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EXTENSIONS OF FACTORIZATION SYSTEMS

by Walter THOLEN and Harvey WOL FF

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII-2 (1981)

3e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, Juille t 1980

In this paper we consider the following diagram of categories and

functors

where y : QG -&#x3E; U P is a natural transformation. Such situations occur quite

often, for if G : G -&#x3E; 93 is a functor with a left adjoint L and back adjunc-
tion c: L G -&#x3E; 1 then for any pair of functors v, P we always have the

following diagram 

The ordinary extension situation occurs for G and U being embeddings of

full subcategories.
We are concerned in ( *) in the problem of when factorizations of

P -sources can be extended to factorizations of Q-sources of the same type.
Our first result is that, under suitable conditions, Q-sources factor in a

nice way iff Q-maps factor appropriately (Theorem 1). We then consider

the above situation (* ) where G and TJ both have left adjoints. In this

adjoint situation we give conditions under which P having a left adjoint

implies Q has a left adjoint (cf. Theorem 2). This complements the results
in [7] where we dealt with the problem of when adjointness of Q implies
adjointness of P . Finally, in the adjoint situation, we prove a sharp ver-

sion of Theorem 1 (cf. Theorem 3).
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In the last section of the paper we discuss a few applications. First

we investigate the behavior of the restriction of a functor P ; t -&#x3E; X to a

coreflective subcate gory 3 of (1 ( cf. Theorem 4). We thereby generalize a

result due to Nel [6] on coreflective subcategories of initially structured

categories. We then derive a characterization of topological functors due

to Hoffmann [5] from Theorem 3 as an easy corollary. Finally we state a

sharp version of the Special Adjoint Theorem as a corollary of Theorem 2.

1. TH E G ENE RAL E XTENSION TH EOR EM

In this section we wish to prove a general theorem about extending
factorization structures. Before we do this, we first give some terminology
and some basic assumptions which we will use throughout the remainder

of the paper.

Let P: (i be a functor, &#x26; a class of P-maps ( i. e,, X-morphisms
of type X -&#x3E; P A with A c Q ), and ? a class of sources ( = discrete cones)

in Q.

A factorization o f a P-sourc e (xi : X -&#x3E; P Ai )I is a pair

consis ting of a P-map e and a source (mi)l in (t with P m i . e = x. for

all i C I. This factorization is over 5; if e6@, over m if (mi)I C M , and
over (5;, m) if both e C &#x26; and (mi) I E M. One says that P-sources factor
over &#x26; (over m, (&#x26;, M) resp. ) if every P -source admits a factorization

over 5; (over M, (&#x26;, M) resp. ).

A factorization (e, (mi)I) of a P-source is locally ortltogonal with

respect to &#x26; if for all commutative squares

with q 6 @ there is a unique t: D -&#x3E; A with
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The factorization is orthogonal with respect to &#x26; if the factorization

(1pA,(mi)I) is locally orthogonal with respect to 8. We shall write:

&#x26;1 M if every factorization over ? is orthogonal with respect to &#x26; . Fin-

ally, P-sources factor (locally) orthogonally over &#x26; ( over (6, M) ) if they
factor over l$ (over (6,M) ) such that the factorizations are (locally)

orthogonal with respect to &#x26;.

Analogous phrases will be used for P-maps as well as for P-sources.

REMARKS. 1. In what follows we often only need weak locally orthogonal

factorizations, i. e., the dotted t in the above diagram is not necessarily

unique. However, one can prove that if all P-sources factor weakly locally

orthogonally over 6 then 6 consists of P-epimorphisms ( c f. [8], 6.4 and

[1], Lemma 1), hence the factorizations are automatically locally ortho-

gonal.

2. P-sources factor orthogonally over &#x26; iff they factor locally orthogo-

nally over @ with 5; being closed under composition )cf. [8], 7.3 and [1],
Lemma 3).

