CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

Harald Lindner
 Enriched categories and enriched modules

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, n ${ }^{\circ} 2$ (1981), p. 161-174
http://www.numdam.org/item?id=CTGDC_1981__22_2_161_0
© Andrée C. Ehresmann et les auteurs, 1981, tous droits réservés.
L'accès aux archives de la revue «Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

ENRICHED CATEGORIES AND ENRICHED MODULES

by Harald LINDNER

Our purpose is to show that most of the results on categories enriched over a symmetric monoidal closed category \underline{V} can be formulated and proved in the merely monoidal case. This permits to apply the theory of enriched categories to further examples, to gain a better understanding of the basic notions of (enriched) category theory, and to present enriched category theory more concisely.

An important tool is the notion of enriched modules (Bénabou: «actions of multiplicative categories»), i.e., categories on which a monoidal category acts. We hope to show that the two notions of enriched cate gories and enriched modules are equally important. These two kinds of objects are the 0-cells of two well-known 2-categories. We have described in previous papers how these two 2-categories can be embedded into a 2-category \mathcal{O} by introducing 1 -cells (and 2 -cells) from \underline{V}-categories to V-modules, and vice versa. Our examples prove that such 1-cells and 2 -cells occur naturally even in the familiar symmetric monoidal closed case.

The key result (1.9) is a characterization of tensored V-categories in terms of isomorphisms between enriched categories and enriched modules. We discuss duality, limits and Kan-extensions in our context. Details on further topics such as functor categories will be considered elsewhere. Proofs are usually omitted.

1. THE 2-CATEGORY OO OF ENRICHED CATEGORIES AND ENRICHED MODULES.

We recall the definition of the 2 -category \mathcal{O} (cf. [15, 17]). Let $\underline{V}=\left(\underline{V}_{0}, \otimes, I, a, \lambda, \rho\right)$ be a monoidal category, i.e., $\otimes: \underline{V}_{0} \times \underline{V}_{0} \rightarrow \underline{V}_{0}$ is a functor (written between its arguments), l is an object of V_{0}, and

H. LINDNER 2

$$
a_{X, Y, Z}: X \otimes(Y \otimes Z) \rightarrow(X \otimes Y) \otimes Z, \quad \lambda_{X}: X \rightarrow I \otimes X, \quad \rho_{X}: X \rightarrow X \otimes I
$$

are compatible natural transformations.
1.1. DEFINITION. A $\underline{V}-($ left- $) \operatorname{module} \underline{A}=\left(\underline{A}_{0}, \otimes^{A}, \alpha^{\underline{A}}, \lambda^{\underline{A}}\right)$ consists: of a category \underline{A}_{0}, a functor $\otimes^{\underline{A}}: \underline{V}_{0} \times \underline{A}_{0} \rightarrow \underline{A}_{0}$, and two natural transformations a^{A}, λ^{A}

$$
a_{X}^{A}, Y, A: X \otimes^{A}\left(Y \otimes^{A} A\right) \rightarrow\left(X \otimes^{Y} Y\right) \otimes^{A} A, \quad \lambda_{A}^{A}: A \rightarrow I \otimes^{A} A
$$

such that three evident diagrams commute. \underline{A} is called normal if α^{A} and λ^{A} are both isomorphic; their inverses are then denoted by β^{A} and ν^{A}, respectively.
(Cf. [1], 2.3 («actions of multiplicative categories»); [2], 3, Section 1; [15], 5.1; [16], 2; [17], 5.1.)
($V_{0}, \otimes^{Y}, a^{Y}, \lambda^{V}$) is an example of a normal module which we usually denote by \underline{V}, if there is no danger of confusion. Also, we often drop the indices $\underline{A}, \underline{V}, X, Y, A$ of $\otimes^{A}, \otimes^{\underline{V}}, a_{\bar{X}}^{A}, Y, A$, etc..., if the context seems to exclude any danger of confusion. We often write $|\underline{A}|$ instead of $\left|\underline{A}_{0}\right|$ for the class of objects of a \underline{V}-module \underline{A}. If $|\underline{A}|$ is a set, \underline{A} is called small. If \underline{A} is a tensored \underline{V}-category, \underline{A} is canonically equipped with the structure of a normal \underline{V}-module (cp. 1.9 below).
1.2. DEFINITION. A l-cell $F: \underline{A} \rightarrow \underline{B}$ in \mathbb{C} consists of a functor

$$
F_{0}: \underline{A}_{0} \rightarrow \underline{B}_{0} \quad(\text { we often omit the index «0») },
$$

