CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

WALTER THOLEN HARVEY WOLFF Extensions of factorization systems

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, nº 2 (1981), p. 175-190

http://www.numdam.org/item?id=CTGDC_1981_22_2_175_0

© Andrée C. Ehresmann et les auteurs, 1981, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

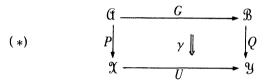
\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

EXTENSIONS OF FACTORIZATION SYSTEMS

by Walter THOLEN and Harvey WOLFF

In this paper we consider the following diagram of categories and functors



where $\gamma: QG \to UP$ is a natural transformation. Such situations occur quite often, for if $G: \mathbb{C} \to \mathbb{B}$ is a functor with a left adjoint L and back adjunction $\epsilon: LG \to 1$ then for any pair of functors U, P we always have the following diagram

The ordinary extension situation occurs for G and U being embeddings of full subcategories.

We are concerned in (*) in the problem of when factorizations of P-sources can be extended to factorizations of Q-sources of the same type. Our first result is that, under suitable conditions, Q-sources factor in a nice way iff Q-maps factor appropriately (Theorem 1). We then consider the above situation (*) where G and U both have left adjoints. In this adjoint situation we give conditions under which P having a left adjoint implies Q has a left adjoint (cf. Theorem 2). This complements the results in [7] where we dealt with the problem of when adjointness of Q implies adjoint situation, we prove a sharp version of Theorem 1 (cf. Theorem 3). In the last section of the paper we discuss a few applications. First we investigate the behavior of the restriction of a functor $P: \mathfrak{A} \to \mathfrak{X}$ to a coreflective subcategory \mathfrak{B} of \mathfrak{A} (cf. Theorem 4). We thereby generalize a result due to Nel [6] on coreflective subcategories of initially structured categories. We then derive a characterization of topological functors due to Hoffmann [5] from Theorem 3 as an easy corollary. Finally we state a sharp version of the Special Adjoint Theorem as a corollary of Theorem 2.

1. THE GENERAL EXTENSION THEOREM

In this section we wish to prove a general theorem about extending factorization structures. Before we do this, we first give some terminology and some basic assumptions which we will use throughout the remainder of the paper.

Let $P: \mathfrak{A} \to \mathfrak{X}$ be a functor, \mathfrak{E} a class of P-maps (i.e., \mathfrak{X} -morphisms of type $X \to PA$ with $A \in \mathfrak{A}$), and \mathfrak{M} a class of sources (= discrete cones) in \mathfrak{A} .

A factorization of a P-source $(x_i: X \to PA_i)_I$ is a pair (e: $X \to PA$, $(m_i: A \to A_i)_I$)

consisting of a P-map e and a source $(m_i)_I$ in \mathfrak{A} with $Pm_i \cdot e = x_i$ for all $i \in I$. This factorization is over \mathfrak{E} if $e \in \mathfrak{E}$, over \mathfrak{M} if $(m_i)_I \in \mathfrak{M}$, and over $(\mathfrak{E}, \mathfrak{M})$ if both $e \in \mathfrak{E}$ and $(m_i)_I \in \mathfrak{M}$. One says that P-sources factor over \mathfrak{E} (over \mathfrak{M} , $(\mathfrak{E}, \mathfrak{M})$ resp.) if every P-source admits a factorization over \mathfrak{E} (over \mathfrak{M} , $(\mathfrak{E}, \mathfrak{M})$ resp.).

A factorization $(e, (m_i)_I)$ of a *P*-source is locally orthogonal with respect to \mathcal{E} if for all commutative squares

$$Z \xrightarrow{q} PD$$

$$z \xrightarrow{q} Pd_{i}$$

$$X \xrightarrow{e} PA \xrightarrow{Pt_{i}} Pd_{i}$$

with $q \in \mathcal{E}$ there is a unique $t: D \rightarrow A$ with

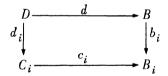
$$Pt.q = e.z$$
 and $m_i.t = d_i$ for all $i \in I$.

