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RESTORATION OF STRUCTURE *

by Peter HILTON and Joseph ROITBERG

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXII-2 (1981)

3e COLLOQUE SUR LES CATEGORIES
DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

INTRODUCTION

The contributions of Charles Ehresmann in the domains of differ-

ential geometry and topology are so vast and deep that they will stand for

a long time as a lasting testimony to our indebtedness to his great ma-

thematical talent. Let us only instance his pioneering work on foliation

theory in the early 1940’s, which laid the foundation of what is today one of

the most active areas of differential topology; his fundamental work point-

ing out the crucial importance of fibre bundles; and his work on Lie groups
where he, Pontryagin and Richard Brauer independently calculated the ra-

tional homology of the classical groups of the four principal types.
When Charles Ehresmann turned to category theory, it was with the

intention always of providing an appropriate analytical framework for the

pursuit of his basic interests in geometry; he did not, we believe, ever

lose sight of that fundamental purpose. He wished to abstract the structure

present in a given concrete mathematical situation and study it removed

from its adventitious context ( see [0] ).
In view of the emphasis which Charles Ehresmann placed on struc-

ture, we have thought it appropriate that this article dedicated to his me-

mory should be concerned with the role of structure. We have taken two si-

tuations, one in group theory, the other in homotopy theory, where a natural

construction leads to the loss of group structure. As a result, a property

known to be possessed by group structures is thrown into jeopardy. We show

that the property continues to be enjoyed by restoring the group structure.

* Talk delivered by Peter Hilton at the Amiens Category Theory Colloquium in

honor of Charles Ehresmann, July 12, 1980.
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This we do by enriching the original structure so that the construction,
while involving a loss of structure, no longer destroys the group-theoretical
basis of our arguments.

Let us sketch the first application, to group theory - the second

application is, conceptually, of the same kind, though the details are, of

course, very different. If the group Q acts on the group N , then we may
construct the orbit set N I Q ; however, the passage from N to N I Q in-

volves a loss of group structure. Now, if we put on suitable nilpotency hy-

potheses, we know that localization induces an injection

We would like to prove similarly that localization induces an injection

N | Q -&#x3E; N | Q, but we have lost group structure, so the conclusion is not

readily available. We enrich N by regarding it as an extension of NIP by
T where T = TCQ-1N, given that nilQN - c . Then N|Q is shown to be

representable as the disjoint union of homomorphic images of T. We have

thus restored group structure to N ( Q and may use our group-theoretical re-
sults to justify the conclusion that N | Q -* N I Q is, indeed, injective.

The technique we use in Section 1 is based on an idea due to Stein-

er [5]. We are also happy to record that the exact sequences derived in

Sections 1 and 2 have been generalised by Heath and Kamps [1] using

groupoid techniques. Indeed, Klaus Heiner Kamps talked about this in his

contribution to this colloquium.

1. GROU PS WITH OPERATORS

Let the group Q operate on the group N and let N I Q stand for the

set of orbits under the Q-action. In the passage from N to N Q we have

lost group structure. To regain it we must enrich the structure of N .

In the first instance we replace N by a short exact sequence of

Q-groups

on which Q acts. We make the two simplifying assumptions :
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(1.2) r is commutative and Q acts initially on r.

Choose an element a f N and let

Define Q(ka) similarly. Let [a] be the orbit of a ; similarly [ka] .

THEOREM 1.1 (see Theorem 2.5 of [4]). There is an exact 5-tenn sequence

where (i) ax = a ( x a ) -1, x c Q(ka) ; p b = [ ba], b c T,

(ii) the sequence is exact at T in the sense that

pb1 = p b2 =&#x3E; 3 x C Q( k a) with b1 = b2Jx,
(iii) the sequence is exact at N Q in the sense that

In the light of property ( ii ) we see that pF may be given a unique

group structure such that p : T -&#x3E; ph is a homomorphism. Moreover, T

acts on | N Q by the rule

Let us write P a for p to emphasize the dependence on a . A selec-

tion S of elements of N is obtained by first taking a set of elements of

N Q , one for each r-orbit under the action (1.3), and then taking, within

each selected element of N I Q, one representative element of N . It then

follows from Theorem 1.1 and ( 1.3) that

THEOR EM 1.2. We may represent N |Q as the disjoint union

o f commutative group s, each a homomorphic image o f r.

