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SHEAVES AND CAUCHY-COMPL ETE CATEGORIES

by R. F. C. WALTERS

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII -3 ( 1981 )
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I want to consider the point of view ( see [2, 4] ) that sheaves are

sets with a generalized equality, in the context of enriched category theory

( see [3]), where such structures as metric spaces and additive categories
are regarded as categories with a generalized hom-functor. In this context

sheaves on a locale H turn out to be precisely symmetric Cauchy-complete

B-categories for a suitable bicategory B constructed out of H.

This idea arose in conversations with Stefano Kasangian and Renato

Betti in Milan. The necessary B-category theory was developed with Betti.

I present here only the basic idea; developments will appear elsewhere.

1. CATEGORIES BASED ON A BICATEGORY (see [1] )

The theory of categories with hom taking values in a bicategory,

rather than a monoidal category ( = bicategory with one object) seems to

be very little developed. I have only some unpublished notes of R. Betti.

However, most of what we need for this lecture is a simple translation of

[3]. For our application we need only consider the case where the base

bicategory B is locally partially-ordered; i. e., B(a, b) is a poset for all

a, b in B . We need also to assume that all these posets are co-complete
and that suprema are preserved by composition in B .

DEFINITIONS. A B-category X is a set X with a function e: X -3, obj. B

and a function d: X x X -&#x3E; morph. B satisfying :

(Draw a picture : X is a space lying over B. )
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A B-functor f from X to Y is a function f: X - Y satisfying:

EXAMPLE. Let H be a locale. Form a bicategory B from H as follows:

objects of B : opens u in H,
arrows from u to v : elements w  u A v,

2-cells : order in H,

composition of arrows: intersection.

Notice that B = Relations(H).
From a sheaf F on H we can form a B-category L ( F) as follows:

L ( F) = set of partial sections of F ,

Notice that L ( F ) has the property that if

then s = t . Call such a B-category skeletal.

Notice that the bicategory B = Span(H) of this example has the

property that B°p ( arrows reversed) = B. This property allows us to say

that a B-category X is symmetric if

.

Clearly L ( F) is symmetric and in fact L is a fully-faithful functor

L : Sheaves (H) -&#x3E; skeletal symmetric B-categories.

2. CAUCHY-COMPL ETENESS

To express Lawvere’s notion of Cauchy-completeness we need to

define bimodules. A bimodule 0 from X to Y (denoted O : X -|&#x3E;Y)
is a function O: X X Y - morph. B satisfying ( for all x, x’ E X , y, y’ E Y)

As usual a B-functor f:X -&#x3E; Y yields a pair of bimodules
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defined by

Further f * and f * are adjoint in the sense that

( where w e w rite 3y for the supremum ( over y ) in B ( x, x’) ) and

Then a B-category Y is Cauchy-complete if every adjoint pair of

bimodules O, Y: X Z$l Y arises from a functor X - Y.

3. SH EAVES

We now have the definitions required to state the result.

THEOR EM. I f H is a locale, then Sheaves(H) is equivalent to the cat-

egory o f skeletal symmetric Cauchy-complete Rel (H )-categories.

P ROO F. We want to see

( a) that L lands in Cauchy-complete B-categories, and

(b) that every skeletal Cauchy-complete symmetric B-category is iso-

morphic to L ( F ) for some sheaf F .

For each element u E H we can define a B-category û with one element *

and with e(*) = u, d(*, *) = u. Then, in testing Cauchy-completeness of

Y , we need only consider adjoint pairs of bimodules from a to Y for each

u c H .

To prove (a) consider an adjoint pair of bimodules O (s), Y (s)
(sE L ( F ) ) froin u to F. Then condition ( i ) of adjointness says that:

us 
= O(S)AY(S) ( sc L(F)) is a cover of u. Condition (ii) says that

s Iu s (sE L (F ) ) is a compatible family of sections, and so there is a

section Sol F(u) such that

Now it is clear that for a general s,
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From property (ii) of adjunction :

and so by ( i )

From property ( iii ) of bimodules

Hence,

That is, the pair of bimodules arises from a functor.

To prove ( b) consider a skeletal Cauchy-complete symmetric B-

category Y. We need to be able to define the restriction of an element y

over u to v  u . But this restriction comes from the fact that the adjoint

pair of bimodules

is given by a functor. We need also to have the glueing together of a com-

patible family of elements (ya)a with a e(ya ) = u . In this case the re-
quired section comes from the representation of the bimodules

as a functor.
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