CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

ROSWITHA HARTING

Locally injective G-sheaves of abelian groups

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, n° 2 (1981), p. 115-122

http://www.numdam.org/item?id=CTGDC_1981__22_2_115_0

© Andrée C. Ehresmann et les auteurs, 1981, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXII-2 (1981)

3^e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

LOCALLY INJECTIVE G-SHEAVES OF ABELIAN GROUPS

by Roswitha HARTING

The problem of the existence of enough injective abelian group objects in an elementary topos with a natural number object leads to the construction of the internal (parametrized) coproduct of abelian group objects [4]. From certain properties of this parametrized coproduct we earlier derived some further consequences [5], among them the surprising result that all internal notions of injectivity for abelian group objects are equivalent.

In the following summary we shall apply this result to $Shv(X)^{G^{op}}$, the topos of set-valued sheaves on a topological space X with a left action of a group-valued sheaf G.

We require the following results and definitions [4, 5] (where \mathcal{E} denotes an elementary topos with natural number object and $Ab(\mathcal{E})$ the category of abelian group objects in \mathcal{E}).

(0.1) THEOREM AND DEFINITION. For any object X in \mathcal{E} the functor X^* : $Ab(\mathcal{E}) \to Ab(\mathcal{E}/X)$ has a left adjoint Θ_X : $Ab(\mathcal{E}/X) \to Ab(\mathcal{E})$ which respects monomorphisms and is faithful.

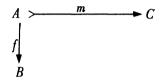
For $A(x) \in Ob \ Ab(\mathcal{E}/X)$ the abelian group object $\bigoplus_X A(x)$ in \mathcal{E} is called parametrized coproduct of A(x). (We use «parametrized» to emphasize that the indexing object is in general not just a set but for example a set with an action of a group on it.)

A consequence of this theorem is the following proposition [5]: (0.2) PROPOSITION. If $Ab(\mathcal{E})$ has enough injectives, then so does $Ab(\mathcal{E}^{A})$ for any internal category \underline{A} in \mathcal{E} .

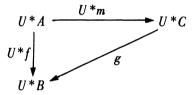
In the following the internal Hom-functor $Ab(\mathcal{E})^{op} \times Ab(\mathcal{E}) \rightarrow Ab(\mathcal{E})$

is denoted by Hom(-,-). For A, B abelian group objects in \mathfrak{E} , Hom(A,B) is the abelian group object in \mathfrak{E} that internalizes the abelian group of group-morphisms from A to B.

- (0.3) DEFINITION. An abelian group object B in & is called
- (i) internally injective if for every monomorphism $A \rightarrowtail C$ in $Ab(\mathcal{E})$, $Hom(C, B) \nrightarrow Hom(A, B)$ is an epimorphism in \mathcal{E} .
 - (ii) locally injective if for every diagram of the form

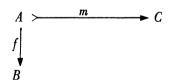


in $Ab(\mathfrak{S})$ there exists a cover $U \to 1$ of \mathfrak{S} and a morphism $g: U^*C \to U^*B$ in $Ab(\mathfrak{S}/U)$ such that



commute s.

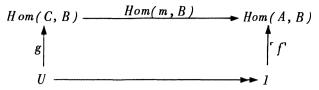
- (0.4) PROPOSITION. The following conditions on an abelian group object B in \mathcal{E} are equivalent (for (iii) we suppose that $Ab(\mathcal{E})$ has enough injectives):
 - (i) B is locally injective.
 - (ii) For every diagram of the form



in $Ab(\mathcal{E})$ there exist a cover $U \rightarrow 1$ of \mathcal{E} and a morphism

$$g: U \rightarrow Hom(C, B)$$
 in &

such that the diagram

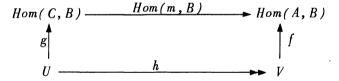


commutes in &.

(iii) There exists a cover $U \rightarrow 1$ of \mathfrak{E} such that $\eta_B \colon B \rightarrowtail B^U$ is an injective effacement [2]. Here $\eta \colon \operatorname{id} Ab(\mathfrak{E}) \rightarrow \pi_U . U^*$ denotes the unit of the adjunction $U^* \dashv \pi_U$, and the abelian group object structure of B^U is induced by that of B.

(A monomorphism $m:A \longrightarrow C$ in $Ab(\mathcal{E})$ is an injective effacement iff for every monomorphism $f:A \longrightarrow B$ in $Ab(\mathcal{E})$ there exists a morphism $g:B \to C$ in $Ab(\mathcal{E})$ such that g,f=m.)