The factorization is orthogonal with respect to \mathcal{E} if the factorization $(I_{PA}, (m_i)_I)$ is locally orthogonal with respect to \mathcal{E} . We shall write: $\mathcal{E}^{\perp}\mathbb{M}$ if every factorization over \mathbb{M} is orthogonal with respect to \mathcal{E} . Finally, *P*-sources factor (locally) orthogonally over \mathcal{E} (over $(\mathcal{E}, \mathbb{M})$) if they factor over \mathcal{E} (over $(\mathcal{E}, \mathbb{M})$) such that the factorizations are (locally) orthogonal with respect to \mathcal{E} .

Analogous phrases will be used for P-maps as well as for P-sources. REMARKS. 1. In what follows we often only need weak locally orthogonal factorizations, i.e., the dotted t in the above diagram is not necessarily unique. However, one can prove that if all P-sources factor weakly locally orthogonally over \mathcal{E} then \mathcal{E} consists of P-epimorphisms (cf. [8], 6.4 and [1], Lemma 1), hence the factorizations are automatically locally orthogonal.

2. *P*-sources factor orthogonally over \mathcal{E} iff they factor locally orthogonally over \mathcal{E} with \mathcal{E} being closed under composition)cf. [8], 7.3 and [1], Lemma 3).

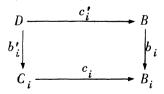
A generalized pullback (GP) is a class of commutative diagrams



with the usual universal property: given $f: E \to B$ and $(g_i: E \to C_i)_I$ with $c_i \cdot g_i = b_i \cdot f$ for all *i* then there is a unique $g: E \to D$ with

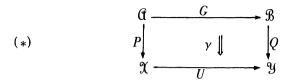
$$d \cdot g = f$$
 and $d_i \cdot g = g_i$ for all i .

It can be constructed by forming (pointwise for all i) the pullbacks



and then the multiple pullback of the c_i' 's. So generalized pullbacks exist if ordinary and multiple pullbacks exist.

Throughout Sections 1 and 2 we shall be concerned with the following diagram of categories and functors



where $\gamma: QG \rightarrow UP$ is a natural transformation. We further assume that there are given classes

Σofmaps in B, EofP-maps, Mofsources in A, FofQ-maps, Nofsources in B

which are, as usual, assumed to be closed under composition with isomorphisms. Moreover, \mathfrak{N} is assumed to be closed under composition, i.e., if $(n_i: B \rightarrow B_i)_I$ and $n: A \rightarrow B$ are in \mathfrak{N} then $(n_i.n: A \rightarrow B_i)_I$ is in \mathfrak{N} .

We shall be concerned with the following conditions on the diagram (*):

A. γ is Σ -bounded, i.e., for every $Y \in \mathcal{Y}$ there is a U-map $u: Y \to UX$ such that for every Q-map $y: Y \to QB$ there are a P-map $x: X \to PA$ and a map $s: B \to GA$ in Σ so that the following diagram commutes:

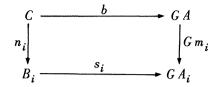
$$\begin{array}{c|c} Y & u \\ y \\ y \\ QB \\ \hline QS \\ \hline QS \\ \hline QGA \\ \hline \gammaA \\ \hline VPA \\ \hline VPA \\ \end{array}$$

B. For all $(m_i: A \rightarrow A_i)_i$ in \mathfrak{M} the diagrams

$$\begin{array}{c|c} Q G A & \underline{\gamma A} & U P A \\ Q G m_i & & U P m_i \\ Q G A_i & \underline{\gamma A_i} & U P A_i \end{array}$$

form a generalized pullback.

C. For all $(m_i: A \to A_i)_I$ in \mathfrak{M} and $(s_i: B \to GA_i)_I$ with $s_i \in \Sigma$ for all $i \in I$, there exists the following generalized pullback with $(n_i)_I$ in \mathfrak{N} , which is preserved by Q.



REMARKS. The above conditions are often trivial:

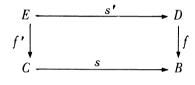
1. Condition A is automatic if U is weakly right adjoint and if G is weakly right adjoint with weak units in Σ .