together with a natural family of morphisms in V_{0} or \underline{B}_{0}, indexed by pairs of objects $A, B \in|\underline{A}|$ or $X \in \underline{V}, A \epsilon|\underline{A}|$, resp.
a) $F_{A, B}: \underline{A}(A, B) \rightarrow \underline{B}(F A, F B)$ if $\underline{A}, \underline{B}$ are \underline{V}-categories,
b) $F_{A, B}: \underline{A}(A, B) \otimes F A \rightarrow F B$ if \underline{A} is a \underline{V}-category, \underline{B} is a \underline{V}-module,
c) $F_{X, A}: X \rightarrow \underline{B}(F A, F(X \otimes A))$ if \underline{A} is a \underline{V}-module, \underline{B} is a \underline{V}-category,
d) $F_{X, A}: X \otimes F A \rightarrow F(X \otimes A)$ if $\underline{A}, \underline{B}$ are \underline{V}-modules,
such that two evident corresponding diagrams commute, e.g. in case c:
c)

(ii)

(cf. e.g., [12], 1; [15], 5.2; [17], 5).
1.3. EXAMPLES. (i) Let C be an object of a \underline{V}-category \underline{A}. The hom funcfunctor $\underline{A}_{0}(C,-): \underline{A}_{0} \rightarrow \underline{V}_{0}$, together with the family

$$
\underline{A}(C,-)_{A, B}:=\mu_{C, A, B}^{A}: \underline{A}(A, B) \otimes \underline{A}(C, A) \rightarrow \underline{A}(C, B),
$$

is a 1 -cell in the sense of 1.2 (b). (Cf. [19] ; [17], 5.7.)
(ii) Let C be an object of a \underline{V}-module \underline{B}. The functor $(-\otimes C): \underline{V}_{0} \rightarrow \underline{B}_{0}$ together with the family

$$
(-\otimes C)_{X, Y}:=a \frac{B}{X}, Y, X: X \otimes(Y \otimes C) \rightarrow(X \otimes Y) \otimes C
$$

is a 1-cell from \underline{V} to \underline{B} in the sense of $1.2(\mathrm{~d})$.
1.4. DEFINITION. The composition of 1 -cells $F: \underline{A} \rightarrow \underline{B}$ and $G: \underline{B} \rightarrow \underline{C}$ in ϑ is defined by composing the underlying functors F_{0} and G_{0} and by, e.g.,

$$
\underline{A}(A, B) \otimes G F A \xrightarrow{G_{A(A, B), F A}} G(\underline{A}(A, B) \otimes F A) \xrightarrow{G\left(F_{A, B}\right)} G F B
$$

if \underline{A} is a \underline{V}-cate gory and $\underline{B}, \underline{C}$ are \underline{V}-modules.
1.5. DEFINITION. A 2-cell $\theta: F \rightarrow H: \underline{A} \rightarrow \underline{B}$ in \mathscr{C} is a natural transformation $\theta: F_{o} \rightarrow H_{0}$ such that an evident diagram commutes, e.g. in case c :
c)

The composition of 2 -cells is evident. We leave to the reader the straightforward proof that these definitions yield a 2-category \mathcal{O} (cf. [15], 5).
1.6. EXAMPLES OF 2-CELLS IN \mathcal{O}. Let $F: \underline{A} \rightarrow \underline{B}$ be a 1 -cell in \mathcal{O} and let $A \in|\underline{A}|$. We consider the four cases a-d in 1.2:
a) $F_{A,-}: \underline{A}(A,-) \rightarrow \underline{B}(F A,-) \circ F(c f .(1))$,

H. LINDNER 4

b) $F_{A,:}:(-\otimes F A) \circ \underline{A}(A,-) \rightarrow F(c f .(2))$,
c) $F_{-, A}: l_{\underline{V}} \rightarrow \underline{B}(F A,-) \circ F \circ(-\otimes A)(c f .(3))$,
d) $F_{-, A}:-\otimes F A \rightarrow F \circ(-\otimes A)(c f .(4))$,
e) $\mu_{A, B,-}^{A}:(-\otimes \underline{A}(A, B)) \circ \underline{A}(B,-) \rightarrow \underline{A}(A,-)$ is a $2-c$ ell. This is a specialization of b (cp. $1.3(\mathrm{i})$).
f) $\alpha_{-, Y, A}:(-\otimes(Y \otimes A)) \rightarrow(-\otimes A) \circ(-\otimes Y)$ is a 2-cell. This is a specialisation of d (cp. $1.3(\mathrm{ii})$).
(1)

