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COMPLETIONS OF CONCRETE CATEGORIES

by Ji0159í ADÁMEK and Václav KOU BEK

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII-2 (1981)

3e COLLOQUE SUR LES CA TEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, Juille t 1980

INTRODUCTION

Given a complete base-category X, we study completions of con-
crete categories, i. e., categories K endowed with a faithful (forgetful)
functor U: K -&#x3E; X We prove that each concrete category K has a universal
concrete completion U*: K*-&#x3E;X. This means that:

( i) K* is a complete category and its limits are concrete ( i. e., pre-
served by U * ),

( ii ) K is a full, concrete subcategory of K* closed under all the ex-

isting concrete limits, and

( iii ) each concrete functor on K, which preserves concrete limits, has
a unique such extension to K* .

It turns out that, moreover, K is codense in K*, i.e., each object ofK*
is a limit of some diagram in K .

The category K* is constructed by adding formal limits to the ob-

j ects of K. The same method has already been used by C. Ehresmann [3].
New in our approach is the fact that the addition of limits need not be iter-

ated - hence the codensity. The morphisms of K* are defined by a natural

transfinite induction. A direct construction of the universal completion will

be presented by H. Herrlich in [5].
The completion of concrete categories yields much more satisfac-

tory results than that of «abstract» categories, see for example [6,7,8].
V. Tmkov6 even exhibits in [8] a category K which cannot be fully em-

bedded into any finitely productive category with all the finite products
of K preserved.
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1. Concrete categories over a base category X ( assumed to be com-

plete throughout the paper) are categories K together with a functor U ;

K 4! (denoted by v A = I A I on objects, U f = f on morphisms ) which is
faithful and amnestic, i. e., for each isomorphism f ; A -&#x3E; B in K with U f
a unit morphism in X we have A = B . Given concrete categories K and
a concrete functor is a functor F : K -&#x3E; £ commuting with the forgetful func-

tors ( i. e., on objects |FA|=|A|; on morphisms Ff = f).
A concrete category K is concretely complete if the forgetful func-

tor «detects» limits in the following sense. Let D be a diagram in K . (In
the present paper this will always mean a small collection of objects

and sets of morphisms

The forgetful functor detects the limit of D if for each limiting cone 77i:

X -&#x3E; |Ai|, i c I of the underlying diagram D in X ( with objects I Ai ,
i C I (D), and morphisms |D[i,j] = D[i,j] ) there exists an initial lift t
A in K. Recall that an object A is an initial lift of a cone 7Ti: X - AL if:

( i ) I A 1 = X and each 77, : A -&#x3E; Ai is a morphism in K ;
( ii ) given an object B and a map h: B -&#x3E; X such that each IT i. h:

B - Ai is a morphism in K , then so is h: B -&#x3E; A .

Now, an initial lift of a limiting cone of |D| is clearly a limit of D. Note

that we can speak about the initial lift since, due to amnesticity, it is un-

ique. Note also that a concretely complete category is transportable, i.e.,

for each isomorphism f: X-&#x3E; Y in 3( and for each object A in K with

|A| = X there exists an object B in K such that |B| = Y and fj A - B
is an isomorphism, too. In fact, a concrete category is concretely complete
iff it is complete and the forgetful functor

( i ) preserves limits and ( ii ) is transportable.

Fortunately neither « amnestic » nor « transportable » are severe restrictions :

2. LEMMA. For each faithful functor U: K -&#x3E; X there exists a transport-

abl e concrete category U’: K’-&#x3E; X and a concrete e quivalence E : K -&#x3E; K’
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with v = v ·. E.

P ROO F . Let (K",U") denote the following category and functor: objects

of K" are triples (X,f,A) with X an object in X, A an object in K and

f: X -&#x3E; |A| an isomorphism in X ; morphisms p: (X, f, A) - ( Y, g, B) of
K" are maps p: X, Y such that g.p. f-1: A -&#x3E; B is a morphism in K ;

the functor U" : K"-&#x3E; X sends ( X , f , A ) to X and p to p.