A generalized pullback (GP) is a class of commutative diagrams

with the usual universal property: given f: E - B and (gi: E , Ci)I w ith

c i , g. = bi. f for all i then there is a unique g ; E -&#x3E; D with

It can be constructed by forming (pointwise for all i ) the pullbacks

and then the multiple pullback of the c¡’ s. So generalized pullbacks exist
if ordinary and multiple pullbacks exist.
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Throughout Sections 1 and 2 we shall be concerned with the follow-
ing diagram o f categories and functors

where y : Q G -&#x3E; U P is a natural trans formation. We further assume that
there are given classes

Z of maps in B,
@ of P-maps, M of sources in G ,
F of Q-maps, M of sources in 93

which are, as usual, assumed to be closed under composition with isomor-

phisms. Moreover, n is assumed to be closed under composition, i. e., if

(ni : B -&#x3E; Bi) I and n : A - B are in n then (ni. n : A-&#x3E;B i), is in 7( .

We shall be concerned with the following conditions on the dia-

gram (*) :

A. y is Z bounded, i. e., for every Y c Y there is a U-map u : Y - U X

such that for every Q-map y; Y - Q B there are a P-map x: X, P A and

a map s : B -&#x3E; GA in I so that the following diagram commutes :

B. For all (mi: A - Ai)I in N the diagrams

form a generalized pullback.
C. For all (mi: A - Ai)I in ? and (si: B -&#x3E; G Ai ), with si 6 I for

all i c I , there exists the following generalized pullback with (ni)I in M,
which is preserved by Q .
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R EM ARK S. The above conditions are often trivial:

1. Condition A is automatic if U is weakly right adjoint and if G is

weakly right adjoint with weak units in 2 .

2. Condition B is automatic for y = 1 , i.e QG = U P ,
3. Condition C is automatic if 2c Iso B and em C M.

4. For 31 being all sources, condition C holds if 93 is Z- quasi-com-
plete ( a and b below ) and Q is Z-continuous ( c below), i. e.,

a) For all s: C -&#x3E; B in Z and ft D -&#x3E; B there exists a pullback

with s’c 1,

b) For all ( si : Ci -&#x3E; B )1 with si 6 S for all i c I the multiple pullback
s : D -&#x3E; B of (si)I exists,

c) Q preserves the limits of a and b.

5. If in 4-b the multiple pullback s is assumed to be in 1, conditions

a and b mean Z-completeness as defined in [2], Z-completeness can be

equivalently described by the property that, in 3°P , all sources factor over

1, and the factorizations are locally orthogonal with respect to Z ( cf.

[8],6.3).

THEOREM 1. Assume that conditions A, B, C hold in diagram (*) . I f P-
sourc es facto r over m, th en Q-sourc es factor o ver (Y, )1) iff Q-maps do.

I f moreover j= 1 Gm, then the factorizations o f Q-sources are (locally)
orthogonal with respect to F iff the factorizations o f Q-maps are.

PROOF.Let (yi:Y-&#x3E; QBi)I be a Q-source. For each i c I we have the

following commutative diagram with si C Z. Since P-sources factor over

m, the source (xi)I factors as
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Successively we get the two GP’s described in Conditions B and C.

Since

there is a ( unique )

Since

is a GP there is a (unique) y: Y, Q C with

Finally, since Q-maps have (F, M)-factorizations we get

Therefore ( j, (nj.n )I) is the desired (F, M)-factorization of (y.) .
Now assume that the factorizations of Q-maps are locally orthogonal

with respect to F, F 1. em, and let h c F . Consider the following com-
mutative diagram :

Since F 1 em there exists a unique d : D - G A with
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Because of C there exists a unique c: C - C with b, C = d and ni . c = di
for all i C I . Hence Qb. Qc . h = t. z and thus Q c . h = Q n . j . z . Since the
factorizations of Q-maps are locally orthogonal, there is a unique

So ( ni , n ). ,f = d i for all i c I. The uniqueness of f follows from the un-

iqueness of the constructions involved.

For the non-local case the proof is similar.

REMARK. The first part of the above proof shows that it suffices to have

weak generalized pullbacks in Conditions B and C. But the corresponding
weak version of Theorem 1 is not used in the following.