(2)

(4)

In this setup we are able to extend the usual definition of tensored \underline{V}-categories (cf. [8], 4), in which \underline{V} had to be symmetric monoidal closed, to the case of a merely monoidal category (cp. [10], 9).
1.7. DEFINITION. A tensored \underline{V}-category consists of a \underline{V}-category \underline{C} together with an adjunction (5) in $\overparen{C O}$ for every $A \epsilon|\underline{C}|$ (cf. 1.3 (i)):

$$
\begin{equation*}
(-\otimes A) \frac{e_{A,-}}{i_{-, A}} \quad \underline{C}(A,-): \underline{C} \rightarrow \underline{V} \tag{5}
\end{equation*}
$$

Although a tensored \underline{V}-category consists of a \underline{V}-category \underline{C} together with additional data, rather than a specific property of \underline{C}, it is customary to denote a tensored \underline{V}-cate gory by the same symbol as the "underlying" \underline{V}-category \underline{C}. This is of course justified to some extent, since (co-)adjoints are determined uniquely up to isomorphism. The reader is invited to draw the commutative diagrams, provided by 1.7 , for later reference.

As an example we list the adjunction equations:
(6)

$$
\underline{C}(A, B) \xrightarrow{i} \underline{C}(A, B), A \in \underline{C}(A, C(A, B) \otimes A) \xrightarrow{\underline{C}\left(A, e_{A, B}\right)} \underline{C}(A, B)=1_{\underline{C}(A, B)},
$$

$$
\begin{equation*}
X \otimes A \xrightarrow{i_{X, A} \otimes A} \underline{C}(A, X \otimes A) \otimes A \xrightarrow{e_{A, X \otimes A}} X \otimes A=1_{X \otimes A} \tag{7}
\end{equation*}
$$

for all $A, B \epsilon|\underline{C}|, X \epsilon|\underline{V}|$.
The Definition 1.7 can be «translated» to the case of V-modules (cp. 1.9 below) :
1.8. DEFINITION AND PROPOSITION. A tensore $d \underline{V}$-module consists of a \underline{V}-module \underline{C}, such that $\lambda \underline{C}$ is isomorphic, together $w i t h$ an adjunction (8) for every $A \epsilon|\underline{C}|$. Every tensored \underline{V}-module is normal.

$$
\begin{equation*}
(-\otimes A) \frac{e_{A,-}}{i_{-, A}} \quad \underline{C}(A,-): \underline{C} \rightarrow \underline{V} . \tag{8}
\end{equation*}
$$

Although the adjunctions (5) and (8) look equal, we should like to emphasize that they are different because \underline{C} denotes a \underline{V}-category in 1.7 and a V-module in 1.8. In particular, the «structure maps» of the 1 -cells in (5) and (8) in the nontrivial cases are:

$$
\begin{align*}
& \quad(-\otimes A)_{X, Y}: X \rightarrow \underline{C}(Y \otimes A,(X \otimes Y) \otimes A), \tag{9}\\
& \underline{C}(A,-)_{X, B}: X \otimes \underline{C}(A, B) \rightarrow \underline{C}(A, X \otimes B) . \tag{10}
\end{align*}
$$

1.9. THEOREM. There is a canonical bije ction between:
(i) tensored V-categories,
(ii) tensored \underline{V}-modules,
(iii) isomorphisms between \underline{V}-categories and \underline{V}-modules such that the underlying functors are identities.

We must leave the proof to the reader (cp. [17], 5.11).
On applying the Theorem 1.9 to $\underline{A}=\underline{V}$ if \underline{V} is symmetric monoidal closed we recognize the Definition 1.7 of tensored \underline{V}-categories as compatible with the classical case (cf. [8], 4).
1.10. REMARK. We stress the importance of the statement (iii) in 1.9: if \underline{A} and/or \underline{B} are tensored \underline{V}-categories, the different notions of 1 -cells $\underline{A} \rightarrow \underline{B}$ in 1.2 are in a bijective correspondence, set up by composing with the isomorphisms between the \underline{V}-category and \underline{V}-module structures. In particular, these notions are compatible. In this way we can extend most no-

H. LINDNER 6

tions in enriched category theory from monoidal closed categories \underline{V} to merely monoidal categories \underline{V}.

In the next sections we take the first steps in this direction. Most results are contained in a slightly different form in previous papers (e.g., [17]). The present setting - the 2 -category \mathcal{O} - permits a nice formulation.