Then U" is transportable but not amnestic. Therefore, we define an equi-
valence = on objects by:

is an isomorphism in K".

Denote by K’ any choice class of this equivalence, as a full subcategory

of K., and let U’ = V" /K’. Then (K’, U’) is clearly a transportable con-

crete category and the functor E: K -&#x3E; K’, where E(A ) is the representant

of ( A, idA , A) , is an equivalence functor with U = U’. E.

3. DEFINITION. A universal concrete completion of a category K is

a concretely complete category K*, in which K is a full and concrete sub-

category ( i. e., the forgetful functor of K is inherited from K* ) closed to

concrete limits and with the following universal property:
Let ? be a concretely complete category. Then each concrete functor

F: . K - £ preserving concrete limits has a concrete continuous extension

F*; K*-* ?, unique up to natural equivalence.

4. MAIN THEOREM. Every concrete category K has a universal con-
crete completion in which K is codense.

5. REMARK. «Codense» means that each object of the extension K*

is a limit of some diagram in K. It then follows that K is closed under ar-

bitrary colimits in K* ( see [4] ).
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6. PROOF OF THE MAIN THEOREM. Let K be a concrete category.
We shall define its concrete completion K* of which we shall verify the

properties of a universal concrete completion, except transportability. Then

we use Lemma 2: there exists a transportable concrete category, say K*’,
concretely equivalent to K* , and this is the universal concrete completion
ofK.

Denote by D the class of all diagrams in K which have a concrete
limit in K. For each diagram D in K with D $ D choose a limiting cone
(in X ) of the underlying diagram |D| , where DO = {Qi} }i C I (D) , say

Define a concrete category K*. Its objects are :

1) all objects in K , and

2) objects PD , indexed by all diagrams D in K with D $ D ( we as-

sume PD $ Ko and pD 1- pD’ whenever D # D’ ).
The forgetful functor of K* agrees with that of K on K-objects and it sends
PD to XD . The morphisms of K* will be defined by a transfinite induction :

for each ordinal k and each pair Q, R of objects in K* we define a set

of maps Hk(Q, R) C hom |Q|, |R|) and then a map is a morphism f: Q -&#x3E; R
in K* iff there exists an ordinal k with f E Hk(Q, R).

H o-morphisms are
( i) all K-morphisms between K-objects
(ii) all the connection maps zrf : PD-&#x3E; Qi ( for a diagram D $ D and

i C I (D)), and

( iii ) the identity maps id X D ; pD : -&#x3E; pD (for a diagram D$D ).
CONVENTION. A collection of H o-morphisms is said to be distinguished
if either :

( a ) it form s a limiting cone (in K ) of a diagram D f our
( b ) it is the collection 17TP | i c I(D) } for some diagram D $ D ; or
( c ) it is the singleton collection { idQ } for an object Q of K*.

Hk + 1-morphisms are « basic» morphisms and their composition. A map
f: |Ql -&#x3E; |R| (where Q, R are objects in K*) is a basic H k+1-morphism
if there exists a distinguished collection rj : R - Rj, j C J, in H 0 such that
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rj. fEH ( Q, Rj) for each j C J .

Hy = k U  Y Hk for each limit ordinal y.y ky 
It is clear that the above defines correctly a concrete category K*

except that K* fails to be amnestic.

(1) K is a full subcategory o f Yx*.
PROOF. %’e shall prove, by induction in k , that for each morphism f in

Hk(Q, R) such that Q is an object of K, there exists a distinguished
collection pi: R - Ri such that each Pi. f: Q -&#x3E; Ri is a morphism in K.

It then follows that K is full in K* : if also R f Ko , then the distinguished
collection must be a concrete limiting cone of a diagram D f D. The com-

patible collection {Pi . f} (in K! ) factorizes through the collection {pi}-
the factorization is necessarily f , thus f is a K-morphism.

For k = 0, 1 the proposition can be proved by a simple inspection.

Assuming the proposition holds for k &#x3E; 1, we shall prove it for k+l.

