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ALGEBRAIC ASPECTS OF TOPOS THEORY

by J. L AMBEK and P. J. SCOTT

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII - 2 (1981)

3e COLLOQUE SUR LES CATEGORIES
DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

When working with fields, one sometimes has to go into the algebraic

category of (commutative) rings. For example, to adjoin an indeterminate

x to a field F one fonns the ring F[x], from which a field F(x) may
be obtained by constructing its ring of quotients. For similar reasons the

notion of «dogma» was introduced in [13] to capture the algebraic aspect

of toposes :

Dogmas are essentially the same as Volger’s «semantical categories » [17]

and B6nabou’s «formal toposes ». They are also related to models of «type

theory» in the sense of Chruch [3] and Henkin [9] and models of «illative

combinatory logics in the sense of Curry and Feys [5].

Every one knows that groups and rings are sets with operations

satisfying certain identities. In the same way categories and dogmas may
be viewed as graphs with operations and identities, as are cartesian clos-

ed cate gories [11] and monoidal closed categories [10]. Thus, a category
is a graph with operations ( one nullary and one binary)

satisfying the identities

for all f : A -&#x3E; B, g: B -&#x3E; C and h: C - D. A cartesian category is essen-

tially a category with canonical finite products, more precisely, a category
with the following additional structure: three nullary operations and one
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binary operation

satisfying the identities

for all k: A -&#x3E; 1, f: C -&#x3E; A, g: C -&#x3E; B and h: C -&#x3E; AXB.

A topos is, among other things, a cartesian closed category, that

is, a cartesian category with exponents BA and a natural isomorphism

Hom (C,BA) = Hom (CXA,B). For technical reasons we require expo-
nents only for a specified object Q and shall write -O- A as P A . A pre-

dogma ( for want of a better name) is a cartesian category with the follow-

ing additional structure : a nullary and a unary operation

satisfying the identities

A dogma is a predogma with a nullary operation 6A : A X A -O-

satisfying a number of identities, for example

for all f: C - A . In what follows, we shall write

so that the above sample identity may be written

It is important to distinguish the internal equality symbol - from the ext-
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emalone . = . .

A complete list of identities satisfied by 6A will be found in [13].
Even there the identities are made intelligible by first factoring

through the category of preordered sets. They could have been simplified
further by factoring through the category of Heyting algebras. Having tried

unsuccessfully to recapture these identities from Guitart’s «contra variant
standard constructions » [8], we shall here propose another approach : to

factor the functor Hom(-, -O-) through the category of «deductive sets».

A deductive set ( X, -i) consists of a set X together with a binary
relation F between finite subsets T = {f1 ,... , in I of X and e lements g
of X satisfying the following conditions :

A morphism 0 : (X, -i) -&#x3E; (Y, -i ) of deductive sets is a mapping X - Y

such that

Examples of deductive sets are meet-semilattices and implication algebras
with largest element T, where e.g. {f1,f2} -i g stands for

To say that Hom(-, -O- ) factors through the category of deductive

sets then amounts to saying that for each object A, Hom(A, Q) is equipp-
ed with a relation b satisfying condition (1) to ( 4) (with -i replaced

by A and also
A

*) However, in the meantime, Guitart has succeeded in augmenting his system to
the so-called « algebraic universes*, which are adequate for mathematics and which
are more closely related to dogmas.
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for all f1 ’ ... , fn , g : A - -O- and h: B , A . Rules (1) to (5) will be called

structural rules. Predogmas for which Hom(-, 0) factors through the cat-

egory of deductive sets appear to be a special case of the «categories with

deduction» discussed in the seminar of Benabou.

We are finally in a position to define dogmas. A dogma is a predog-
ma for which Hom(-, Q ) factors through the category of deductive sets and

which contains a nullary operation d A : A X A -&#x3E; -O- satisfying the follow-

ing additional conditions, where we have written f = g for S A f, g&#x3E; :A 

for all f1, ... , fn : A -&#x3E;-O- and f, g: A X B -&#x3E; -O-. Rules (6) to (11) will be

called rules of equality.
It may be shown that the definition of «dogmas given here agrees

with that of [13] by comparing the present symbol t- with the symbol  A

there. On the one hand, {f1,..., fn} -i A g may be interpreted as

and, on the other hand, f A g may be regarded as ! I f b g .
It is perhaps more instructive to see how formulas of type theory are

interpreted in a dogma (1. For this purpose let us assume that type theory is
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based on the notion of equality as presented in [15]. To spell things out,
we are given types 1 and Q and assume that P A and AXB are types if

A and B are. For each type there is given a countable set of-variables of

that type; moreover, one has the following terms, listed under their resp-
ective types:

where it is assumed that a, a’ and the variable x are of type A, a is of

type P A, b is of type B and 0 (x) i s of type Q.