A common generalization of the two notions of objects in \mathcal{O} appears to be very tempting. In fact, in [18] such a generalization was given. In this way \underline{V}-modules and \underline{V}-categories can be treated simultaneously. On the other hand, it appears as if additional work were required in order to reinterpret results in terms of the familiar notions of V-modules and \underline{V}-categories. Also, the translation of a notion from \underline{V}-categories to \underline{V}-modules and vice versa is often quite straightforward.

With regard to 1.9 we may consider 1 -cells from a \underline{V}-category \underline{A} to a \underline{V}-module \underline{B} (in particular $\underline{B}=\underline{V}$) as genuine generalizations of \underline{V}-functors. Wee shall therefore often call these 1 -cells and the corresponding 2 cells, \underline{V}-functors and \underline{V}-natural transformations, respectively.

2. DUALITY.

The dual of a \underline{V}-category as well as contravariant \underline{V}-functors between \underline{V}-categories cannot be defined unless \underline{V} is symmetric. In particular, the definition of extraordinary \underline{V}-natural transformations requires a symmetry. However, certain parts of this duality for V-categories are independent of a symmetry (cf. [19, 17]).

To a monoidal category $\underline{V}=\left(\underline{V}_{0}, \otimes, l, a, \lambda, \rho\right)$ we may assign an opmonoidal (cp. (2); the brackets are shifted the other direction) category $\underline{V}^{t}=\left(\underline{V}_{0}, \otimes^{t}, I, a^{t}, \lambda^{t}, \rho^{t}\right)$, the transpose of \underline{V} by:

(2) $a_{X, Y, Z}^{t}:=a_{Z, Y, X}$;
(3) $\lambda^{t}:=\rho$;
(4) $\rho^{t}:=\lambda$
($T w$ denotes twisting of the arguments, i.e., $T w(X, Y)=(Y, X)$ etc.).

Clearly $\underline{V}^{t t}=\underline{V}$. Symmetries γ for \underline{V} are in bijection with monoidal functors $\Gamma=\left(1_{V_{0}}, \gamma, 1_{I}\right): \underline{V}^{t} \rightarrow \underline{V}$ which are quasi-involutive, i.e., $\Gamma\left(\Gamma^{t}\right)=1$ (but $\Gamma \Gamma$ is not defined). By inverting a^{t} we obtain an (honest) monoidal category $\underline{V}^{s}=\left(\underline{V}_{0}, \otimes^{t},\left(a^{t}\right)^{-1}, \lambda^{t}, \rho^{t}\right)$ (cf. e.g. [17], 1.3). To a $V-c a t-$ e gory \underline{A} we assign a \underline{V}^{t}-category \underline{A}^{t} by

$$
\begin{equation*}
\underline{A}^{t}(A, B):=\underline{A}(B, A), \iota_{A}^{t}:=\iota_{A}, \quad \mu_{A, B, C}^{t}:=\mu_{C, B, A} . \tag{5}
\end{equation*}
$$

This construction extends to 1 -cells and 2 -cells. It is a 2 -functor, contravariant with respect to $2-c e l l s$ (cf. [17], 2.9-2.11). The extension to the 2 -category \mathcal{C} is straightforward. The general idea is to reinterpret the diagrams in terms of \underline{V}^{t}. This turns a \underline{V}-left module \underline{A} into a \underline{V}-right module $\underline{A}^{t}=\left(\underline{A}_{0}, \otimes^{t}, a^{t}, \lambda^{t}\right):$

$$
\begin{equation*}
\otimes^{t}=\otimes \circ T w, \quad a_{A, X, Y}^{t}:=a_{Y, X, A}, \quad \lambda_{A}^{t}:=\lambda_{A} \tag{6}
\end{equation*}
$$

and correspondingly for 1-cells and 2-cells (cp. [2], 3 Section 3).
2.1. DEFINITION. Let \underline{A} be a \underline{V}-category and let \underline{B} be a right (!) \underline{V}-module. A contravariant \underline{V}-functor from \underline{A} to \underline{B} is a \underline{V}^{t}-functor from the \underline{V}^{t}, category \underline{A}^{t} to the \underline{V}^{t}-left module \underline{B}^{t}.