This is clear for basic Hk+,-morphisms : there exists a distinguished col-
lection pi: R -&#x3E; Pi such that each pi. f: Q - Pi is in Hk and, by induc-

tion hypothesis, each p i. f is a K-morphism.
Let f be a composite of n+1 basic morphisms, f = fn+ 1. fn..... f1

(with f i; Ri-1 -&#x3E; R i, where R = R0 and Q = Rn+1) and assume the pro-
position holds for compositions of n basic morphisms.

Particularly, the proposition holds for g = f n, ." , f 1 : there exists a dist-

inguished collection p i: R -&#x3E; Pi such that each pi , g: R -&#x3E; Pi is a K-mor-

phism. There follows g C H1. Moreover, since fn + 1 is basic, there exists

a distinguished collection qj: Q -&#x3E; Qj with each qj. fn+1 in Hk . Then also
e ach 

is in Hk , hence ( by the inductive hypothesis ) in K .
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(2) K is clo sed to limi ts of D-diagrams in K*.
P ROO F. Let D be a diagram in T ; denote its limiting cone by rri : P -&#x3E; Qi,
i C I . We are to show that for each compatible cone n’i: P ’ - Qi , i c I in

K*, there is a unique morphism

p : P’ -&#x3E; P with 7T! = rri , P for each i .

Since the limit of D is concrete, we have a limiting cone TT i : |P| -&#x3E; Qil 
for the diagram |D| in X. And the cone n’: |P’| -&#x3E; |Qi| is compatible
for |D|, hence there exists a unique map p : I P’| -&#x3E; |P| with the required

property. It remains to show that p ; |P’| -&#x3E; P is a morphism in K*. Since

each 7T! is a morphism in K*, there exists an ordinal y such that

Now, the collection {ni}i E I is distinguished (it is of the first type of

distinguished collections), thus n’i = ni.p E Hy (for each i E l) implies
p E Hy+1. 

(3) Each diagram D E D in K has a concrete limit in K*, viz,

The proof is analogous to ( 2 ) above : the collection I 7TD is distinguished
and it forms a limit of the underlying diagram.

COR OL L A RI E S. Every diagram in K has a concrete limit in K*;
K is codense in K*.

( 4 ) K* has limits, preserved by U.
We shall prove it in two steps: first, with each diagram D in H 0 (more

precisely, each diagram in K*, all morphisms of which belong to Ho ) we
associate a diagram D+ in K (which has a concrete limit by ( 2 ) and (3))
such that limD+ = lim D. Second, with each diagram D in K* we asso-

ciate a diagram D in Ho with lim D = lam D.

( 4 A ) Let D be a diagram in H0, say on objects Qj, j E J. Put

thus, for each /6 J’ we have a diagram Dj E D in K ( say, on objects Qji
for i c Ij) with Q. = PDJ . Assuming the index sets I. are pairwise disjoint
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and disjoint from J ( by which we do not lose generality, of course) we

define a diagram D+ in, K as follows: Its objects are

Its morphisms are:

( i ) all D-morphisms in K :

( ii) for j c J’, all morphisms in Dj : 

( iii ) for each limiting-cone morphism in D

, 
we add the unit morphism to D+ :

n

We shall prove that lim D+ = lim D . More precisely, given the (concrete)
limit S = lim D+ with the limiting cone

define for j E J’ a morphism 0 1: S - Qj by
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(This is correct: {niDj}i E Ij is a limit of D. and, by ( ii) above, {oji}i E Ij
is a compatible cone.) Then the cone I oil ic j is a concrete limit of D.
P ROO F . (a) The cone I Ojl is compatible for D , i. e., for each morphism

f E D[j, j1] we have oj1 = f .Oj. This is clear if f is a morphism of K
( then it belongs to D+ ). If f is in Ho -Km then either f is a unit mor-

phism ( and the compatibility is clear) or f = 7T iJ for some j E J’ and i E Ij
such that Qj = P Di and Qj1 = Qji. In that case

Since

compatibility is proved.

