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DIFFERENTIAL FORMS WITH VALUES IN GROUPS

(preliminary report)

by Anders KOCK
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Summary. We compare the classical Lie-algebra valued differential 1. and

2-forms with a notion of group valued differential form, which occurs very

naturally in the context of synthetic differential geometry. The main obser-

vation (Theorem 1) is that the expression dw + 1 2 [w,w] , which occurs

so often for the Lie algebra valued forms is the classical version of a na-

tural coboundary operator for group-valued 1-forms.

In the formal manifolds M [4] which occur in synthetic differential

geometry, we have around each point x E M a « 1-monad» M1 ( x) c M which
makes the notion «jet at X» representable: a jet at x ( of a map into N,

say) is a map M1 (x) -&#x3E; N. The elements y of M 1 (x) are called the 1-neigh-
bours of x , or just (in the present note) neighbours, and we write x - y .

If G is a group (-object; we work consistently in some topos &#x26;

where synthetic differential geometry makes sense), then we consider laws

a) which to any pair x - y of neighbours associates an element w (x, y),
with w (x,x) = e (neutral element). If G is the (additive) group (R, +) by
which one measures the quantity «work», an example of such a law is «the

amount of work required to go directly from x to a neighbour point y». If

G is the ( non-commutative ) group of rotations, an example of an m on a

curve M in space is w(x, y) = «the rotation which the Frenet frame gets

by going from x to a neighbour point y». Similarly for the Darboux frame

on a surface.

In both cases, we evidently have
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and a law co like this is what we shall call a differential 1-forrn with value
in G . (Actually, for all value groups G we shall consider, (2) follows

from ( 1 ). )

To compare this form notion with the classical notion of linear dif-

ferential 1-form on M , we note that if M and N are formal manifolds, and

x E M , y E N , then there is a natural bijective correspondence between

and

(see e. g. [4], Remark 6.1). In particular, if we take N = (R, +) (which
we now take to mean the number line), and y = 0 , then we get a bijective

correspondence between

and

The data ( 3 ) is, when we have it for all x E M , a differential form on M ,
as introduced here ((2) in this case being derivable from ( 1)), whereas

the data (4) is a linear differential ]-form in the classical sense. Similarly,
if we take N to be a group G and y = e (the neutral element), we get a

bijective correspondence between 1-forms in our sense with values in G ,

and classical ]-forms on M with values in the Lie algebra Te G (this is

provided G is itself a formal manifold, or if G = Diff (F) , the group of all

bijective maps F - F where F is a formal manifold).

There is a similar notion of 2-form 0 on M with values in G ; this

is a law which to any « triangle» x, y, z in M ( with x - y, y- z , z - x )

associates an element 0 (x,y,z) C G , and which is e if x = y or x = z

or y = z . (For G commutative, one can similarly consider n-forms for any

n , and this has, for the case G = ( R, +), been used by Bkouche and J oyal

long ago.) There is also a bijective comparison between «our» 2-forms on

M with values in G , and classical ( bilinear alternating) 2-forms on M with
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values in T e G, for G a formal manifold or Diff (F) with F a formal ma-

nifold.

We shall consistently denote the linear classical version of a form

oi (in our sen se ) by w .
A 0-form on M with values in G is just a map fj M - G.

The main point we want to make is the following : there are natural

c oboundary operators d from 0-form s to 1-form s and from 1-forms to 2-forms;
and that, for 1-forms, the coboundary operator does not correspond exactly
to the classical coboundary operator on the linearized forms, but rather,
there is an «error» term in the latter involving the Lie bracket on T e G :

THEOREM 1. For a) a G-valued 1-form on M,

Here w is the linearized Te G-valued version of a), d and d denote

respectively the coboundary operator for G-valued 1-forms introduced in ( 6 )

below, and the classical coboundary operator for linear forms; finally we

remind the reader that, when w and 0 are ( linear) 1-forms with values in

a Lie algebra, [w,0] is a 2-form given by

( u and v are tangent vectors at the same point of M ).

The coboundary operator d has the simplest possible description :

for x -y, y-z, z-x, we put

The right hand side here is evidently to be thought of as the curve integral

of a) around the boundary of the triangle o- = (x,y,z) ; so the formula

yields Stokes’s Theorem:

true by the very definition for such «infinitesimal» triangles Q.

For a 0-form f ; M -&#x3E; G , we get a 1-form d f by putting, for x - y :



144

clearly, d(df) = 0 (where 0 denotes the 2-form with constant value e );
with evident terminology, we express this: exact 1-forms are closed (for
conditions for the converse, see Theorem 3 below).

If G itself is a formal manifold, we may talk about forms on G, with

values in G . There is a very canonical 0-form, namely the identity map
i: G -&#x3E; G . Its coboundary d i we denote Q . It «is» the Maurer- Cartan form.

Its linearized version -O- (which is a Te G-valued 1-form on G ) is the clas-
sical Maurer-Cartan form. Now Q being exact ( = di ) is closed, dQ = 0,
whence we get:

COROLLARY 2. The linear Maurer-Cartan form a satis fies

PROOF. Since dQ = 0, dQ = 0, so that, substituting 0, for oi in (5)

gives the result,.