A contravariant \underline{V}-functor $F: \underline{A} \rightarrow \underline{B}$ consists therefore of a contravariant functor $F_{0}: \underline{A}_{0} \rightarrow \underline{B}_{0}$, together with a natural family of maps

$$
F_{A, B}: F A \otimes \underline{A}(B, A) \rightarrow F B
$$

such that two evident diagrams commute (cp. [17], $5+6$; [19]). The contravariant hom functors

$$
\underline{A}(C,-): \underline{A} \rightarrow \underline{V} \quad\left(\underline{A}(C,-)_{A, B}:=\mu_{B, A, C}^{A}\right)
$$

are an example (here \underline{V} denotes the \underline{V}-right module ($\left.\underline{V}_{0}, \otimes, a, \rho\right)$). $\underline{V}_{\text {- }}$ bifunctors (distributors) may be defined in this situation (cp. [3], 6 Section 2; [17], 7.4(d)). An important example is the Hom-bifunctor $\underline{A}(-,-)$ for a \underline{V}-category \underline{A}. There is an evident way of defining extraordinary \underline{V}-natural transformations from $X \in|\underline{C}|$ to a distributor with values in a \underline{V}-bimodule (cp. [1], 2.3) in the case $\underline{C}=\underline{V}, X=I$, such that ι^{A} (\underline{A} a \underline{V} category) is extraordinary \underline{V}-natural. In the general case a symmetry for \underline{V} is required. The extraordinary \underline{V}-naturality of $\mu \frac{A}{A}, B, C$ with respect to

H. LINDNER 8

\underline{B} can be defined for a merely monoidal category \underline{V} (cp. 3.6 below).

3. LIMITS.

We consider the notion of ($V-$) limits in the 2 -category \mathcal{O}. This general notion combines and generalizes the two essentially equivalent (in the spirit of 1.9) notions of \underline{V}-limits as considered in [4], [17] 6.3, [19].
3.1. DEFINITION. (i) A \underline{V}-natural pair (P, π) from $E: \underline{A} \rightarrow \underline{V}$ to $F: \underline{A} \rightarrow \underline{B}$ consists of an object $P \in|\underline{B}|$, together with a 2-cell π :
a) $\pi: E \rightarrow \underline{B}(P,-) \circ F$ if \underline{B} is a \underline{V}-category,
b) $\pi:(-\otimes P) \circ E \rightarrow F$ if \underline{B} is a \underline{V}-module.
(ii) A \underline{V}-limit (mean cotensorproduct) of E and F is a \underline{V}-natural pair (P, π) from E to F which is universal, i.e.,
a) the commutative diagram (1) (for all $A \in|\underline{A}|$) sets up a bijection (2) (for all $X \in|\underline{V}|$) between \underline{V}-natural pairs (O, ω) from $(-\otimes X) \circ E$ to F and morphisms $p: X \rightarrow \underline{B}(O, P)$ in \underline{B}_{0}.

$$
\frac{(-\otimes X) \circ E \xrightarrow{\omega} \underline{B}(O,-) \circ F}{X \xrightarrow{p}(O, P)}
$$

If (2) is a bijection merely for $X=I$, then (P, π) is called a limit (weak mean coten sorproduct) of E and F.
b) the commutative diagram (3) (for all $A \epsilon|\underline{A}|$) sets up a bijection (4) between V-natural pairs (O, ω) from E to F and morphisms $p: O \rightarrow P$ in \underline{B}_{0}.

ENRICHED CATEGORIES AND ENRICHED MODULES 9

$$
\begin{equation*}
\frac{(-\otimes O) \circ E \xrightarrow{\omega} F}{O \xrightarrow[p]{\longrightarrow}} \tag{4}
\end{equation*}
$$

If \underline{B} is a tensored \underline{V}-category, both notions of \underline{V}-limits $3.1 \mathrm{a}, \mathrm{b}$ are easily seen to be compatible, i.e., the canonical bijection between (conjugate) 2-cells

$$
E \rightarrow \underline{B}(P,-) \circ F \quad \text { and } \quad(-\otimes P) \circ E \rightarrow F
$$

preserves \underline{V}-limits (for the calculus of conjugate 2-cells, cp. e.g. [7], 1.6; [11]; [17], 4; [20], IV.7).
3.2. THEOREM (Covariant Yoneda-Lemma). Let \underline{A} be a \underline{V}-category and let \underline{B} be either a \underline{V}-category or a \underline{V}-module. If $C \in|\underline{A}|$ and $F: \underline{A} \rightarrow \underline{B}$ is a l-cell, then $\left(F C, F_{C,-}\right)$ is a \underline{V}-limit of $\underline{A}(C,-): \underline{A} \rightarrow \underline{V}$ and F. (Cp.e.g. [4], 3.1; [5], 5.1; [17], 6.4; [19], 2, Theorem 3.)