(b) The cone I oi } is universal. Let Yj : T -&#x3E; Qj, j f J , be a compatible
cone for D . Define a compatible cone for D by putting

Then there exists a unique morphism Y : T , S with

For each je J’, the condition II is equivalent to Vf j= Oj. Y ( because
{n.Dj } is a limiting cone for Dj and we have

Thus, the cone {Yj} factorizes uniquely through the cone {Oj}.
( c ) This limit of D is concrete. More generally: given an arbitrary functor

F’; K*-&#x3E; L ( e, g., the forgetful functor) which preserves limits of all dia-

grams in K , then F preserves the limit of D . The proof is analogous to

(b): Given a compatible cone Yj: T - FQj for F (D) in 2, put

This yields a compatible cone for F(D+). By hypothesis, F preserves
the limit of D+ , hence there exists a unique Y: T - F S with



217

For each j E J’, the condition II is equivalent to Yj = Foj. Vf -
(4B) For each diagram D in K* we shall construct a diagram D in

H 0 such that each D-object is a D-object, and we shall prove : 
( i ) lim D = lim D and the restriction of the limiting cone of D to the

objects of D is the limiting cone of D , and

( ii ) each functor, preserving limits of diagrams in H0, preserves the

limit of D .

The method is first to construct D in case D consists of a single morphism

f (then D is denoted by D(f)) and then, given an arbitrary diagram D,
to obtain D by merging the diagrams D(f) with f ranging through the mor-

phisms of D.

Thus, we first define a diagram D(f) for each morphism f: P - Q
in K*. We shall proceed by induction in k where f E Hk ( P, Q ). The ob-

jects of D(f) will form a collection R fi, i E l (f), with two distinguished
ones: Rfdf (the domain object) and Rfcf (the codomain object) for

(we write also just R fd and Rfc ). And we shall also observe that there

exist morphisms r fi: P -&#x3E; Rfi, i E l (f), forming a limiting cone of D( f)
such th at rfd = idP and r fc = f .

I. For k = 0 we let D(f) have just two objects P = Rfd, Q - Rfc,
and just one morphism f . The limit is idP; P -&#x3E; Rfd and f: P -&#x3E; Rfc, of
course.

II. Let f E Hk+1 be a basic morphism. We fix a distinguished collec-
tion q.: Q -&#x3E; Qj, j E J, such that gj =def qj.f is in Hk for each j E J. Thus

we have diagrams D(gj). The diagram D(f) is obtained as follows:

( i ) Form the disjoint union of the diagrams D(gj), j E J ;
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(n) Merge all their domain objects Rgjd = P) : the merged object
will be the domain object Rfd of D(f) ; 

(iii) Add Q as a new object; this is the codomain object Rfc of D(f) ; 
( iv) Add a new morphism qj: Q -&#x3E; Rgjc for each j E J. 

Thus, we obtain a diagram D( f) in H0. We claim that its limiting cone is

First, this cone is compatible for D(f) : for each j E J we have

and the compatibility with each morphism inside D(gj) is clear. Second,
given another compatible cone

we shall show that its unique factorization through the given cone is s0.
The uniqueness is evident, since 1 p : P - Rfd is in the given cone. Fur-
their, for each j E I we have a compatible cone I sji Iic I (gi) for D (gj), 

which factorizes through the limiting cone I r g .1, .J } of b(gj) - and the factor-
izing morphism must be So again, thus 

Finally, there follows s 1 = f . 5 because, for each j E J, we have

( by the inductive hypothesis ), hence

Now, {qj}jEJ is a distinguished family, hence a limiting cone for some

diagram ( see (2) and ( 3) above), thus s1 = f . so.
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III. Let f = fn..... f1 be a composite of basic morphisms in Hk+1.
We have diagrams D( f1), ..., D(fn) and we define D(f) as follows :

( i ) Form the disjoint union of the diagrams D(f1), ... , D(fn) ;
( ii) Merge the codomain object of D( f ) with the domain object of

D(ft+1) ; the domain object of D(f1) will be R fd and the codomain ob-
ject of D(f n) will be Rfc. 
We claim that the limiting cone of D( f ) is :

(In particular,

The compatibility of this cone is evident. Given another cone

compatible with D(f), for each t we have a cone {sti} compatible with
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D(f ). Thus, there exists a unique s : S -&#x3E; Pt with sti = rfti - S - in par-
cular s id = st (because rftd = idPt-1 by the inductive hypothesis); fur-

ther s tc =ft. S t (because r. = ft ), 
hence

Thus, the cone {sti} factorizes ( uniquely ) through the above cone

IV. Let y be a limit ordinal. If D(f) is constructed for all f c Hk with
k  y , then D (f ) is constructed for all f E H .