2. Condition B is automatic for $\gamma = 1$, i.e., QG = UP.

3. Condition C is automatic if $\Sigma \subset Iso B$ and $G \mathfrak{M} \subset \mathfrak{N}$.

4. For \mathfrak{N} being all sources, condition C holds if \mathfrak{B} is Σ -quasi-complete (a and b below) and Q is Σ -continuous (c below), i.e.,

a) For all $s: C \to B$ in Σ and $f: D \to B$ there exists a pullback



with $s' \in \Sigma$,

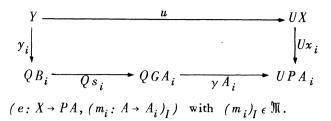
b) For all $(s_i: C_i \to B)_I$ with $s_i \in \Sigma$ for all $i \in I$ the multiple pullback $s: D \to B$ of $(s_i)_I$ exists,

c) Q preserves the limits of a and b.

5. If in 4-b the multiple pullback s is assumed to be in Σ , conditions a and b mean Σ -completeness as defined in [2]; Σ -completeness can be equivalently described by the property that, in \mathcal{B}^{op} , all sources factor over Σ , and the factorizations are locally orthogonal with respect to Σ (cf. [8], 6.3).

THEOREM 1. Assume that conditions A, B, C hold in diagram (*). If Psources factor over \mathfrak{M} , then Q-sources factor over $(\mathcal{F}, \mathfrak{N})$ iff Q-maps do. If moreover $\mathcal{F} \perp G \mathfrak{M}$, then the factorizations of Q-sources are (locally) orthogonal with respect to \mathcal{F} iff the factorizations of Q-maps are.

PROOF. Let $(\gamma_i: Y \to Q B_i)_I$ be a Q-source. For each $i \in I$ we have the following commutative diagram with $s_i \in \Sigma$. Since P-sources factor over \mathfrak{M} , the source $(x_i)_I$ factors as



Successively we get the two GP's described in Conditions B and C. Since

$$UPm_{i} \cdot Ue \cdot u = \gamma A_{i} \cdot Qs_{i} \cdot \gamma_{i}$$

there is a (unique)

$$t: Y \rightarrow QGA$$
 with $\gamma A.t = Ue.u$ and $QGm_i.t = Qs_i.y.$

Since

$$\begin{array}{cccc} QC & & Qb & & QGA \\ Qn_i & & & & QGm_i \\ QB_i & & & QGA_i \end{array}$$

is a GP there is a (unique) $\gamma: Y \rightarrow QC$ with

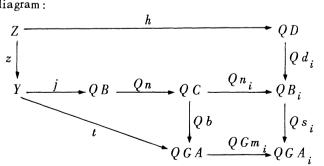
$$Qb.y = t$$
 and $Qn_i \cdot y = y_i$ for all i .

Finally, since Q-maps have $(\mathcal{F}, \mathcal{N})$ -factorizations we get

$$y = Qn \cdot j$$
 with $j: Y \rightarrow QB$ in \mathcal{F} and $n: B \rightarrow C$ in \mathcal{N} .

Therefore $(j, (n_i, n_j))$ is the desired $(\mathcal{F}, \mathcal{N})$ -factorization of $(y_i)_i$.

Now assume that the factorizations of Q-maps are locally orthogonal with respect to \mathcal{F} , $\mathcal{F} \cdot G \mathbb{M}$, and let $h \in \mathcal{F}$. Consider the following commutative diagram:



Since $\mathcal{F} \stackrel{!}{:} G \mathbb{N}$ there exists a unique $d: D \rightarrow G A$ with

$$Qd.h = t.z$$
 and $Gm_i.d = s_i.d_i$ for all $i \in I$.

Because of C there exists a unique $c: C \to C$ with b.c = d and $n_i \cdot c = d_i$ for all $i \in I$. Hence Qb.Qc.h = t.z and thus Qc.h = Qn.j.z. Since the factorizations of Q-maps are locally orthogonal, there is a unique

$$f: D \rightarrow B$$
 with $Qf.h = j.z$ and $n.f = c$.

So (n_i, n) , $f = d_i$ for all $i \in I$. The uniqueness of f follows from the uniqueness of the constructions involved.

