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INTRODUCTION.

corkers in the field of functional analysis concern themselves pri-

marily, if not completely, with subsets of complete separable metric spaces.
The collection of open and closed subsets does not afford a sufficiently

general 1 class of subsets however, since it is not closed under countable

unions or countable intersections. This observation leads naturally to con-

sideration of the collection of Borel subsets (the smallest o-algebra con-

taining all open subsets). This collection serves well for many applica-

tions, but also falls short of our expectations : the continuous image of a

Borel subset need not be a Borel subset. Those subsets (with the sub-

space topology) which are the continuous image of a Borel subset are call-

ed analytic spaces. The collection of analytic spaces is not closed with

respect to the function-space construction (for example the space C (N °°)
of continuous, real-valued functions on a countable product of the natural

numbers, endowed with the topology of compact convergence, is not ana-

lytic [ 2, Cor. Page 12] ).

It is the purpose of this paper to suggest a category which «con-

tains» the standard Borel spaces (Borel subsets of some separable com-

plete metric space), to which all Borel spaces map nicely, and which is

closed under the usual set-theoretic constructions. This last requirement

means that our category should be an elementary topos in the sense of Law-

vere and Tierney (a general reference for which is [3] ); that is, the cat-

egory should be an intuitionistic model of set theory. We will define the

category and outline the state of our knowledge about it. The research is
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still at a rudimentary stage, and no new results in functional analysis are

presented here.

1. THE DEFINITION AND COMPARISON.

Let 8 be the category whose objects are the Borel subsets of the

unit interval [0, 1] and whose morphism s are inclusion functions f : X - Y.
It is a fact that any standard Borel space is Borel-isomorphic to an object
in 8 ; see, e, g., [4]. We define a pretopology [1] on S as follows: for

X in S, Cov(X) is the set of all countable covering families

in 8 . It is obvious that these families of covers form a pretopology on 8 ,
and hence that (8, Cov ) defines a site.

Let &#x26; be the category of sheaves of sets on the site (S, Cov )
[1]. An object of 6 is thus a contravariant functor F: S -&#x3E; 8aa such that

for each I Yi } in Cov (X) the obvious diagram

is an equalizer; a morphism 0: F - G in &#x26; is simply a natural transfor-

mation of functors. This category 6 is then a topos in the sense of [1],
and in particular is an elementary topos in the sense of Lawvere and Tier-

ney [3]. It is our candidate for a «good» category in which to do function-

al analysis.

Let 93 be the category of all Borel spaces and Borel maps, let

I : 8 - $3 be the inclusion, and let O : B -&#x3E; &#x26; be the functor defined by

That (D actually has its values in &#x26; is clear: for ! I Yi I in Cov(Z ),

is an equalizer (because the covers are restricted to be countable). The

full subcategory of 93 determined by the standard Borel spaces is mapped

fully and faithfully by I&#x3E; to &#x26; ; use the usual Yoneda-type argument, "We
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will see below that (D , and (D restricted to standard Borel spaces, pre-

serves all limits.

There is a kind of geometric realization Y : &#x26; -&#x3E; B , by which we
mean simply that I&#x3E; : B -&#x3E; &#x26; has a left adjoint. To see this, notice first

that 93 has coequalizers and coproducts. If T is a set and X is in 93 , let
T * X be the Borel space whose underlying set is T X X , and whose Borel

structure is the a-algebra

Then for F in 6 , W (F ) is defined by the coequalizer diagram :

where the f-th injection of the top (resp. bottom) map is the Y-th injec-
tion following F ( Y)’ f (resp. the X-th injection following F (f).X ). That
this definition of 9 on objects extends to morphisms is clear, thus giving
a functor Y : &#x26; -&#x3E; B. The verification that T is a left adjoint of (D can

be safely left to the reader. Notice that C: Y o I&#x3E; -&#x3E; 93 is a surjection since

it is induced by evaluation.

It follows that I&#x3E;: B -&#x3E; &#x26; preserves limits; it also preserves some

colimits (exactly which, it is not clear). For example, suppose

is a countable family of Borel subsets of the Borel space X whose union

is X . One can easily see that

is a colimit diagram (the arrows are simply inclusions) in 93 . Now $ pre-

serves this colimit. For given a compatible family 4)i: I&#x3E; (Yi) -&#x3E; F in &#x26;
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( 0  i  00 ), we can define Y : I&#x3E; (X) -&#x3E; F as follows. For B in 8 and f in

first let Bi - f’ 1 [Yi] and let fi : Bi - Yi be the restriction of f to Bi. 
Notice that

is in Cov(B) , and that the sequence

is in II F (Bi); a check of the two images of this sequence in II F (Bi n Bj)
shows them to be equal. Thus since F is a sheaf, there is a unique Y B (f)
in F ( B ) whose restriction to F ( Bi ) is 0i Bi (fi),ioo . The compo-
site

is clearly Oi , and both naturality and uniqueness of Vf are easily proved.