Thus we have constructed D( f) for each morphism in K*.

V. Given an arbitrary diagram D in K* on objects T., j f J, define

a diagram D as follows :

(i) Form the disjoint union of diagrams D( f), with f ranging over
all morphisms of the diagram D ;

(ii) Add the objects of D as new objects ;

(iii) For each /6 D [/)/’] merge Ti with the domain object of D(f)
and merge 7., with the codomain object of D(f).

The diagram D lies in H 0 ’ hence it has a concrete limit ( by ( 4 A ) ), say
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Ve claim that the former part {tj}jEJ is a concrete limiting cone for D .

(a) The cone I t j } is compatible for D, i.e.,

Morphisms tfi, i c I(f), form a compatible cone for D(f). This cone fac-
torizes through the limiting cone I r fi} : there is a

Necessarily t = tfd = tj ( since rfd = idTj), hence ( since rfc = f ):

(b) The cone I t i } is universal. Proof: Given another compatible cone

{sj} with sj : S -&#x3E; T., define sfi 
= 

rfi . sj for each morphism f : Ti - Tj,
in D and each i c 1(f). This clearly yields a compatible cone for D (the

compatibility of {sj} guarantees that the definition of sfi is correct, i. e.,

sj = sfd and s i, 
= 

sfc : recall r fd = id and r fc 
= f ). Thus, there exists

a unique morphism s; S -&#x3E; T with
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Since the latter follows from the former (sfi = rfi. sj and t fz = rfi .tj imply

the unicity holds also for D .

(c) This limit of D is concrete. More generally: given an arbitrary
functor F : K*-&#x3E; L which preserves limits of all diagrams in H 0’ then F

preserves the limit of D. ( E. g., the forgetful functor can be taken as F,
see (4 Ac).) The proof is analogous to (b): Given a compatible cone

sj : S -&#x3E; F Tj for F( D) in L, define sfi = F r fi . sj to obtain a compatible
cone for F(D). Since {F tj} u } Ftfi} is a limiting cone for F(D) , the

cone {sj} factorizes uniquely through {Ftj}.

( 5 ) The conclusion of the proof. Let K*’ be a transportable category,
concretely equivalent to K*. We shall verify that K*’ is a universal con-

crete completion of K. Without loss of generality we assume that K is a

full concrete subcategory of K*’ .

Since K* has limits preserved by the forgetful functor, so does

K*’ - recall that equivalences preserve limits. This implies that K* is

concretely complete ; also, since K is closed to concrete limits in K*, so
it is in K*B

Given a concretely complete category 2 and a concrete functor

F K - 1i5 preserving concrete limits, we are to find a concrete continuous

extension of F to K*’, We shall verify that F has a unique concrete, con-

tinuous extension to K*; then it has such an extension to K*’, unique up
to a natural equivalence. For each diagram D in K, D 4 T, we have a dia-
gram F(D) in ? such that |D| = |F D| ( since F is a concrete functor).

We have choosen a limit 77p: XD - |Qi| I in X for the diagrams I F( D) I 
Since 2 is a transportable concretely complete category, there exists an

object RD in L with |RD| = XD and such that nDi: RD -&#x3E; F Qi is a limit-

ing cone for F(D) (since L is amnestic, R D is unique). There is no

other choice of a concrete, continuous extension F* of F than

F*(PD) = RD on objects, F * f = F f on morphisms.
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We must verify that, on the other hand, this defines a concrete continuous

functor F*: K*-&#x3E; L. First, F* is indeed a functor, i.e., given a morphism

f: p D -&#x3E; p D ’ in K* then also f : RD -&#x3E; RD’ is a morphism in 2.. This is

easy to see (by induction in i with f E Hj ). Second, F* is concrete by
its very definition :