For the non-local case the proof is similar.

REMARK. The first part of the above proof shows that it suffices to have weak generalized pullbacks in Conditions B and C. But the corresponding weak version of Theorem 1 is not used in the following.

2. THE ADJOINT CASE

In this section we consider the diagram (*) where both U and G have left adjoints. We assume throughout this section that F is left adjoint to U with unit δ and that L is left adjoint to G with unit η .

For every Q-map $j: Y \rightarrow QB$ let $\overline{j}: FY \rightarrow PLB$ be the P-map which corresponds by adjointness of U to

$$Y \xrightarrow{j} QB \xrightarrow{Q\eta B} QGLB \xrightarrow{\gamma LB} UPLB.$$

One then has:

LEMMA 1.1. If η is a pointwise monomorphism and \overline{j} is a P-epimorphism, then j is a Q-epimorphism.

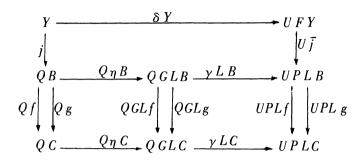
2. If γ is a pointwise monomorphism and j is a Q-epimorphism, then \overline{j} is a P-epimorphism.

PROOF. 1. Suppose Qf. j = Qg. j where $f, g: B \rightarrow C$. Then we have the following diagram (cf. next page). We have

$$UPLg. U\bar{j}.\delta Y = UPLf. U\bar{j}.\delta Y.$$

Hence $PLg.\overline{j} = PLf.\overline{j}$. Consequently Lf = Lg. Since ηG is monic, we get f = g.

The proof of 2 is similar.



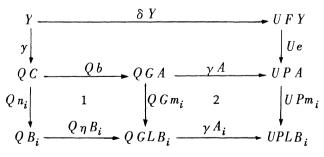
Recall that under the assumptions of this section if η is pointwise in Σ then Condition A is automatic (cf. the remarks before Theorem 1). Choosing \Re = all sources, we then have:

THEOREM 2. Suppose that the unit η of G is a pointwise monomorphism in Σ and that P-sources factor over $(\mathcal{E}, \mathbb{M})$ for \mathcal{E} consisting of P-epimorphisms. If Conditions B and C hold, then Q has a left adjoint.

PROOF. It suffices to show the source of all Q-maps $(y_i: Y \to QB_i)_I$ with domain Y factors over a Q-epimorphism. To this end we proceed as in the proof of Theorem 1 by factoring the corresponding source $(\bar{y}_i: FY \to PLB_i)$ as

 $(e: FY \rightarrow PA, (m_i: A \rightarrow LB_i)_I), e \in \mathcal{E} \text{ and } (m_i)_I \in \mathcal{M}.$

As in that proof we get a factorization as $(y: Y \rightarrow QC, (n_i: X \rightarrow B_i)_I)$ and a commuting diagram



with diagrams 1 and 2 being GP's.

We now show that $y: Y \rightarrow QC$ is Q-epimorphic. By the Lemma it suf-

fices to show that the corresponding \overline{y} is *P*-epimorphic. First note that there exists a unique $d: L C \to A$ with $G d. \eta C = b$. Also, since the original source consists of all *Q*-maps with domain *Y*, there is a $c: C \to C$ (namely one to the n_i 's) with

$$Qc.y = y$$
 and $\eta C.c = Gm.b$,

for m being in $(m_i)_i$. Now

$$UP d. UPm. Ue. \delta Y = UPd. \gamma LC. Q \eta C. y =$$

= $\gamma A. QG d. Q \eta C. y = \gamma A. Q b. y = Ue. \delta Y.$

Hence Pd. Pm. e = e and consequently d.m = 1. Now

$$b = Gd.Gm.b = Gd.\eta C.c = b.c.$$

Furthermore, for each $i \in I$,

$$\eta B_i \cdot n_i \cdot c = G m_i \cdot b \cdot c = G m_i \cdot b = \eta B_i \cdot n_i$$

Since ηB_i is a monomorphism, we have $n_i \cdot c = n_i$ for all $i \in l$. Consequently, since 1 is a GP, we get c = l. So

$$Gm. Gd.\eta C = Gm.b = \eta C.c = \eta C.$$

Hence $m \cdot d = 1$.