2. TH E ADJOIN T CASE 

In this section we consider the diagram (*) where both U and G

have left adjoints. We assume throughout this section that F is left ad-

joint to U with unit 6 and that L is left adjoint to G with unit 17.

For every Q-map j: Y -&#x3E; QB let 7: F Y - P L B be the P-map which

corresponds by adjointness of U to

One then has :

L EMMA 1.1. 1 f n is a pointwise monomorphism and j is a P-epimorphism,

then j is a Q-epimorphism.
2. 1 f y is a pointwise monomorphism and j is a Q-epimorphism, then

j is a P-epimorphism.
P ROO F. 1. Suppose Q f, j = Q g, j where f, g: B -&#x3E; C. Then we have the

following diagram ( cf, next page). We have

Hence PL g. j = PLf. j . Consequently L f = L g . Since 77 G is monic,

we get f=g.
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The proof of 2 is similar.

Recall that under the assumptions of this section if q is pointwise
in I then Condition A is automatic (cf, the remarks before Theorem 1 ).

Choosing n = all sources , we then have :

THEOREM 2. Suppose that the unit 71 of G is a pointwise monomorphism
in Z and that P-sources factor over (&#x26;,M) for &#x26; consisting o f P-epi-
morphisms. I f Conditions B and C hold, then Q has a left adjoint.

PROO F. It suffices to show the source of all Q-maps (y . Y - Q Bi )1 with

domain Y factors over a Q-epimorphism. To this end we proceed as in the

proof of Theorem 1 by factoring the corresponding source (yj : F Y -&#x3E; PLBL )
as as

A s in that proof we get a factorization as (y: Y - Q C , ( n i : X - Bi ) 1 ) and
a commuting diagram

with diagrams 1 and 2 being GP*s.

We now show that y: Y - Q C is Q-epimorphic. By the Lemma it suf-
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fices to show that the corresponding y is P-epimorphic. First note that

there exists a unique d; L C -&#x3E; A with G d. 71 C = b . Also, since the ori-

ginal source consists of all Q-maps with domain Y, there is a c: C - C

( namely one to the n i ’s ) with

for m being in (mi )1. Now

Hence Pd. Pm. e = e and consequently d. m = 1. Now

Furthermore, for each i f I,

Since." Bi is a monomorphism, we have ni. c = n, for all i c i . Consequent-

ly, since 1 is a G P, we get c = 1 . So

Hence m. d = 1.

B ecause Pd. y = e we now have y = e which is P-epimorphic.

The next corollary generalizes Theorem 1.8 of [2] ; this is gotten

by takin g y = 1 .

COROLL A RY 1. In (*), let P = 1 and let condition B be satisfied with

M = all sources. Suppose that 93 is 1-complete and that the units o f G

are pointwise in "2:. Then Q has a left adjoint iff Q is Z-continuous.

COROLLA RY 2. For any right adjoint functor G: Q-&#x3E; B with units in Y.

and 93 being Z-complete one has : A functor Q: B -&#x3E; 9J is right adjoint iff
Q G is right adjoint and Q is 1-continuous.

In the adioint situation as described at the beginning of this sec-

tion we take up again the question of when does Q admit orthogonal factor-

izations. We shall prove a sharpened version of Theorem 1 in which Con-

dition B appears as a necessary condition. We first identify in our situa-
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tion the maps orthogonal to Gm ( cf. Theorem 1 ).

L EMM A 2. Suppose that, in the situation o f this section, Condition B holds.

Then, for every Q-map j : Y - QB, {j}1. G lll iff {j} 1. m .

P ROO F. Suppose {j} 1 em and consider the diagram

with (m i)I C IR . The source ( di: L B -&#x3E; A,)I corresponds, by adjointness
of G , to (di : B - G Ai),, and f: FY -&#x3E; PA corresponds to f: Y -&#x3E; U P A

by adjointness of U . Vle get the following diagram in y:

By B there exists a unique h : Y - QG A with

Since {j} 1 em there is a unique I t B - G A with

Then 1 corresponds by adjunction to

Uniqueness of l follows from the uniqueness of the constructions involv-

ed. We therefore have {j} i ? .
The converse assertion is proved similarly.

