement
in F1.

P ROO F. Let E’ be the pseudocomplement of E in F and E’1 the comple-
ment of EI in FI . ° Then it is evident that E’1 3 E’ X F E 1. On the other
hand,

Thus if E" is the image of E 1 in F, E’nE = 0 and hence E"C E’ from

which

so that Ej = E’XFF1. The inclusion E + E’-&#x3E; F thus pulls back to an iso-

morphism and with F - F, it had to be an isomorphism.

COROLLARY 1. If U -&#x3E; 7 and E&#x3E;-&#x3E; F are such that E X U has a comple-
ment in F X U, then E has a complement in F.

COROLLARY 2. L et f: E C-&#x3E; F with E and F in Spl(U). Then E has a

complement in Spl(U).
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PROOF. For any V C A (U),

commutes and A(f x V): A(E x V) -&#x3E; A(F x V) is a mono because f x V
is and has a complement being in S . Thus f X h has a complement for each

V C A( U) so that f X U does and hence f does. It is clear that the com-

plement is also split by each v,

THEOR EM 3. The functor L : E - Spl (U) is left adjoint to the inclusion..

PROOF. If f: E - F is given and F E Spl (U) we get

etc. which gives L E -&#x3E; F whose restriction to E is f . To see the unique-
ness, it is sufficient to consider the case that E is non-empty and con-

nected. Then

is an isomorphism whence so are A (t) and A (o-) so that

Thus S( E ) and similarly each Sm (E) is connected. Since A commutes

with colimits, AL (E) = 1 so L(E) is connected. Now if two distinct

maps L ( E) =: F agree on E , their equalizer contains E and is thus non-

empty while by Proposition 1 the equalizer lies in Spl( U ) . By Corollary
2 above, that equalizer has a complement and is evidently non-empty,

whence since L(E) is connected, it is all of L(E).

We remark that every object of Spl(U) has global support since

EXU= An X V implies that the support of E X U , hence of E , is 1 ,

PROPOSITION 3. Let VE A(U) and A = L(V). Then A is connected

and ,Spl( V) - Spl( A).

PROOF. From the Frobenius isomorphism, it is immediate that Ar is an
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equivalence, hence so is 11 o- from which A ( E) = A L ( E) follows. Thus

A is connected. Next we observe that any object E split by U is split

by V, by lJX v and T( V). Moreover from Lemma 2 it follows that the

number of «leaves » is the same in each cover of the pushout diagram de-

fining S. Thus any object split by v is split by S(V), hence by Sm( V)
and finally by L ( v) . To go the other way, observe there is a surjection

and use Lemma 2. We remark that Proposition 3 implies that

is an i s om orph is m .

PROPOSITION 4. A ( A X A ) = T ( AA ) = Hom ( A , A ) and is a group. /nPROPOSITION 4. A(AX A) = T(AA) = Hom(A, A) and is a group. In

particulcr, every endomorphism o f A is an automorphism.

PROOF. Let aA: AA(AXA)XA-&#x3E; A be a map such that

By adjunction, this corresponds to a map

We claim that a (A) is an isomorphism. Let u: 1 -&#x3E; T-&#x3E; (A A) be given and

u ; A -&#x3E; A the map which corresponds. Then

PROPOSITION 5. Let E - E’ &#x3E;-&#x3E; F with both E and F in Spl(U). Then
so is E’.

P ROO F . Let n be the image as indicated in

Then we have
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from which the result follows.

PROPOSITION 6. Every endomorphism o f A is an automorphism.

PROOF. It follows from Corollary 2 and Propositions 3 and 5 that every

endomorphism is epi. Now if f ; A -&#x3E; A ,

is surjective in S, hence has a right inverse. This implies that f X A :
A X A -&#x3E; A X A has a right inverse g. Then for d : A -&#x3E; A X A the diagonal

m ap,

But then Pl- g. a : A -&#x3E; A is both an epi and a mono, hence an isomorphism,

whence f is too.