Because Pd. $\overline{y} = e$ we now have $\overline{y} \approx e$ which is P-epimorphic.

The next corollary generalizes Theorem 1.8 of [2]; this is gotten by taking $\gamma = 1$.

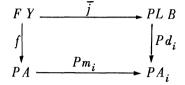
COROLL ARY 1. In (*), let P = 1 and let condition B be satisfied with $\mathfrak{M} = all$ sources. Suppose that \mathfrak{B} is Σ -complete and that the units of G are pointwise in Σ . Then Q has a left adjoint iff Q is Σ -continuous.

COROLLARY 2. For any right adjoint functor $G: \mathfrak{A} \to \mathfrak{B}$ with units in Σ and \mathfrak{B} being Σ -complete one has: A functor $Q: \mathfrak{B} \to \mathfrak{Y}$ is right adjoint iff QG is right adjoint and Q is Σ -continuous.

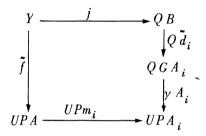
In the adjoint situation as described at the beginning of this section we take up again the question of when does Q admit orthogonal factorizations. We shall prove a sharpened version of Theorem 1 in which Condition B appears as a necessary condition. We first identify in our situation the maps orthogonal to $G\mathfrak{M}$ (cf. Theorem 1).

LEMMA 2. Suppose that, in the situation of this section, Condition B holds. Then, for every Q-map $j: Y \rightarrow QB$, $\{j\} \colon GM$ iff $\{\overline{j}\} \colon M$.

PROOF. Suppose $\{j\} \perp G \mathbb{M}$ and consider the diagram



with $(m_i)_I \in \mathbb{M}$. The source $(d_i: LB \to A_i)_I$ corresponds, by adjointness of G, to $(\tilde{d}_i: B \to GA_i)_I$, and $f: FY \to PA$ corresponds to $\tilde{f}: Y \to UPA$ by adjointness of U. We get the following diagram in \mathcal{Y} :



By B there exists a unique $h: Y \rightarrow QGA$ with

$$\gamma A \cdot h = \tilde{f}$$
 and $QGm_i \cdot h = Q\tilde{d}_i \cdot j$ for all $i \in I$.

Since $\{j\} \perp G \mathbb{M}$ there is a unique $l: B \rightarrow G A$ with

$$Ql. j = h$$
 and $Gm_i. l = \tilde{d}_i$ for all $i \in l$.

Then l corresponds by adjunction to

$$\tilde{l}: L B \to A$$
 with $P \tilde{l}, \tilde{j} = f$ and $m_i, \tilde{l} = d_i$.

Uniqueness of l follows from the uniqueness of the constructions involved. We therefore have $\{\overline{i}\} \perp \mathfrak{M}$.

The converse assertion is proved similarly.

THEOREM 3. Suppose that the unit of G belongs to Σ and that Condition C holds, with $\mathfrak{N} = all$ sources. Suppose further that P-sources factor (locally) orthogonally over $(\mathfrak{E}, \mathfrak{M})$, and that $\mathfrak{F} = \{j \mid \overline{j} \in \mathfrak{E}\}$. Then, for the statements:

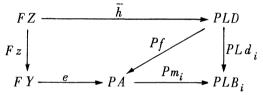
(i) Q-sources factor (locally) orthogonally over \mathcal{F} ,

(ii) Q-maps factor (locally) orthogonally over \mathcal{F} and condition B holds one has (ii) \Rightarrow (i), whereas (i) \Rightarrow (ii) holds for $\mathcal{E} \perp \mathcal{M}$.

PROOF. (ii) \Rightarrow (i): The non-local case follows immediately from Theorem 1 and Lemma 2. For the local case we look to the second part of the proof of Theorem 1. We again assume the factorizations of Q-maps to be locally orthogonal with respect to \mathcal{F} , but we cannot assume $\mathcal{F} \bullet G \mathbb{M}$. Nevertheless in the situation of the last diagram of that proof, one gets also a unique

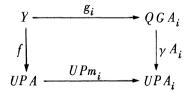
 $d: D \rightarrow GA$ with Qd.h = t.z and $Gm_i d = \eta B_i d_i$.