T H EOR EM 3. Suppose that the unit o f G belongs to 2 and that Condi-
tion C holds, with 71 = all sources. Suppose further that P-sources factor
(locally) orthogonally over (&#x26;, M), and that F = { j | j C &#x26; 1. Then, for
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the s tatem ents :

(i) Q -sources fact,or (locally) orthogonally over F,
(ii ) Q-maps factor (locall y) orthogonall y over if and condition B holds

one has (ii) =&#x3E; (i), whereas (i) =&#x3E; (ii) holds for &#x26; 1 m .

PROOF. (ii)=&#x3E; (i) : The non-local case follows immediately from Theorem

1 and Lemma 2. For the local case we look to the second part of the proof
of Theorem 1. We again assume the factorizations of Q-maps to be locally
orthogonal with respect to 5:, but we cannot assume 5: 1 G5R. Nevertheless
in the situation of the last diagram of that proof, one gets also a unique

This is easily proved by taking d = Gf. n D, where ft LD - A is the un-

ique diagonal of the commutative diagram:

Now the proof can be completed as in Theorem 1.

(i) =&#x3E; (ii): From Condition ( i ) we have that Q has a left adjoint S

with unit z pointwise in 5: , because the source of all Q-maps factors over

j=, and ? necessarily consists of Q-epimorphisms only ( see remarks at

the beginning of Section 1). Now consider the following commutative dia-

gram :

with (m i: A -&#x3E; Ai)I in 5H. For each i c I, there exists a unique

By adjunction of G and TJ, di corresponds to di: LSY-&#x3E; Ai and f cor-
responds to ij F Y -&#x3E; PA . Since IT Y &#x26; 1 M from the commutative diagram
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we get a unique t : L S Y - A with

Then t corresponds to

So we get

Since y A. Q t. 7r Y corresponds by adjunction to f we have y A . Q t. IT Y= f.
If h : Y -&#x3E; Q G A is a map with y A. h = f and Q G mi . h = g. for all

i C I, then we get a unique

One sees that 1 corresponds to L ; LSY -&#x3E; A with

Thus 1 =t and so l = t . 

If the left adjoint of G is full and faithful, the unit of G is an iso-

morphism. Then I can be taken to be the class of all isomorphisms, and

Condition C is automatic. So we get

COROLL A RY 3. L et P-sources factor (locally) orthogonally over 6. As-

sume that G has a full and faithful le ft adjoint. Then, for the statements

(i) Q-sources factor (Locally) orthogonally over F = {J| j C &#x26;},
(ii ) Condition B holds,

one has (ii ) =&#x3E; (i), whereas (i) =&#x3E; (ii) holds in the non-local case.

PROOF. We need to verify that Q-maps factor (locally) orthogonally over

, if B holds. Let f : Y - Q B be a Q-map and let f factor as f = Pm, e,
where e: F Y -&#x3E; P A in &#x26;. Recalling that the unit q is an isomorphism,
we get the following commutative diagram
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For h: F Y -&#x3E; P L G A and the counit E j L G - 7 of G one now has

Hence e = P C A. h C 6. Therefore, by factoring h- over 6, one easily gets
h c Eg and so h c F. Orthogonality of the factorization

follows by Lemma 2, whereas the local case is treated as in Theorem 2,

(ii) =&#x3E; ( i).

Note that for y being an isomorphism, Condition B is automatic.

Hence assertion ( i ) of Corollary 3 holds in this case.

3. APPLICATIONS.

In this section we give some applications of the above results. Many
others can be added by specializing the data of ( *) .

3.1. Core fle ctive subcategories. Let P: G -&#x3E; ï be a functor and let E : -&#x3E; (i
be the embedding of a full coreflective subcategory with coreflector R and

coreflection p . Finally, let ? be the class of P E-maps e: X - P E B such

that e ; X - P ( E B ) belongs to a given class @ of P-maps. Applying Co-

rollary 3 to the diagram



188

THEOREM 4. Let P-sources factor (locally) orthogonally over (&#x26;,M). 
Then PE-sources factor (locally) orthogonally over F if the diagrams

form a GP in X for each source (mi: A - Ai)I in m. This condition is

necessary in the non-local case.