It was shown in [13] how to adjoin an indeterminate arrow x: 1 -&#x3E; A

to a dogma (1 to obtain the dogma G [x] . Let g (x1 ,... xn) be a term of

type A depending on the variables xi of type Ai , we shall interpret it as
an arrow in the dogma

as follows: xi is interpreted as the indeterminate xi : 1 -&#x3E; Ai , * as the

unique arrow 1 -&#x3E; 1 , a c a as E A  a, a&#x3E; , a = a’ as d A a, a’&#x3E; and

 a, b&#x3E; as the arrow 1 -&#x3E; A X B with the same name, where a, a, a’ and

b are assumed to have been interpreted already. It remains to interpret

{x C A I 4(x ) ) } as an arrow 1 -&#x3E; P A in (1, assuming that O(x) has al-

ready been interpreted as an arrow 1 -&#x3E; -O- in a [x] .

Now dogmas, like predogmas and even cartesian or cartesian closed

categories, have the followin g property of functional completeness» [12]:

given any arrow 0 (x) :1 -&#x3E; B in G [x] , there is a unique arrow fj A -&#x3E; B

in Q such that 0 (x). f x, where . x .=. denotes (external) equality in

G [ x] . When Q is a dogma or predogma, we may take B = -O- , then f cor-

responds to an arrow 1 -&#x3E; P A , which we denote by {x C A | 0 (x)}.
Other logical symbols may be defined in terms of equality as follows
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Thus any formula of ordinary type theory may be interpreted in any dogma.

Of course, if we want to allow for Peano arithmetic, we must adjoin a nat-

ural number object to the dogma in question [13].

Type theory is not just a language, but a deductive system. Given a

set X = {x1, .... , xm I of variables of types A 1, ... , Am respectively, one

writes

to indicate that w (X) may be deduced from the assumptions 01(X),...
..., 0m (X) according to the rules of intuitionistic type theory. We shall

show how such an entailment is interpreted in a dogma. Using cartesian

products, one may replace X by a single variable x of type

Using functional completeness, one may replace 0i (x) by fi x, Vi (x) by

gx , where f i and g are arrows A - Q . We shall say that the given entail-

ment holds in the dogma G if {f1,..., fm} -i A g.

It may be checked that if the entailment 01 (x), ... , 0n (X) -i X Y (X)
is provable in intuitionistic type theory, then it holds in any dogma.

As is well-known, a topos is a predogma in which the functor

Hom( -,0) is naturally equivalent to the subobject functor. Why is a topos

a dogma? In a topos one defines SA : A X A - Q as the characteristic mor-

phism of the monomorphism 1A , 1A &#x3E; : A -&#x3E; A X A . Given fi , g: A - Q, we

shall say that {f1,..., fn} -i A g means the following: for all h: B -&#x3E; A ,

*) The converse of this statement is also true, in view of the existence of the free
dogma generated by the empty graph, which is discussed later.
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It is then easily checked that conditions ( 1 ) to ( 11) hold in a topos. This

definition is closely related to the so-called Kripke-Joyal semantics [16].
It immediately allows us to interpret intuitionist type theory in any topos.

Actually we obtain a functor U: Top -&#x3E; Dog from the category of

toposes to that of dogmas. The morphisms in Top are the so-called «lo-

gical morphisms ». The morphisms in Dog are functors that preserve the

dogma structure on the nose. They were called « orthodox » functors in [13] ;
but we may as well call them logical functors, as they specialize to the

logical morphisms in Top . The functor U thus is an inclusion and we may

regard Top as a full subcategory of Dog .

To obtain a left adjoint F to the functor U one wants to construct

a topos F(G) for each dogma d together with a logical functor H(j:
d - U F ( Q ) so that, for each logical functor G: G -&#x3E; U (B) , were 3 is a

topos, there is a unique morphism

Volger [17] succeeded in doing this with some waving of hands: G’ was

not exactly a functor, only a lax functor with G’(gf) = G’(g) G’(f) , and
it was only unique up to isomorphism.

How does one get around this difficulty? Bill Lawvere has suggest-
ed that one should meet the two-category structure of Top head on. Ac-

cording to Max Kelly, the two-morphisms in Top are all isomorphisms, so

one should study lax functors with coherent isomorphisms and redefine the

word «adjoint» for this context. Rather than getting bogged down in two-

category theory, another solution was proposed in [13 .

Let Top, be the subcategory of Top whose objects are toposes

which have canonical subobjects. By this we mean that in each equivalence
class of monomorphisms A &#x3E;-&#x3E; B there is a unique canonical&#x3E;&#x3E; one and

that canonical monomorphisms satisfy the following obvious conditions:

identity arrows and compositions of canonical monos are canonical, and, if
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f: c - A and g: D -&#x3E; B are canonical monos, so are

where P is thecovariantpowerset functor. Furthermore, let the morphisms
of Top 0 be logical morphisms which preserve canonical subobjects. Then

the functor Uo : Top 0 -&#x3E; Dog is no longer full, but it has a left adjoint F 0 ,
without waving of hands . The details are found in [ 13].