This is easily proved by taking $d = Gf \cdot \eta D$, where $f: LD \rightarrow A$ is the unique diagonal of the commutative diagram:



Now the proof can be completed as in Theorem 1.

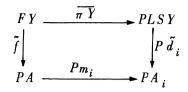
(i) \Rightarrow (ii): From Condition (i) we have that Q has a left adjoint S with unit π pointwise in \mathcal{F} , because the source of all Q-maps factors over \mathcal{F} , and \mathcal{F} necessarily consists of Q-epimorphisms only (see remarks at the beginning of Section 1). Now consider the following commutative diagram:



with $(m_i: A \rightarrow A_i)_i$ in \mathbb{N} . For each $i \in I$, there exists a unique

$$d_i: SY \rightarrow GA_i$$
 with $Qd_i \cdot \pi Y = g_i$.

By adjunction of G and U, d_i corresponds to $\tilde{d}_i: LSY \to A_i$ and f corresponds to $\tilde{f}: FY \to PA$. Since $\pi Y \in \mathcal{E} \perp \mathbb{M}$ from the commutative diagram



we get a unique $t: LSY \rightarrow A$ with

$$Pt. \overline{\pi Y} = \tilde{f}$$
 and $m_i. t = \tilde{d}_i$ for all $i \in l$.

Then t corresponds to

$$\tilde{t}: SY \to GA$$
 with $Gm_i \cdot \tilde{t} = d_i$.

So we get

 $Q t. \pi Y: Y \rightarrow Q G A$ with $Q G m_i \cdot Q t. \pi Y = g_i$ for all $i \in I$.

Since $\gamma A \cdot Q t \cdot \pi Y$ corresponds by adjunction to \tilde{f} we have $\gamma A \cdot Q t \cdot \pi Y = f$.

If $h: Y \rightarrow QGA$ is a map with $\gamma A \cdot h = f$ and $QGm_i \cdot h = g_i$ for all $i \in I$, then we get a unique

$$l: SY \rightarrow GA$$
 with $Ql \cdot \pi Y = h$.

One sees that l corresponds to $\tilde{l}: LSY \to A$ with

$$P\tilde{l} \cdot \pi Y = \tilde{f}$$
 and $m_i \cdot \tilde{l} = \tilde{d}_i$.

Thus $\tilde{l} = t$ and so $l = \tilde{t}$.

If the left adjoint of G is full and faithful, the unit of G is an isomorphism. Then Σ can be taken to be the class of all isomorphisms, and Condition C is automatic. So we get

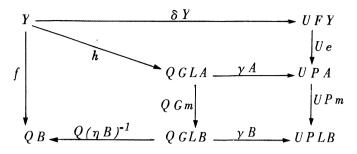
COROLL ARY 3. Let P-sources factor (locally) orthogonally over \mathfrak{E} . Assume that G has a full and faithful left adjoint. Then, for the statements

(i) Q-sources factor (locally) orthogonally over $\mathcal{F} = \{ \overline{j} \mid j \in \mathcal{E} \},\$

(ii) Condition B holds,

one has (ii) \Rightarrow (i), whereas (i) \Rightarrow (ii) holds in the non-local case.

PROOF. We need to verify that Q-maps factor (locally) orthogonally over \mathcal{F} , if B holds. Let $f: Y \to QB$ be a Q-map and let \overline{f} factor as $\overline{f} = Pm. e$, where $e: FY \to PA$ in \mathcal{E} . Recalling that the unit η is an isomorphism, we get the following commutative diagram



For $\overline{h}: FY \to PLGA$ and the counit $\epsilon: LG \to 1$ of G one now has

$$UP \epsilon A. Uh. \delta Y = UP \epsilon A. \gamma L G A. Q \eta G A. h =$$

= $\gamma A. Q G \epsilon A. Q \eta G A. h = Ue. \delta Y.$

Hence $e = P \epsilon A \cdot \overline{h} \epsilon \mathcal{E}$. Therefore, by factoring \overline{h} over \mathcal{E} , one easily gets $\overline{h} \epsilon \mathcal{E}$ and so $h \epsilon \mathcal{F}$. Orthogonality of the factorization

$$f = Q((\eta B)^{-1}.Gm).h$$

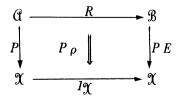
follows by Lemma 2, whereas the local case is treated as in Theorem 2, (ii) \Rightarrow (i).