P ROPO SITION 7. Spl(A) consists of the o bjects with an A-presentation,
i, e, all objects which are a coequalizer o f a pair o f maps

P ROOF . From Theorem 1 ( v ) and the fact that the projection p is an epi,
it follows that every E c Spl ( A ) is a quotient of

The kernel pair is in Spl( A ) and is a subobject of

The only subobjects which belong to Spl (A) are of the form A m X A . For

the converse, it suffices to observe that the inclusion of Spl ( A ) -&#x3E; E pre-
serves coequalizers which is proved in the same way as Proposition 3.

PROPOSITION 8. The inclusion Spl (A) -&#x3E; E has a right adjoint R .

PROOF. See [Barr, 1978], Section 2, especially ( 2.6 ) and (2.7).

COROLLARY 3. Spl(A) is an atomic topos with A as a generator. Spl(A)
i s equivalent to ,SA ut (A)

PROOF. Let 1: Sp l ( A) -+ E be the inclusion. Then Spl(A) is the category
of coalgebras for the left exact cotriple arising from I i R. It is clear that
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A : S -&#x3E; E factors through Spl (A) from which it is evident that

The sequence

shows that A is a generator. Since every object of Spl (A) is a sum of in-

decomposables which are evidently in Spl (A) and by Corollary 2 irredu-

cible in Sp l (A) , it follows that Spl (A) is atomic. With End( A ) = Aut( A)
the result follows from Giraud’s characterization of toposes [Barr, 1971,

Appendix], together with the fact that there are no non-trivial topologies
on a group.

THEOREM 4. A is a A G-torsor in E.

P ROO F. The isomorphism A XA = A G X A is evidently true for the object
A corresponding to G in SG.

COROLLA RY 4. I f f, g: E -&#x3E; A are two «elements) of A defined over the

non-empty object E, there is a unique h c Aut(E) with h f = g.

TH EOR EM 5. The diagram

is a pullback..

P ROO F . S is equivalent to SG/ A ( recall A is the G-set G ).

The significance of this fact was pointed out by M. Tiemey. The

way to understand this theorem is that A is the universal covering space
for those coverings that are split by U ; that A , hence the topos SGI A is
the universal covering in SG and that this is preserved under pullback.

PROPOSITION 9. The inclusion of Spl(A)-- E preserves exponentiation.
Hence R is a molecular morpltism.

PROOF. Let E, F C Spl( A) . Then, for any D E E,
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[Barr- Paré, Theorem 15] so that EF c Spl ( A ) and the conclusion follows.

PROPOSITION 10. L et Spl(A) C Spl(B ). Then the inclusion is logical
and has left and right adjoints. It is induced by a surjection

P ROO F. Consider the functors

VVe have, for

so that I B , A -1 RA IB Similarly, LA IB -1 IB,A - · For the rest, the fact that
A c Spl( B ) is an atom implies there is an epimorphism f : B -&#x3E; A . For any

g: B -&#x3E; B there is, by the corollary of Theorem 4, a unique 0 (g): A -&#x3E; A

such that

commutes. From the uniqueness of 0 it readily follows that 0 is a homo-
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morphism. The surjectivity of 0 can be readily inferred from the fact that

B is projective in Spl(B).

Let Spl(A) c E 3 Spl(B). Then C = A X B is an object of global

support and evidently Spl (A) C Spl( C) D Spl (B) - In other words the

class of subcategories of E of the form Spl (A ) is filtered. It is also small.

For let H be an object where subobjects generate E . Given v -*+ 1 , we

can find an epi ZHi -&#x3E; U where e ach Hi C H . Clearly Spl (U) C Spl(IH i).
Moreover, if any Hi is repeated, it may be omitted without changing the

class of objects split. Thus every subcategory of the form Spl (U) is con-

tained in a subcategory Spl(ZHi) as ZHi ranges over all irredundant

sums of subobjects of H with global support, of which there is only a set.