Some people feel unhappy when being asked to confine attention to

toposes with canonical subobjects. So let us point out that all toposes oc-

curing in nature (sets, presheaves, sheaves, ... ) have canonical subob-

jects. For example, we can surely distinguish a genuine subset of the set

N of natural numbers from a monomorphism into N . Of course, toposes in-

geniously constructed by mathematicians need not have canonical subob-

jects. Nevertheless, every topos is equivalent to one with canonical sub-

objects. To see this, one only has to take the arrows with target Q in the

old topos as objects of the new topos. More precisely, regarding the topos
(t as a dogma U (G) , the topos F0 U (G) has canonical subobjects and

is equivalent to d . At any rate, one has the following:

THEOR EM. The category Top contains a subcategory Top 0 such that

every object of Top is equivalent by a logical functor to an object o f Top 0
and such that the restriction U 0 to Topo of the forgetful functor U:

Top -&#x3E; Grph has a left adjoint Fo.

From now on we shall write To p for Top o and replace U0 and F o

by U and F respectively.

The adjunction functor HG :G -&#x3E; t/F(8) ) has the following proper-

ties proved in [13] :

( 1 ) H(i is faithful if and only if the « singleton» morphism d *A: A -&#x3E; P A
is a monomorphism for each object A . This is also equivalent to saying that

whenever F V x E A f x = g x holds in G, then f - =. g in Q . We may ex-

press this by the slogan: internal equality implies external equality.
It should be remarked that the formula d x C A f x = gx appearing

above is not in the language of pure type theory, but in the applied lan-
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guage which admits all objects of 8 as types and also terms produced by
arrows of (1, according to the rule that if a is a term of type A and f: A- B
an arrow in Q then f a is a term of type B .

( 2 ) H(j is full and faithful if and only if, for each object A , the mor-

phism 8x : A -&#x3E; P A is an equalizer of two arrows into some object of the

form P B . This is equivalent to saying that d has description : if

holds in G , then there is a unique arrow f ; A -&#x3E; B such that

holds in Q . (It follows from this that internal equality implies external

equality, as is seen by taking

(3) Hgt is an equivalence if and only if C4 is a topos.

-Vie shall mention two uses to which the functor F: Dog -&#x3E; Top can

be put.

I. Construction o f the free topos generated by a gi,acph X.
As has already been mentioned by Volger [ 17J, since dogmas are

equational over graphs, one may construct the free dogma Fd (X) generated

by a graph X by the method of [10]. The free topos generated by X is then

given by F Fd(X) , Free toposes generated by graphs can also be cons-
tructed directly, using the language of type theory, as in Boileau [1], Coste

[4], Fourm an [6] and Lambe k- Scott [14].
Il. Adjunction o f an indeterminate arrow x: 1 -&#x3E; A to a topos Cl.

First form d - d [x] , this is only a dogma, then form

to get a topos. There is some analogy to the situation for fields :

hence the notation. However, the analogy is not complete, since F(x)
does not have the expected universal property, while G(x) does: let H
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be the morphism li - G(x) in Top , then, for any F: G -&#x3E; G’ in Top and

any a: 1 F(A) in Q’ , there exists a unique F’: G(x)-&#x3E; (1’ in Top such

that F’H = F and F’(x) =. a.

It will be of interest to compare the polynomial topos C1( x) with

the slice topos CIIA , whose objects are arrows f; B -&#x3E; A, B being any ob-

ject of (t, and whose arrows are commutative triangles. It was noticed for
Grothendieck toposes in [7] and for elementary toposes by J oyal (unpu-

blished) that d/A behaves much like a( x). First there is a logical func-
tor H :G -&#x3E; G/A which sends the object B of (1 onto the object IT A,B :
A X B - A of G/A . Moreover, G/A contains the arrow

which behaves like an indeterminate in the following way. Given any lo-

gical functor F: d - G’ and any arrow a : 1 -&#x3E; F( A) in d ’ , there exists a

logical functor F’; d/A - (f’, unique up to natural isomorphism, such that

F’ is constructed at the object f: B , A by forming the pullback:

One could make F’ unique by stipulating that F’(f) is a canonical

subobject of F’( B ) , but even then F’H cannot be equal to F . For, if we

apply the above construction to the object

F’H( C) will be a canonical subobject of F(AXC) = F(A) X F(C),but
the monomorphism F( C ) - F (A) X F (C) is not canonical. We don’t know

whether the SGA 4- Joyal construction can be fixed up to exhibit the expect-
ed universal property on the nose. Failing this, our construction of C1( x)
via dogmas will have to serve.

Finally, let us refer to the very interesting concept of «graphical
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algebras discussed by Albert Burroni [2]. This notion includes not only

categories, cartesian categories, cartesian closed categories, monoidal

closed categories, predogmas and dogmas, all of which we have regarded
as algebraic over graphs, but supposedly also categories with canonicai

limits or colimits and toposes with canonical subobjects. This suggests
that Top is monadic over the category of graphs *).

D ep artm ent of Mathematics

Mc Gill University
805 Sherbrooke Street ’%est

MONTREAL, P. Q.
CANADA H3A 2K6

*) NOT E ADDED IN MARCH 1981. In his revised manuscript [2] now called

«Algèbres graphiques », Burroni actually asserts this. One of the present

authors has proved that Top is monadic over Cat.
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