Finally, given a diagram D in K*, we shall verify that F* preserves its
limit. This is clear if D is a diagram in K : either De T and then F*

( = F on K ) preserves its limit by hypothesis; or D E D, in which case

the limiting cone is z P; PD - Qi ( see (3)). This is mapped by F * to the

cone nD; RD- FQj, which has been chosen as the limiting cone for F(D).
Further, if D is a diagram in H0 then, by ( 4 A c ) above, F * preserves its

limit, too. Hence, if D is an arbitrary diagram in K*, then, by ( 4 B c ), F*

preserves its limit again.

This concludes the proof of the theorem.

7. Without any change in the proof, the completion theorem can be gen-
eralized to f-universal completions. Let K be a concrete category and

let fl be a class of diagrams in K, each having a concrete limit in K.

Then a D-universal concrete completion of K is its concrete completion

K*, in which K is closed to limits of diagrams in T, and which has the

following universal property:
Let be a concretely complete category; then each concrete func-

tor F: K -&#x3E; L, preserving limits of D-diagrams, has a unique concrete, con-
tinuous extension F*; K*-&#x3E; L.

In the proof of the Main Theorem, let f denote the given class (and

not, as before, the class of all diagrams with concrete limits). Then the

proof of the following theorem is obtained:

8. THEOREM. Let D be a class of diagrams in a concrete category

K, each having a concrete limit in K. Then 3( has a D-universal comple-
tion, in which K is codense.
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9. We shall use this theorem to prove the existence of universal bi-

completions. First, we observe that the completion theorems above can be

dualized: if K is concrete over then 3(’P is concrete over Xop. Hence

for a cocomplete base-category, we see that each concrete category has a

universal concrete cocompletion. (The generalization to D-universality is
o bvi ou s , )

Now, let bicomplete stand for complete plus cocomplete. Let X be
a bicomplete base-category. Then a universal concrete bicompletion of a
concrete category K is a full, concrete and concretely bicomplete exten-

sion K* of K in which K is closed to concrete limits and concrete colimits

with the following universal property:
Let L be a concretely bicomplete category; then each functor F: K -&#x3E; L

preserving concrete limits and concrete colimits has a unique bicontinuous

extension F*: K*-&#x3E;L, unique up to natural equivalence.

10. THEOREM. Every concrete category over a bicomplete base-cat-

egory has a univers al concrete bicompletion.

PROOF. We shall define a transfinite sequence J(i) of concrete categories
the union of which will be the universal concrete bicompletion 1).

First, K(0) = K and Yx(l) is the universal ( concrete ) completion of

K (we omit the word concrete for shortness); second, K(2) is the D(2)-
universal cocompletion of K(l), where D(2) is the class of all diagrams in

K(1) which lie in K(0) and have a concrete colimit in K(0).

Generally, given a limit ordinal y , then :

K(Y) is the D(y)-universal completion of u K(i), where

K(y+1) is the D(y+1)-universal cocompletion of K(y), where

K(y+2) is the D(y+2)-universal completion of K(y+1), where D(y+2)

1) This union is set-theoretically legitimate: the transfinite induction defines a re-
lation p of all pairs ( x, i ) where i is an ordinal and xEK(i); th e d omain o f p i s

then th e union.
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is the class of all diagrams in K(y) with a concrete limit;
K(y+3) is the D(y+3)-universal cocompletion of K (y + 2), where

D(y+3) is the class of all diagrams in K(y+1) with a concrete colimit,
etc...

Then the concrete category K*= W K(i) is concretely bicomplete and it

has K as its full, concrete subcategory, closed by concrete limits and con-

crete colimits. All this easily follows from the fact that every concrete

category is closed to concrete 9-limits as well as concrete ( in fact, all)

colimits in its S-universal completion; analogously for cocompletions. And

every diagram in K*, being small, it lies in some Yx(’) and so it has a con-
crete limit and a concrete colimit in K(i+1).