PROOF. Let \underline{B} be a \underline{V}-category.

$$
F_{C,-}: \underline{A}(C,-) \rightarrow \underline{B}(F C,-) \circ F
$$

is a 1 -cell according to 1.6 a. If $p: X \rightarrow \underline{B}(O, F C)$ is any morphism in \underline{V}_{o}, the composition $\omega_{A}:=\mu B, F C, F A\left(F_{C, A} \otimes p\right)$ yields a 1-cell

$$
\omega:(-\otimes X) \circ \underline{A}(C,-) \rightarrow \underline{B}(O,-) \circ F
$$

(cp. $1.6 \mathrm{a}, \mathrm{e}$). The morphism p is uniquely determined by ω via

$$
p=\omega_{C}\left(\iota \frac{A}{C} \otimes X\right)\left(\lambda_{X}^{\frac{V}{X}}\right)
$$

The converse is now obvious. The proof is analogous for a \underline{V}-module \underline{B}.
The weak Yoneda-Lemma is a consequence of 3.2 for $\underline{B}=\underline{V}$: there is a bijection between morphisms $I \rightarrow F C$ in \underline{V}_{0} and 2-cells $\underline{A}(C,-) \rightarrow F$. 3.2 also implies the usual Yoneda-Lemma (cf. [4], 3.1) in which \underline{V} is assumed to be symmetric monoidal closed and \underline{B} is a \underline{V}-category.
3.3. DEFINITION. A 1 -cell $G: \underline{B} \rightarrow \underline{C}$ preserves $a(\underline{V}-)$ limit (P, π) of $E: \underline{A} \rightarrow \underline{V}$ and $F: \underline{A} \rightarrow \underline{B}$ iff
a) if $\underline{B}, \underline{C}$ are \underline{V}-cate gories:
$\left(G P,\left(G_{P,-} \circ F\right) \pi\right)$ is a $\left(V_{-}\right)$limit of E and $G F$.

H. LINDNER 10

b) if \underline{B} is a \underline{V}-category, \underline{C} is a \underline{V}-module:
$\left(G P,\left(G_{P,-} \circ F\right)(\pi \otimes G P)\right)$ is a $(\underline{V}-) \operatorname{limit}$ of E and $G F$.
c) if \underline{B} is a \underline{V}-module, \underline{C} is a \underline{V}-category :
$\left(G P,(\underline{C}(G P,-) \circ G \circ \pi)\left(G_{-}, P \circ E\right)\right)$ is a $(\underline{V}-)$ limit of E and $G F$.
d) if $\underline{B}, \underline{C}$ are \underline{V}-modules:
$\left(G P,(G \circ \pi)\left(G_{-, P} \circ E\right)\right)$ is a $(\underline{V}-)$ limit of E and $G F$.
3.4. PROPOSITION. Let \underline{B} be a \underline{V}-category.
(i) For every $C \in|\underline{B}|$ the 1 -cell $\underline{B}(C,-): \underline{B} \rightarrow \underline{V}$ preserves \underline{V}-limits («hom-functors» preserve V-limits).
(ii) Let $E: \underline{A} \rightarrow \underline{V}$ and $F: \underline{A} \rightarrow \underline{B}$ be l-cells, $P \in|\underline{B}|$, and let

$$
\pi=\left\{\pi_{A}: E A \rightarrow \underline{B}(P, F A)|A \in| \underline{A} \mid\right\}
$$

If

$$
\left.\left(\underline{B}(C, P),\left\{\left(\mu \underline{C}_{\underline{B}, P, F A}\right) \cdot\left(\pi_{A} \otimes \underline{B}(C, P)\right)\right)|A \epsilon| \underline{A} \mid\right\}\right)
$$

is a \underline{V}-limit of E and $\underline{B}(C,-) \circ F$ for every $C \in|\underline{B}|$, then (P, π) is a I'-limit of E and F (《hom-functors» collectively detect \underline{V}-limits).

PROOF. (i) is an immediate consequence of the Definition 3.1. In fact, if only the notion 3.1 (ii) b were known, we would use the assertions in 3.4 as a gauge for the choice of the definition of \underline{V}-limits in \underline{V}-categories.
(ii) According to our last remark we have only to prove that π is a 2-cell in \mathcal{O}. This follows easily on choosing $C:=P$.