(0.5) LEMMA. An abelian group object B in \mathcal{E} is intermally injective iff for every monomorphism $m: A \longrightarrow C$ in $Ab(\mathcal{E})$ and every generalized element $f: V \to Hom(A, B)$ in \mathcal{E} there exist an object U, an epimorphism $h: U \to V$ and a morphism $g: U \to Hom(C, B)$ in \mathcal{E} such that



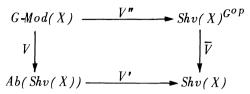
commutes.

(0.6) THEOREM. An abelian group object B in \mathcal{E} is locally injective iff B is internally injective.

In the following we shall study the meaning of this result in the topos $\mathcal{E} = Shv(X)^{G^{op}}$, where X denotes a topological space (resp. a locale [7,9]) and G a group-valued sheaf on X. Then $Ab(Shv(X)^{G^{op}})$ is the category of abelian group-valued sheaves on X equipped with a left action of G compatible with the abelian group structure. So $Ab(Shv(X)^{G^{op}})$ is the category of G-modules on X, and will be denoted from now on by G-Mod(X).

(1.1) SOME REMARKS.

(i) The following diagram of forgetful functors commutes:



All these forgetful functors create epimorphisms and monomorphisms, they all have a left adjoint, and they respect injectives [10].

(ii) In Ab(Shv(X)) the notions of injectivity and internal injectivity coincide [5]. For A, B in Ab(Shv(X)) the internal Hom is obtained as follows: for U open in X, Hom(A, B)(U) is defined to be

$$Hom_{A\ b\ (Sh\ v\ (U\))}(\ A/U\ ,\ B/U\).$$

- (iii) G-Mod(X) has enough injectives. (This follows immediately from (0.2).)
- (iv) In $G ext{-Mod}(X)$ the internal Hom is obtained as follows: For A, B $G ext{-modules}$ on X, Hom(A,B) is defined to be

$$Hom(VA, VB)$$
 in $Ab(Shv(X))$

equipped with the following action of G: for U open in X,

is defined by:

$$(s \circ h)_{W}(x) := (s/W).h_{W}((s^{-1}/W).x),$$

where $W \subset U$, W open in X and $x \in AW$.

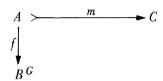
- (1.2) PROPOSITION. Let B be a G-module on X.
 - (i) B is intemally injective iff VB is injective in Ab(Shv(X)).
 - (ii) If B is internally injective, then BG is injective.

PROOF. (i): Suppose B to be internally injective. To show that B is injective in Ab(Shv(X)), it is sufficient to show that B is internally injective in Ab(Shv(X)) (cf. (1.1)(ii)). So let $m: A \rightarrowtail C$ be a mono-

morphism in Ab(Shv(X)). Let G operate trivially on A and C; then $m:A \rightarrow C$ becomes a monomorphism in G-Mod(X). Since B is internally injective it follows that $Hom(C,B) \rightarrow Hom(A,B)$ is an epimorphism in $Shv(X)^{G^{op}}$, and hence an epimorphism in Shv(X) (cf. (1.1)(i) and (iv)). So B is injective in Ab(Shv(X)).

The other implication is equally easy.

(ii): Let



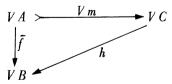
be a diagram in G-Mod(X) and suppose B to be internally injective. We have a sequence of natural bijections between the following sets:

$$\frac{A \to B^G \text{ in } G\text{-}Mod(X)}{G \to V''(Hom(A, B)) \text{ in } Shv(X)^{G^{op}}} \quad \overline{F} + \overline{V}, \quad \overline{F}(1) = G$$

$$\frac{1 \to \overline{V}V''(Hom(A, B)) \text{ in } Shv(X)}{I \to V'(Hom(VA, VB)) \text{ in } Shv(X)} \quad \overline{V}V'' = V'V, \quad (1.1) \text{ (iv)}$$

$$VA \to VB \text{ in } Ab(Shv(X)).$$

So $f: A \to B^G$ determines, and is determined by, a morphism $\bar{f}: VA \to VB$ in Ab(Shv(X)). B is supposed to be internally injective, so, by (i), VB is injective in Ab(Shv(X)). Hence there is a morphism h in Ab(Shv(X)) such that



commutes. As above h determines a morphism $\hat{h}: C \to B^G$ in G-Mod(X), and it is easy to verify that $\hat{h}m = f$. So B^G is injective in G-Mod(X).