V,e let Spl(EJ denote the union of all the subcategories of the fonn Spl(U).
Spl(E ) is a disjoint union of toposes along logical morphisms and is an

atomic topos. We say that E is locally simply connected if there is a

U -&#x3E;-&#x3E; 7 such that Spl(U) = Spl(EJ.

THEOREM 6. The following are equivalent for a molecular Grothendieck

topos E : 

(i) E is locally sim ply. connected.

(ii) Spl (E) is cocomplete.
(iii) Spl(E) -&#x3E; E has a left adjoint.
(iv) Spl(f ) -* E has a right adjoint.

P RUO F. If ( i ) holds, Spl(E) = Spl( U) so that the other three hold. Each

of ( iii ) and ( iv ) imply ( ii ). If Spl(E ) is cocomplete, let {Ai} range over
a set of generating atoms so that Spl(E ) =U Spl(Ai). Let A = ZAi in

Spl ( F ). Then there is a U C E such that U splits A . Since Ai &#x3E;-&#x3E; A ,

U also splits Ai . If E C Spl (E), E c Spl ( Ai ) so there is a presentation

from which U also splits E.

EXAMPLES. Let X be a topological space. A continuous map p ; y - X is

called a covering if each point x c X has a neighborhood Ux such that
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p-1 (U) is the disjoint union of a family of subsets of Y each of which is

mapped homeomorphically by p onto Ux . It is clear that such a p is a

sheaf on X and that if U is the disjoint union of the Ux, p is a locally
constant sheaf split by U. When X is connected - which we henceforth

assume - a covering is called trivial if it is split by X itself. X is said

to be simply connected if X is locally connected and every covering is

trivial. It is shown in standard texts that any contractible space is simply

connected. We say that X is locally simply connected if it is locally con-
nected and every point has a simply connected neighborhood. The disjoint
union of such neighborhoods will split every covering so that the topos of

sheaves is locally simply connected. It is not altogether clear to us that

a space which has a cover U - X that splits every covering is locally

connected in the sense of [Chevalley], namely that every point has a sim-

ply connected neighborhood. If there is such a v there is an A which cor-

responds and A is a simply connected covering which is a universal cover-

ing space. In any case, whenever the space has a universal covering space,
the fundamental group as defined by Chevalley is the group of automorph-
isms of the universal covering.

On the other hand, the fundamental group defined as homotopy clas-

ses of closed paths might not be the same. An example is given by the long
circle. To define this we describe the long line as the space

01 X [ 0, 1 ] U -O-1 modulo the relation (a , 1 ) - (a+1, 0 ) for a c 0 1 .
This is ordered by:

This space equipped with the order topology is the long line. Think of it

as the set of all countable ordinals plus the first uncountable one with an

interval between each x and x+1 . The long circle is the space gotten by

identifying Or with (0, 0 ) . Although the space has a hole in it, the hole is

too big to be surrounded by a path so the path fundamental group is trivial.

On the other hand the space has a covering by a space made up of countably

many copies of the long line laid end to end and that space is clearly con-
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nected. It can readily be seen that it is also simply connected, from which

it is trivial to see that the Chevalley fundamental group is Z .

Let X be the space consisting of infinitely many circles joined
at a point with radii shrinking to 0 , topologized as a subset of the plane.
The space is connected and locally connected but no neighborhood of the

common point is simply connected, nor does the topos of sheaves satisfy
our possibly weaker form of local simple connectivity. A covering space

p : Y - X must split some U -++ X. Since U is a quotient of a sum of open
subsets of X , each of which must split p , it follows that p splits over a

neighborhood of the common point. This neighborhood contains all but finite-

ly many of the circles and over this neighborhood Y must be trivial. The

remaining finitely many circles may be covered by arcs and so there may
be loops in Y over there. We omit the details, but for a cover tJ which

covers all the circles but the first n , the category Spl(U ) is SG where
G is free on n generators. The category Spl ( Sh (X ) ) is the union of these

categories.
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