We say that G admits in te grati on if, for any a, b c R with a b ,
and anyl-form a) on (a, b], w e h ave

This generalizes (from G = (R, +)) the integration axiom of [5] ; in the

same well-adapted model we considered there, any Lie group satisfies the

axiom, whereas Diff (F) does not, in general.
We write

where g and oi are related as above, and prove certain standard rules of

integration, just like in [5] except we have to be careful with the non-com-

mutativity of G . In particular, for ab c ,

Let I denote [0, 1] . We have two «piecewise smooth » paths in

I X I from ( 0, 0 ) to (1,1) , and when (i is a 1-form on I x I , we get cor-

respondingly two curve integrals of oi along them (each of the two curve

integrations being quickly describable as a G-product of two integrals f 1 0).
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We can then prove the following weak form of Stokes’s Theorem :

LEMM A. 1 f a) is a closed 1-form on I X I , then these two curve* integrals
agre e.

PROO F (sketch). There are two steps. The first is by means of (8) to re-

duce the question to «infinitesimal rectangles », and this is exactly as in

[6]. But there, this was all we had to do, because coboundary of forms

was essentially defined so as to make Stokes’s Theorem true on such in-

finitesimal rectangles. In the present paper we used infinitesimal triangles

instead, and the second step is therefore reduction from such rectangles
to triangles. This is non-trivial, using coordinate calculations (one cannot

pave the infinitesimal rectangles with infinitesimal triangles, it seems).

THEOR EM 3. I f M is a ( stably) pathwise connected, simply connected

formal mani fold, and G a group admitting integration, then any closed G-

valued 1-form a) on M is exact.

PROOF (sketch). Choose a point x C M , and define f (y) to be the curve

integral of a) from x to y, along any curve k: I - M from x to y . Indep-
endence of choice of curves follows then from the lemma and the existence

of a homotopy I Xl - M between the two given curves. To prove d f = w,
one has to use the lemma in conjunction with the fact that for a neighbour
z of y, any path from x to y can be deformed by n infinitesimal homo-

topies to a curve from x to z ( which is what we mean by stably pathwise

connected); here n = dim (M ).

Any map f: M - N between formal manifolds takes monads to mo-

nads

Therefore a j-form m (j = 0,1,2) on N immediately gives a j-form f*(4)
on M , and f * commutes with d . Also f*m = f*’W .

Note that, for any f: M -&#x3E; G (with G a group which is also a formal

manifold ),

where 9 = d i is the (non-linear) Maurer-Cartan form on G . Therefore also
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where Q is the Te G-valued linear Maurer-Cartan form.
’With M and G as in Theorem 3 ( and G further a formal manifold)

we have then

COROLLARY 4. Let C-0 be a (linear) Te G-valued 1-form on M. Then i f

we can find an f : M -&#x3E; G with f * -O- = w.

PROOF. Let m be the G-valued 1-form on M corresponding to - . Then

by Theorem 1, (10) means that do = 0, hence dm = 0 . By Theorem 3,

therefore a) is exact, (,) = d f for some f : M -&#x3E; G , so

by (9).

This, of course, is a classical theorem, cf. e, g. [2]. An f with

d f = w ( i, e, f * -O- =w) can also in our context be proved unique up to left

multiplication by a constant form g , due to

THEOREM 5. lf f1, f2: M -&#x3E; G have d f1 - d f2, th en f 1 g f2 for some
unique g c M .

This follows easily from the uniqueness assertion in the integration
axiom.

Let us finally consider a case where one naturally encounters G-

valued 1-forms with value in a « big» group Diff (F) . Let D be a distribu-

tion on M X F transversal to the fibres of proj: M X F - M . This means for

each (x,u) EMXF, we have given a subset

such that Ð( x, y) by proj maps bijectively onto M1 (x). If y - x, there

is a unique u’ such that ( y, u’) c D(x,u), and to x - y we associate the

map co (x, y): u i-&#x3E; u’ which is a bijective map F - F . Then a) is a Diff (F)-
valued 1-form on M . It is closely connected to the replacement infinite-

simal » of [1] page 40. We can prove that if D is a Frobenius distribution
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( the commutator of two vectorfields subordinate to D is again in D ), then

ú) is closed. Because Diff (F) does not admit integration, we cannot as-

sert ú) exact (which would imply that we have global solutions of the pro-
blem D ).

In the classical case, there is a sense in which Dif f(F) does ad-

mit curve integration if F is compact: this is precisely the statement that

!J) is a « connexion infinitésimale» in M X F - M ; cf. [1], D 6finition and

Proposition on page 36.

The linearized version of a) is the differential ]-form («the connec-

tion form of D ») with values in the (big) Lie algebra of all vector fields

on F , as considered in [3].

I want to acknowledge several vital discussions with Joyal, who

informed me about the related form - and connection -notions considered by
him and Bkouche.
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