One can think of 8 as the category of «models» for S, much as

the standard simplices are the models for CW-complexes in topology. Then

(D B -&#x3E; &#x26; can be thought of as the singular-simplex functor, and W : &#x26; -&#x3E; B
as geometric realization. It is not known whether pushing this analogy fur-

ther will yield interesting results in functional analysis (or topos theory).

II. SPE CIAL OBJECTS.

Having devoted some attention to the comparison 1&#x3E;: B -&#x3E; Cg and

the embedding of standard Borel spaces into &#x26; induced by 4$ , we turn now

to &#x26; itself. The terminal object 1 in &#x26; is simply the constant sheaf whose

value at any X in 8 is a one point set. The « truth values » in &#x26; are the

subobjects of 7 ; it is important to have alternate descriptions of the truth

values, so we examine that first.

Let U be a subobject of 1 in &#x26; . Then U is completely determined

by the set of all X in 8 with U(X ) = 1 ; let us denote this set by OB (U) ;
since U is a functor, if X is in OB(U) and Y is a Borel subset of X,

then Y is in OB (U) . Since U is a sheaf, if X is in OB ( U) and YO , Y1,...
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are Borel subsets of [0, 1] whose union is X then Yi is in OB(U) for

0  i  00. A set A of objects in S which satisfies these two conditions

w ill be called a saturated system . We claim that the saturated systems are

in one-to-one correspondence with subobjects of 7 via OB . To see this,

suppose A is a saturated system and define TV(A): 8°P - Sets by

It is readily verified that TV(A) is a sheaf, and that it is a subobject of

7 in 6 . Clearly OB and TV are inverse functions. Now any subset M of

[0,7] uniquely determines a truth value; let A be the saturated system

of all Borel sets in [0, 1] which are contained in M . If M’# M is a sub-

set of [0, 7] and A’ its associated saturated system, then A p A’ (since

points are Borel sets) and hence TV (A) # T T(A’). However there are

truth values which do not arise from subsets of [0, 1] in this way: for ex-

ample, the set of all countable subsets of the irrational numbers in [0,7]
is a saturated system not induced by a subset of [0, 1] as above.

It is important to understand f2 , the subobject classifier in 6 . A

general reference for this is [3]. For X in S , a sieve R on X is a set of
Borel subsets of X with the property that if Y is a Borel set in [0,7] and

Y is contained in some member of R then Y itself is in R (i.e., a sieve

on X is a subfunctor of S(-,X)). For a sieve R on X , let j(R) be the

sieve

! Z I Z is a Borel subset of X and Z n Y | Y C R} 
contains a member of Cov(Z)} .

That is, j(R) consists of all Borel subsets of X which are (countably)

covered by the restriction of R to them. Then -O- (X) is the set of fixed

points of j ; that is,

-O- (X) = { R R is a sieve on X , and {ZnY I Y E R } contains

a countable cover of Z implies Z is in R 1.

For example, the set R of all countable subsets of the Borel set X is in

Q(X). The restriction map -O- (X) -&#x3E; -O-(Y) is given by mapping R to
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We now want to show that &#x26; is not a Boolean topos, and hence the

set theory it gives is not classical. The initial object 0 in &#x26; is classified

by false: 1 -&#x3E; -O- , where false X : 1 (X) -&#x3E; -O- (X) takes the unique element of

1 (X) to the sieve {0}. The negation operator not: 0 -+ Q is by definition

the classifying map of false , so that not X: O( X) -+ Q(X) takes the sieve
R to the sieve

{ Y I Y is a Borel subset of X and Y n Z = Q for all Z in R} .

To see that not o not # the identity on Q , let R f -O- ([0, 1]) be the sieve

of all countable sets in [0, 1] . Then not [0, 1] (R) = 0 ! , and

not [0, 1] 0 not [0, 1](R) = {X|X is a Borel subset of [0,7]} .

Finally, in any Grothendieck topos ( such as 6 ) the natural-number

object N is the sheaf associated to the constant presheaf whose value is

the natural numbers N ( or equally well, N is a countable coproduct of 1 ).

It is essentially obvious that in &#x26; this associated sheaf is

i.e. the « locally» constant N-valued functions. The rational-number object

in 6 is similarly 93( -, Q) . But an alternate description of the (Dedekind)
real-number object in 6 is still not known ; it could well be B(-, R ) also.

This, and many other, questions will have to be answered before further

progress can be made.
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