All the generalized pullbacks are trivial for Pp being an isomor-

phism. Therefore, considering the canonical factorization struc.tures for P,

by Theorem 4 we get immediately :

COROLLARY 4. I f P: G -&#x3E; X belongs to one of the following classes

of functors (of which each is contained in the next one), so does every

restriction o f P to a full coreflective subcategory o f C1 such that the P-

images o f the coreflection maps are isomorphisms:
topological functors ( c f. [8]),

(6, m) -topological functors (c f. [3]),

topologically-algebraic fun cto rs ( c f. [1, 4]),
s em itopolo gi cal functo rs ( c f. [8]),

right adjoint functors.

The assertion of Corollary 4 for (&#x26;, M )-topological functors con-
tains in particular Nel’s corresponding result on « initially structured» cat-

egories ( cf. [6], Theorem 1.3). For various applications we refer to his

paper.

3.2. Characterization of topological functors. As a further consequence of
Theorem 3 we obtain a characterization of topological functors due to Hoff-

mann [5] :

COROLLARY 5. A functor P: G -&#x3E; X is topological iff (1 is Z-complete for
Z = P-1 (iso X) an d P has a full and faithful right adjoint.
PROO F. We only need to show that the condition is sufficient for topolo-

gicity. We apply Theorem 3 to the diagram
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where R is the full and faithful right adjoint and c the isomorphic counit.

With 5., = iso!( one obtains for ? the class of all P-maps which are iso-

morphisms in X. By definition of I , P is trivially Z-continuous, and

the unit q of P belongs to I . In order to get orthogonal factorizations

of P-sources over 5: it suffices therefore to have those for P-maps. But

given a P-map x : X - PB one obtains this factorization by considering
the P-image of the pullback

which exists by Z-completeness.

R EM A RK. The functor

has a full and faithful right adjoint, and eat is, of course, small Z-com-

plete with Z = p-1 (iso Set), a. e., pullbacks and small-indexed intersec-

tions of Z-maps exist and belong to 2. Nevertheless, the non-faithful

functor P is not topological. With respect to Corollary 5 the reason for

this is that Q fails to be S-complete : For each cardinal k consider a cat-

egory Kk having two objects 0, 1 and k arrows 0 -&#x3E; 1 . Identifying these

arrows one gets a family of functors Kk -&#x3E; { O -&#x3E; 7 ! } ( indexed by all cardin-

als ) which fails to admit an intersection.

3.3. The Special Adjoint Functor Theorem. We give a slight generalization
of a theorem stated in [2] by application of Theorem 2 in the following si-

tuation. Let Q : B -&#x3E;y be a functor whose right adjointness shall be proved.
Let § be a subset of the objects of B such that all products
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exist in 93 and where X = (XC)g is any object in ( Set G)oP = (t. The
functors G : G -&#x3E; 93 and U: G -&#x3E; y have left adjoints given by

There is a natural transformation y: QG -&#x3E; U which is an isomorphism iff

Q pre serve s the products G X .

COR OL LARY 6. Let the category 93 be Z-complete and let q be a I-

cogenerncting set in 93 (i. e., the units TJ B: B -&#x3E; G L B belong to z). The

functor Q: B -&#x3E;Y then has a le ft adjoint iff
(1) Q est "i-contino us,
(2) there is a pair (&#x26;, m) such that sources in Cl - (Set G)op t actor

over (&#x26;, m) with &#x26; C Epi (j and Condition B ( dep ending on M and y)
holds.

In particular condition (2) holds if Q preserves products. There-

fore, for B being complete and Z-wellpowered, ( 1) and ( 2) are fulfilled

for Q preserving all small limits ; this is the usual version of theSpecial

Adjoint Functor Theorem.
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