Note that for γ being an isomorphism, Condition B is automatic. Hence assertion (i) of Corollary 3 holds in this case.

3. APPLICATIONS.

In this section we give some applications of the above results. Many others can be added by specializing the data of (*).

3.1. Coreflective subcategories. Let $P: \mathbb{G} \to \mathbb{X}$ be a functor and let $E: \mathbb{B} \to \mathbb{G}$ be the embedding of a full coreflective subcategory with coreflector R and coreflection ρ . Finally, let \mathcal{F} be the class of P E-maps $e: X \to P E B$ such that $e: X \to P(EB)$ belongs to a given class \mathcal{E} of P-maps. Applying Corollary 3 to the diagram



we get:

THEOREM 4. Let P-sources factor (locally) orthogonally over $(\mathfrak{E}, \mathfrak{M})$. Then PE-sources factor (locally) orthogonally over \mathfrak{F} if the diagrams

$$\begin{array}{c|c}
P R A & \xrightarrow{P \rho A} & P A \\
\hline
P R m_i & & P m_i \\
P R A_i & \xrightarrow{P \rho A_i} & P A_i
\end{array}$$

form a GP in \mathfrak{X} for each source $(m_i: A \rightarrow A_i)_i$ in \mathfrak{M} . This condition is necessary in the non-local case.

All the generalized pullbacks are trivial for P_{ρ} being an isomorphism. Therefore, considering the canonical factorization structures for P, by Theorem 4 we get immediately:

COROLLARY 4. If $P: \mathfrak{A} \to \mathfrak{X}$ belongs to one of the following classes of functors (of which each is contained in the next one), so does every restriction of P to a full coreflective subcategory of \mathfrak{A} such that the Pimages of the coreflection maps are isomorphisms:

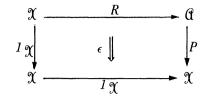
topological functors (cf. [8]), $(\mathcal{E}, \mathcal{M})$ -topological functors (cf. [3]), topologically-algebraic functors (cf. [1, 4]), semitopological functors (cf. [8]), right adjoint functors.

The assertion of Corollary 4 for $(\mathfrak{E}, \mathfrak{M})$ -topological functors contains in particular Nel's corresponding result on «initially structured» categories (cf. [6], Theorem 1.3). For various applications we refer to his paper.

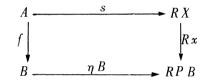
3.2. Characterization of topological functors. As a further consequence of Theorem 3 we obtain a characterization of topological functors due to Hoffmann [5]:

COROLLARY 5. A functor $P: \mathfrak{A} \to \mathfrak{X}$ is topological iff \mathfrak{A} is Σ -complete for $\Sigma = P^{-1}(iso \mathfrak{X})$ and P has a full and faithful right adjoint.

PROOF. We only need to show that the condition is sufficient for topologicity. We apply Theorem 3 to the diagram



where R is the full and faithful right adjoint and ϵ the isomorphic counit. With $\mathfrak{E} = iso \mathfrak{X}$ one obtains for \mathfrak{F} the class of all P-maps which are isomorphisms in \mathfrak{X} . By definition of Σ , P is trivially Σ -continuous, and the unit η of P belongs to Σ . In order to get orthogonal factorizations of P-sources over \mathfrak{F} it suffices therefore to have those for P-maps. But given a P-map $x: X \to PB$ one obtains this factorization by considering the P-image of the pullback



which exists by Σ -completeness.