Thus group structure is restored to N |Q . The following special
case is of interest. Suppose that Q acts nilpotentl y on N so that nil Q N = d
and let T = TdQ-1 N ( see [3]). Then (1.2) is satisfied (T is, in fact,
central in N ) and nil Q M = d-1 . Thus if the action of Q is nilpotent of
class d, then the orbit set N|Q may be represented as a disjoint union
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of homomorphic images of T d Q-1 N .
Let us demonstrate how this may be used to prove results on orbit

sets. Let P be a family of primes and let N p be the P-localization of N .

Assume further that Q is also nilpotynt so that the nilpotent action of Q
on N induces a nilpotent action of Qp on N p . Since

it follows that for each a E N, we have a map of exact sequences

induced by

e = localization.

It follows easily by induction on d that el, e2 are localization

( since e3 is localization and localization is exact); and hence that e 3
induces eo : pT -&#x3E; p p T p which is also localization. We may thus prove a

Hasse principle for localization of orbit-sets.

THEOR EM 1.3. The function e* : N | Q - ITp Np | Qp is injective.

P ROO F . We know that, for any nilpotent group N, e*: N -&#x3E; ITp N p is in-

jective. Thus we prove Theorem 1.3 by restoring group structure. Specifical-

ly we argue by induction on d . If d = 1 we simply use the group-theoretic-

al result. If the assertion is true for (d-1) , then e *; M l Q -&#x3E; IIP MP| Qp is
injective. Thus if

then it follows from looking at the right-hand square of (1.4) that k *[ a] =

k *[a’] , so that, by Theorem 1.1 ( iii ), [a’] E Pa T. We thus have two ele-
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ments [a], [a’] in pP whose e*-images, in IT ppp Tp’ coincide. It follows,
again from the group-theoretical result, that [a] = [a’] .

A similar argument may be used to prove a Hasse principle for pro-
finite completion (see [3] ).

2. FREE HOMOTOPY THEORY

We consider maps f ; W -&#x3E; X from a finite CW-complex W to a nil-

potent space X . Let W X be the function space of such free maps and let

(W, X) be the set of free homotopy classes. If X is a loop-space, then

(W, X) has a natural group structure. In general, in computing (W, X) , we
may assume that X is the limit of a finite tower of principal fibrations

whose fibers are Eilenberg-Mac Lane spaces. Thus the role of the sequence
T -&#x3E; N - M in Section 1 is here played by a principal fibration

and we argue by induction on the height of the (refined) principal Postnikov

tower. Let

There is then an exact sequence, for each such f ( with p = p )

Moreover, Hn(W, G) acts on (W,X) by the rule

where ( f) } is the (free) homotopy class of f . The exactness of the se-

quence at Hn(W,G) asserts that

and the exactness at (W, X) asserts that

A selection S of elements of W X is obtained by first taking one element

of (W, X) from each Hn (W, G )-orbit, and then taking one map f from each

1) It would suffice that W be homologically finite.



206

selected homotopy classes. We then have

THEOR EM 2.1. We may represent (W, X) as the disjoint union

of commutative groups, each a homomorphic image o f Hn ( W, G ).

Thus we have restored group structure to (W, X) by enriching the

structure of X by means of the principal fibration ( 2.1 ).

We will not go into the same detail here as we did in the previous
section to show how this restoration of group structure may be exploited,
but we will state one interesting consequence.

Let X be a nilpotent space of finite type. Then, following Sullivan

[6] , we may associate with X its completion c: X -&#x3E; X . ’X’e may charac-

terize X as the inverse limit of all nilpotent spaces Z with finite homo-

topy groups which «approximate » X , in the sense that there are given maps

u : X -&#x3E; Z ; indeed X is, more strictly, the Iimit X = l m Z . Then we may
in fer from Theorem 2.1

COROLLA R Y 2.2. The map c induces an injection c*: (W, X ) -&#x3E; (W, X).

We note that, for any nilpotent group G of finite type, c : G- G is

injective, since G is residually finite. Thus Corollary 2.2 is proved by

restoring group structure to (W,X) in accordance with Theorem 2.1.

Finally we remark that we may argue similarly using based homoto-

py instead of free homotopy; the result is, in the based case (with W con-

nected), due to Sullivan. We may also use the technique of restoring group
structure to prove a similar result involving localization instead of com-

pletion ( and referring to free or based homotopy).
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