We can also consider the dual notion of colimits if \underline{V} is merely monoidal.
3.5. DEFINITION. Let \underline{A} be a \underline{V}-category, let $F: \underline{A} \rightarrow \underline{B}$ be a 1 -cell and let $E: \underline{A} \rightarrow \underline{V}$ be a contravariant \underline{V}-functor. A \underline{V}-natural pair (P, π) for E and F consists of an object $P_{\epsilon}|\underline{B}|$, together with a natural family $\pi=$ $\left\{\pi_{A}|A \in| \underline{A} \mid\right\}:$
a) $\pi_{A}: E A \rightarrow \underline{B}(F A, P)$ if \underline{B} is a \underline{V}-category;
b) $\pi_{A}: E A \otimes F A \rightarrow P$ if \underline{B} is a \underline{V}-module,
such that an evident diagram commutes. A couniversal \underline{V}-natural pair iscalled a tensorproduct of E with F (over \underline{A}).
3.6. Theorem (Contravariant Yoneda-Lemma). Let \underline{A} be a \underline{V}-category and let \underline{B} be either a \underline{V}-category or a \underline{V}-module. If $C \epsilon|\underline{A}|$ and $F: \underline{A} \rightarrow \underline{B}$ is a l-cell, then ($F C, F_{-, C}$) is a \underline{V}-colimit of the contravariant \underline{V}-functor $\underline{A}(-, C): \underline{A} \rightarrow \underline{V}$ and F.
(Cp. e.g. [17], 6.10; [19].) The proof is dual to the proof of 3.2.
The proof of the following proposition is straightforward.
3.7. PROPO SITION. Adjoint 1 -c ells preserve \underline{V}-limits.

4. KAN EXTENSIONS.

The definition of Kan extensions can be formulated in any 2-category: (K, κ) is called a Kan extension of a 1-cell $J: \underline{A} \rightarrow \underline{D}$ along a 1cell $F: \underline{A} \rightarrow \underline{B}$ iff $K: \underline{B} \rightarrow \underline{D}$ is a 1 -cell and $\kappa: K F \rightarrow J$ is a 2-cell (cf. (1)), such that the assignment (2) is a bijection (3) for every 1 -cell $L: \underline{B} \rightarrow \underline{D}$.

$$
\begin{equation*}
(\chi: L \rightarrow K) \vdash \kappa(\chi \circ F) ; \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\chi: L \rightarrow K}{\omega: L F \rightarrow J} . \tag{3}
\end{equation*}
$$

A 1-cell $R: \underline{D} \rightarrow \underline{E}$ respects a Kan extension (K, κ) of J along F iff ($R K, R_{K}$) is a Kan extension of $R J$ along F. If, in particular, \underline{D} is a \underline{V}-category, the hom-functors of \underline{D} need not respect Kan extensions. The Kan extensions respected by all hom-functors are called pointwise Kan extensions (if we assume ($R K, R_{K}$) to be a Kan extension for every homfunctor R, then (K, κ) can be shown to be a Kan extension).
4.1. DEFINITION. Let \underline{V} be a symmetric monoidal category, and let

$$
J: \underline{A} \rightarrow \underline{D}, \quad F: \underline{A} \rightarrow \underline{B}, \quad K: \underline{B} \rightarrow \underline{D}
$$

be 1-cells and let $\kappa: K F \rightarrow J$ be a 2 -cell (cp. (1)). (K, κ) is called a \underline{V}-Kan extension of J along F iff:
a) (if \underline{D} is a \underline{V}-category) the commutative diagram (4) (for all $A \in|\underline{A}|$)
sets up a bijection (5) (for all $X \in|\underline{V}|$ ard 1-cells $L: \underline{B} \rightarrow \underline{D}$) between extiao-dinary V-natural transformations χ and ω.

$$
\begin{equation*}
\frac{\chi: X \rightarrow \operatorname{Hom}_{\underline{D}}}{\omega: X \rightarrow \operatorname{Hom}_{\underline{D}} \circ\left(L^{0} \otimes K\right)} \tag{5}
\end{equation*}
$$

b) (if \underline{D} is a \underline{V}-module) the commutative diagram (6) (for all $A \in|\underline{A}|$) sets up a bijection (7) between 1-cells χ and ω.

$$
\frac{x:(X \otimes-) \circ L \rightarrow K}{\omega:(X \otimes-) \circ L \circ F \rightarrow J}
$$

A 1-cell $R: \underline{D} \rightarrow \underline{E}$ is said to respect a \underline{V}-Kan extension (K, κ) iff $\left(R K, R_{K}\right)$ is a \underline{V}-Kan extension of $R J$ along F.
4.2. THEOREM. Let \underline{V} be symmetric monoidal and let \underline{D} be a \underline{V}-category.
(i) Every $\underline{\underline{\prime}}$-Kan extension (K, κ) of $J: \underline{A} \rightarrow \underline{D}$ along $F: \underline{A} \rightarrow \underline{B}$ is a Kan extension.
(ii) Every pointwise Kan extension (K, κ) of $J: \underline{A} \rightarrow \underline{D}$ along $F: \underline{A} \rightarrow \underline{B}$ is a \underline{V}-Kan extension.