REMARK. The functor

 $P: Cat \rightarrow Set, K \mapsto Ob K,$

has a full and faithful right adjoint, and $C_{\alpha i}$ is, of course, small Σ -complete with $\Sigma = P^{-1}(iso \ \delta_{e}i)$, i.e., pullbacks and small-indexed intersections of Σ -maps exist and belong to Σ . Nevertheless, the non-faithful functor P is not topological. With respect to Corollary 5 the reason for this is that (f fails to be Σ -complete: For each cardinal k consider a category K_k having two objects 0, 1 and k arrows $0 \to 1$. Identifying these arrows one gets a family of functors $K_k \to \{0 \to 1\}$ (indexed by all cardinals) which fails to admit an intersection.

3.3. The Special Adjoint Functor Theorem. We give a slight generalization of a theorem stated in [2] by application of Theorem 2 in the following situation. Let $Q: \mathcal{B} \rightarrow \mathcal{Y}$ be a functor whose right adjointness shall be proved. Let \mathcal{G} be a subset of the objects of \mathcal{B} such that all products

$$G X = \prod_{C \in \mathcal{G}} \prod_{X_C} C$$
 and $U X = \prod_{C \in \mathcal{G}} \prod_{X_C} Q C$

exist in \mathcal{B} and \mathcal{Y} where $X = (X_C)_{\mathcal{G}}$ is any object in $(\mathcal{Set}^{\mathcal{G}})^{op} = \mathfrak{A}$. The functors $G: \mathfrak{A} \to \mathfrak{B}$ and $U: \mathfrak{A} \to \mathcal{Y}$ have left adjoints given by

 $L B = (\mathcal{B}(B, C))_{\mathcal{C}}$ and $F Y = (\mathcal{Y}(Y, QC))_{\mathcal{C}}$.

There is a natural transformation $\gamma: QG \rightarrow U$ which is an isomorphism iff Q preserves the products GX.

COROLLARY 6. Let the category \mathcal{B} be Σ -complete and let \mathcal{G} be a Σ cogenerating set in \mathcal{B} (i.e., the units $\eta B: B \to GLB$ belong to Σ). The
functor $Q: \mathcal{B} \to \mathcal{Y}$ then has a left adjoint iff

(1) Q est Σ -continous,

(2) there is a pair $(\mathfrak{E}, \mathfrak{M})$ such that sources in $\mathfrak{A} = (\mathfrak{Set}^{\mathfrak{G}})^{op}$ factor over $(\mathfrak{E}, \mathfrak{M})$ with $\mathfrak{E} \subset \operatorname{Epi} \mathfrak{A}$ and Condition B (depending on \mathfrak{M} and γ) holds.

In particular condition (2) holds if Q preserves products. Therefore, for \mathcal{B} being complete and Σ -wellpowered, (1) and (2) are fulfilled for Q preserving all small limits; this is the usual version of the Special Adjoint Functor Theorem.

REFERENCES

- 1. BÖRGER, R. & THOLEN, W., Remarks on topologically algebraic functors, Cahiers Topo. et Géom. Diff. XX-2 (1979), 155-177.
- 2. BÖRGER, R., THOLEN, W., WISCHNEWSKY, M.B. & WOLFF, H., Compact and hypercompact categories, J. Pure and Appl. Algebra (to appear).
- 3. HERRLICH, H., Topological functors, Gen. Top. and Appl. 4 (1974), 125-142.
- HERRIICH, H., NAKAGAWA, R., STRECKER, G. E. & TITCOMB, T., Equivalence of topologically-algebraic and semitopological functors, Can. J. of Math. 32(1980), 34-39.
- 5. HOF FM ANN, R. E., Topological functors and factorizations, Archiv d. Math. 26 (1975), 1-6.
- NEL, L. D., Initially structured categories and cartesian closedness, Can. J. of Math. 26 (1975), 1361-1377.
- 7. STREET, R., THOLEN, W., WISCHNEWSKY, M. B. & WOLFF, H., Semitopological functors III, J. Pure and Appl. Algebra 16 (1980), 291-314.
- 8. THOLEN, W., Semitopological functors I, J. Pure Appl. Algebra 15 (1979), 53-73.