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LOCALLY INJECTIVE G-SHEAVES OF ABELIAN GROUPS
by Roswitha HARTING

The problem of the existence of enough injective abelian group ob-
jects in an elementary topos with a natural number object leads to the con-
struction of the internal ( parametrized) coproduct of abelian group objects
[4]. From certain properties of this parametrized coproduct we earlier de-
rived some further consequences [S], among them the surprising result that

«all intemal notions of injectivity for abelian group objects are equivalent».

In the following summary we shall apply this result to Shv(X)Gop ,
the topos of set-valued sheaves on a topological space X with a left ac-

tion of a group-valued sheaf G.

We require the following results and definitions [4, 5] (where &
denotes an elementary topos with natural number object and Ab(&) the

category of abelian group objects in & ).

(0.1) THEOREM AND DEFINITION. For any object X in & the functor
X*: Ab(&)> Ab(&/X) has a left adjoint @y: Ab(&/X)~> Ab(&) which
respects monomorphisms and is faithful.

For A(x)eOb Ab(&/X) the abelian group object @y A(x) in & is
called parametrized coproduct of A(x). (We use «parametrized» to em-
phasize that the indexing object is in general not just a set but for example

a set with an action of a group on it.)
A consequence of this theorem is the following proposition [5] :
(0.2) PROPOSITION. If Ab(&) has enough injectives, then so does

Ab(&4) for any intemal category A in &.

In the following the intemal Hom-functor Ab(&)PxAb(&) > Ab(E)
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is denoted by Hom(-,-). For A, B abelian group objects in &, Hom(A, B)
is the abelian group object in & that intemalizes the abelian group of

group-morphisms from 4 to B,
(0.3) DEFINITION. An abelian group object B in & is called
(i) intemally injective if for every monomomphism A>—C in Ab(&),
Hom( C,B)~ Hom( A, B) is an epimorphism in &.
(ii ) locally injective if for every diagram of the form
A & >C
fl
B

in Ab(&) there exists a cover U» I of & and a morphism g: U*C » U*B
in Ab(&/U) such that

*

U*m
U*A > [ *C

U*fJ .

U*B

commute s,

(0.4) PROPOSITION. The following conditions on an abelian group object
B in & are equivalent ( for (iii) we suppose that Ab(&) has enough in-
jectives):
(i) B islocally injective.
(ii) For every diagram of the form
A n > C
fl

B

in Ab(&) there exist a cover U» 1 of & and a momhism
g:U» Hom(C,B) in &

such that the diagram
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Hom(C, B) Hom(m,B) o Hom(4,B)
A
4 f
U > ]

commutes in &.

(iii) There exists a cover U~ 1 of & such that ng: B > BY isan
injective effacement [2]. Here n:id Ab(&)-»ny.U* denotes the unit of
the adjunction U*~ my;, and the abelian group object structure of BU is
induced by thatof B.

(A monomorphism m: A > C in Ab(&) is an injective effacement iff
for every monomorphism f: A >> B in Ab(&) there exists a morphism
g: B> C in Ab(&) such that g.f=m.)

(0.5) LEMMA. An abelian group object B in & is intemally injective iff
for every monomomphism m: A > C in Ab(&) and every generalized ele-
ment f: V> Hom(A,B) in & there exist an object U, an epimorphism
h:U - V and a morphism g: U~ Hom(C,B) in & such that

Hom(C, B) Hom(m,B) > Hom(A,B)
gT Tf
U h >

commutes,

(0.6) THEOREM. An abelian group object B in & is locally injective iff

B is intemally injective.

In the following we shall study the meaning of this result in the
topos & = Shv(X)Gop, where X denotes a topological space (resp. a lo-
cale [7,9]) and G a group-valued sheaf on X. Then Ab(Shv(X)GOP) is
the category of abelian group-valued sheaves on X equipped with a left
action of G compatible with the abelian group structure. So Ab( Shv( X)¢°P)
is the category of G-modules on X, and will be denoted from now on by

G-Mod( X ).
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(1.1) SOME REMARKS.

(i) The following diagram of forgetful functors commutes:

GMod(X) — V" o Shorx)C°P
12 ll’/
Ab(Sho( X)) —¥ ' o ShurX)

All these forgetful functors create epimorphisms and monomorphisms, they
all have a left adjoint, and they respect injectives [10].

(ii) In Ab(Shv( X)) the notions of injectivity and intemal injectivity
coincide [S]. For 4, B in Ab(Shv( X)) the internal Hom is obtained as
follows: for U open in X, Hom( A, B)(U ) is defined to be

Hom 4y (sho (u ))( 47U, B/U).
(iii) G-Mod(X) has enough injectives. (This follows immediately
from (0.2).)