We remark that every K an extension is a \underline{V}-Kan extension in the case $\underline{V}=E n s$, the category of sets. This is certainly the reason why \underline{V} Kan extensions apparently have not yet been considered in the literature. The usual connection between pointwise $K a n$ extensions and \underline{V}-limits remains valid if \underline{V} is merely monoidal:
4.3. THEORFM. (K, κ) is a pointwise K an extension of $J: \underline{A} \rightarrow \underline{D}$ along $F: \underline{A} \rightarrow \underline{B}$ iff $\left(K B, \pi_{B}\right)$, determined by

$$
\pi_{B}:=D(K B, \kappa) \circ K_{B,-} \circ F
$$

is a \underline{V}-limit of $\underline{B}(B,-) \circ F$ and J for every $B \in|\underline{B}|$.
4.4. REMARK. Several other notions may be defined for merely monoidal categories \underline{V} by means of Kan extension. E. g., a 1-cell $F: \underline{A} \rightarrow \underline{B}$ is called codense iff ($1_{\underline{B}}, 1_{F}$) is a Kan extension of F along F. Also, final and initial 1-cells (in the non-topological sense) may be defined (cf. [15], 4(10)-(12)).

Mathematisches Institut II
Universität Düsseldorf
Universitätstr. 1
D-4000 DÜSSELDORF

H. LINDNER 14

REFERENCES.

(We abbreviate Lecture Notes in Mathematics, Springer, by LN.)

1. BENABOU, J., Introduction to bicategories, $L N 47$ (1967), 1-77.
2. BENABOU, J., Les catégories multiplicatives, Rapport Inst. Math. Pure et App. Univ. Cath. Louvain 27 (1972).
3. BENABOU, J., Les distributeurs, Ibidem 33 (1973).
4. BORCEUX, F. \& KELLY, G.M., A notion of limit for enriched categories, Bull. Austral. Math. Soc. 12(1975), 49-72.
5. DAY, B.J. \& KELLY, G.M., Enriched functor categories, LN 106 (1969), 178-191.
6. EIL ENBERG, S. \& KELLY, G. M., A generalization of the functorial calculus, J. Algebra 3(1966), 366-375.
7. GRAY, J. W., Formal category theory: Adjunctions for 2-categories, $L N 391$ (1974).
8. KELLY, G.M., Adjunction for enriched categories, $L N$ 106(1969), 166-177.
9. K ELLY, G.M., Doctrinal adjunction, $L N$ 420 (1974), 257-280.
10. KeLLY, G.M., Saunders Mac Lane and category theory, In Saunders Mac Lane Selected papers (edited by I. Kaplansky), Springer (1979), 527-543.
11. K ELLY, G.M. \& STREET, R., Review of the elements of 2-categories, $L N$ 420 (1974), 75-103.
12. KOCK, A., Strong functors and monoidal monads, Arch. of Math. 23 (1972), 113-1 20.
13. LAWVERE, F. W., Ordinal sums and equational doctrines, $L N 80$ (1969), 141155.
14. LINDNER, H., Adjunctions in monoidal categories, Manuscripta Math. 26 (1978) 123-139.
15. LINDNER, H., Center and trace: a) Seminarberichte Fernuniv. Hagen 7 (1980), 149-181; b) Arch. of Math., 35 (1980), 476-496.
16. LINDNER, H., Monads generated by monoids, Manuscripta Math. 15 (1975), 139-152.
17. LINDNER, H., Monoidale und geschlossene Kategorien, Habilitationsschrift, Univ. Düsseldorf, 1976.
18. LINTON, F.E.J., Sur les choix de variance prédestinés, Exposé oral, Colloque Amiens 1975 (non publié).
19. LINTON, F. E. J., The multilinear Yoneda-Lemmas, $L N$ 195 (1971), 209-229.
20. MACLANE S., Cate gories for the working mathematician, Springer, 1971.