(1.3) REMARK. Let ΔZ be the ring-valued sheaf on X associated to the

constant presheaf with value Z. Then $U \mapsto \Delta Z(U)[GU]$ defines an abelian group-valued presheaf with the usual left action of G, where we denote by $\Delta Z(U)[GU]$ the group-ring over GU. The associated sheaf is a G-module on X and is denoted by Z[G]. Some obvious calculations show that there is a natural isomorphism

$$Hom(Z[G], A) \approx A^G$$
.

In the following the composite

$$A > \frac{\eta_A}{\longrightarrow} A^G \xrightarrow{\approx} Hom(Z[G], A)$$

is again denoted by η_A (cf. (0.4)(iii)).

- (1.4) PROPOSITION. Let B be a G-module on X. The following conditions on B are equivalent:
 - (i) Hom(Z[G], B) is an injective G-module on X.
- (ii) There exists an epimorphism $D \rightarrow 1$ in $Shv(X)^{G^{op}}$ such that B^D is an injective G-module on X.
- (iii) $\eta_B: B \longrightarrow Hom(Z[G], B)$ is an injective effacement in G-Mod(X).
- (iv) There exists an epimorphism $D \to 1$ in $Shv(X)^{G^{op}}$ such that $\eta_B \colon B \rightarrowtail B^D$ is an injective effacement in $G\operatorname{-Mod}(X)$.
 - (v) B is injective in Ab(Shv(X)).
 - (vi) B is intermally injective in G-Mod(X).
- (vii) There exists an open cover of X, $X = \bigcup_{i \in I} U_i$, such that B/U_i is injective in $Ab(Shv(U_i))$ for every $i \in I$.

PROOF. (iii)
$$\Longrightarrow$$
 (iv) $\overbrace{(1.1)(iii), (0.4)(iii), (0.6)}$ (vi) $\overline{(1.2)(ii)}$ \Longrightarrow (i) \Longrightarrow (iii).

(ii)
$$\Longrightarrow$$
 (iv) \Longrightarrow (ii) \Longrightarrow (ii).

$$(vi) \iff (v) \iff (vii).$$

So they are all equivalent.

(1.5) REMARK. If X is reduced to a point, then $Shv(X)^{G^{op}}$ is the topos

LOCALLY INJECTIVE G-SHEAVES OF ABELIAN GROUPS 7

of G-sets, $Ab(Shv(X)^{G^{op}})$ is the category of left Z[G]-modules, and Ab(Shv(X)) is the category of abelian groups. For two Z[G]-modules A, B the internal Hom, Hom(A,B), is the abelian group of all Z-linear maps from A to B equipped with the following G-action:

$$(s \circ f)(x) = sf(s^{-1}x) \text{ for } s \in G, f \in Hom_{\mathbb{Z}}(A,B), x \in A.$$

$$\eta_B \colon B \rightarrowtail Hom(\mathbb{Z}[G],B) \text{ is here defined by}$$

$$\eta_B(b)(s) = b$$
 for every $s \in G$.

We remark that in the above case the Proposition (1.4) remains true if G is replaced by a monoid M and consequently Hom(Z[G], B) by B^{M} (cf. [3]).

R. HARTING 8

REFERENCES.

- 1. R. GODEMENT, Topologie Algébrique et Théorie des faisceaux, Hermann, 1958.
- A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221.
- 3. R. HARTING, Lokal injektive abelsche Gruppen und internes Coprodukt abelscher Gruppen, Seminarberichte Fernuniv. Hagen 7 (1980), 121-130.
- 4. R. HARTING, Parametrised coproduct of abelian group objects in a topos, Com. Algebra (to appear).
- R. HARTING, Internal injectivity of abelian group objects in a topos, Comm. Algebra (to appear).
- 6. R. HARTING, A remark on injectivity of sheaves of abelian groups, Arch. Math.
- 7. J. R. ISBELL, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
- 8. P. T. JOHNSTONE, Topos Theory, Acadmic Press, 1977.
- 9. P. T. JOHNSTONE, Tychonoff's Theorem without the axiom of choice, Fund. Math. (to appear).
- 10. H. SCHUBERT, Categories, Springer, 1972.
- 11. B.R. TENNISON, Sheaf Theory, L.M.S. Lecture Notes Series 20, Cambridge University Press, 1975.

Mathematisches Institut Universitätsstr. 1 D-4000 DÜSSELDORF. R.F.A.