(iv) In G-Mod (X ) the intemal Hom is obtained as follows: For 4, B
G-modules on X, Hom( A, B) is defined to be

Hom(VA,VB) in Ab(Shv(X))
equipped with the following action of G : for U/ open in X,
GUXHO”‘AbShv(U/VA/U’ VB/U) - HomAbShv(U/VA/U’ VB/U)
(s, b) | ~soh

is defined by:
(soh)y(x):=(s/W). hy((sI/W).x),
where W C U, Wopenin X and x¢ AW.

(1.2) PROPOSITION. Let B be a G-module on X.
(i) B isintemally injective iff V B isinjective in Ab( Shv(X)).
(it )If B isinternally injective, then BC is injective,
PROOF. (i): Suppose B to be intemally injective. To show that B is in-
jective in Ab(Shv( X)), it is sufficient to show that B is intemally in-

jective in Ab( Shv( X)) (cf. (1.1)(ii)). So let m: A >- C be a mono-
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morphism in Ab(Shv(X)). Let G operate trivially on A and C ; then
m: A >> C becomes a monomorphism in G-Mod( X). Since B is intemally
injective it follows that Hom(C, B)—» Hom( A, B) is an epimorphism in
Shu( X )6°F, and hence an epimorphism in Shv( X ) (cf. (1.1) (i) and (iv)).
So B is injective in Ab{ Shv( X)).
The other implication is equally easy.
(ii): Let
A n > C
]

BG

be a diagram in G-Mod( X) and suppose B to be internally injective. We

have a sequence of natural bijections between the following sets:

A > BC in G-Mod(X)

G - V*(Hom(A,B)) in Sho(X)¢7 _ _
(Hom( )) in Shv( X) FAT, F(1)=0

1 -> VV' H A;B in Sh X iV
(Hom( )) in Shv(X) Vvr=V'V, (1.1) (iv)

1 - V'(Hom(VA,VB)) in Shv(X)

VA - VB in Ab(Shv(X)).

Sof: 4~ BC detemmines, and is determined by, a morphism f_ VA-> VB in
Ab(Shv( X)). B is supposed to be intemally injective, so, by (i), VB is
injective in Ab(Shv( X)). Hence there is a morphism A in Ab( Shv( X))
such that

va Im — »yc

I

VB

commutes, As above i determines a morphism l;: C-» BC in G-Mod(X),

and it is easy to verify that hm = f. So BC is injective in G-Mod(X) .

(1.3) REMARK. Let AZ be the ring-valued sheaf on X associated to the
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constant presheaf with value Z. Then U|> AZ(U)[GU] defines an abel-
ian group-valued presheaf with the usual left action of G, where we de-
note by AZ(U)[GU] the group-ring over GU . The associated sheaf is a
G-module on X and is denoted by Z[ G]. Some obvious calculations show

that there is a natural isomorphism
Hom(Z[G], A) = AC .

In the following the composite

A>—T4 o 4C =0 Hom(Z[Gl,A)

is again denoted by p, (cf. (0.4) (iii)).

(1.4) PROPOSITION. Let B be a G-module on X. The following conditions
on B are equivalent:
(i) Hom(Z[ G, B) is an injective G-module on X.
(ii) There exists an epimomphism D> 1 in Shv(X)cop such that
BY isan injective G-module on X.
(iii) ng:B>> Hom(Z[Gl,B) is an injective effacement in
G-Mod( X).
(iv) There exists an epimorphism D - 1 in Shv(X)GOP such that
ng: B> BD isan injective effacement in G-Mod( X).
(v) B isinjective in Ab( Shv( X)).
(vi) B isintemally injective in G-Mod(X).
(vii ) There exists an open coverof X, X = i:JIUi, such that B/U; is

injective in Ab( Shv(U;)) for every i el.

> (Vi)
(1.1) (iii), (0.4) (iii), (0.6) (1.2) (ii)

> (1) > (i),

PROOF. (iii) > (iv)
(1.3)

(11) = (iv)——— (i) ———> (ii).

above
(vi) <————— {(v) <— (vii).
(1.2) (i) [ 6]

So they are all equivalent,

(1.5) REMARK. If X is reduced to a point, then Slw(X)GoP is the topos
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of G-sets, Ab(Shv(X)GOP) is the category of left Z[ G]-modules, and
Ab(Shv(X)) is the category of abelian groups. For two Z[G]-modules
A, B the intemal Hom, Hom( A, B), is the abelian group of all Z-linear
maps from A to B equipped with the following G-action :

(sof)(x)=sf(s1x) for seG, feHomy(4,B), xeA.
ng: B> Hom(Z[G], B) is here defined by

ng(b)(s)=05b forevery seG.

We remark that in the above case the Proposition (1.4) remains true if G
is replaced by a monoid M and consequently Hom(Z[G], B) by BM (cf.
[31).
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