What remains to verify is the universality. Let 2- be a concretely

bicomplete category and let F:K -&#x3E; L be a concrete functor, preserving
concrete limits and colimits. Then F can be uniquely extended into a con-

crete functor F(1): K(i) - 2, and F(1) preserves concrete colimits of dia-

grams in K ( i. e., of D(2)-diagrams), hence it has a unique cocontinuous

concrete extension F(2): K(2) -&#x3E;L, preserving concrete limits of diagrams
in K(l) ( i, e ., of D(3)-diagrams), etc... Given functors F(i) for all i  y ,

where y is a limit ordinal, then their joint extension to K(y) = u K(i)
i  y

preserves concrete colimits and concrete limits of the diagrams lying in

some K(i0) ( e. g., of D(y)-diagrams ). Then there is a unique continuous

concrete extension to Fey): K(y) -&#x3E; 2. Etc. This concludes the proof.

11. REMARK. A closely related problem to concrete completions is

that of initial completions. Let d be a conglomerate of cones in I, i. e.,

of ( possibly large) collections

of maps with a joint domain. A concrete category K is initially C-complete
if for each cone  fi: X -&#x3E; Xi &#x3E; in C and each collection {Ai} of objects
of K with X = I Ail there exists an initial lift ( see Introduction). A con-

crete functor F : K-&#x3E; L preserves (2-initial lifts if, given an initial lift A

of a cone  fi : X -&#x3E; |Ai| &#x3E; in C, then F A is an initial lift of the cone
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A universal initial C-completion of a concrete category K is its

full, initially C-complete extension K*, in which K is closed to d-initial
lifts (i, e., the embedding K, K* preserves e-initial lifts) and which has
the obvious universal property with respect to functors preserving C-initial

lifts. The existence of a universal initial completion is investigated in

[1] tor C = all cones in X: a possibly non-legitimate concrete category
K is constructed such that either K is legitimate and then it is the univ-

ersal initial completion, our fails to be legitimate, in which case the un-
iversal completion fails to exist.

In case C is a class of small cones in X, the universal initial

d-completion always exists : we have K = K 0 as a subcategory of the (pos-
sibly non-legitimate) category K and we denote by

Ki the closure of Ko for initial lifts of d-sources in K,

the closure of K1, etc...
Kw = u Ki ,
Kw + 1 the closure of K(ù for initial lifts of d-sources, etc...

Then the category K* = uK. L is always legitimate and it is evidently

the universal d-initial completion of K.

Starting with d = all limiting cones for diagrams in X, we obtain
the universal concrete completions. But in this way we cannot verify that

a concrete category is codense in its universal concrete completion. This

is why we had to prove our theorem in a much more complicated manner.

The proof of the Main Theorem above can also be modified for this

situation of initial d-completion but, again, an iteration would be used ge-
nerally. This would lose the codensity, but not the closedness for colimits.

12. EXAMPLE. Lgt X be a finitely productive base-category. For each

concrete category K there exists a universal CFP-extension K*. This is

a CFP-category ( = concrete category with Concrete Finite Products) in

which K is a full CFP-subcategory such that, given a CFP-category L,
then each CFP-functor F: K -&#x3E; L ( - concrete functor preserving concrete
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finite products) has a «unique » CFP-extension F*: K*-&#x3E; L. Proof: let d

be the class of all limiting cones for finite discrete diagrams, then a univ-

ersal d-initial completion is precisely a universal CFP-cxtension.

13. REMARK. In a subsequent paper [2] on cartesian closed exten-

sions we shall need a generalization of the previous example: Given a con-

crete category K and a class D of finite collections of its objects, there

exists a D-universal CFP-extension of K. (This is a CFP-category K*,
in which K is closed to concrete products of D-collections, which has the
obvious universal property. ) The proof of this statement is an easy modifi-

cation of the proof of the Main Theorem above ; the objects of K* will be

the objects of K and objects PD , where D is a finite collection of ob-

jects of K with D E D; morphisms are defined transfinitely in a natural

way.
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