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Cat AS A CLOSED MODEL CATEGORY

by R. W. THOMASON *)

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXI -3 (1980)

In this paper, I shall show that Cat , the category of small catego-

ries, admits a closed model structure in the sense of Quillen [2, 3, 15, 16] .
A closed model structure on a category permits one to do abstract homotopy

theory in that category. Prominent examples of categories admitting such

a structure are those of topological spaces [15] , simplicial sets [15) , sim-

plicial spectra [2] , shapes [4] , differential graded Q-algebras [16] , and

simplicial commutative algebras [15] . The closed model structure provides

analogues in Cat of most of the paraphenalia of homotopy theory : homotopy
fibres of maps, loops and suspensions of objects, Toda brackets, and in-

deed general homotopy limits and colimits [1] . The question of the exist-

ence of such a structure has thus been raised by several mathematicians

interested in the homotopy theory of categories [8, 9, 10] .

Let me recall the existing framework for doing homotopy theory of

categories. The best reference for further details is Quillen’s paper [ 14].

There is a nerve functor N from Cat to the category of simplicial
sets. By taking the geometric realization of the nerve N C of a category C,

one produces the classifying space B C . A morphism f in Cat is called a

weak equivalence if N f is a weak equivalence of simplicial sets, or what

is the same, if B f is a homotopy equivalence of the classifying spaces.

One may regard the homotopy type of B C as the homotopy type of C, and

ask how the structure of C is reflected in its homotopy type.

The closed model structure on Cat is lifted from the one on sim-

plicial sets in the following sense. The nerve functor N has the property
that a morphism f in Cat is a weak homotopy equivalence iff N f is a

weak homotopy equivalence of simplicial sets. Quillen showed ([11], VI,

*) Author partially supported by NSF Grant MCS77-04148.
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3.3.1 ) that N induces an equivalence between the two homotopy categories
obtained by inverting the weak homotopy equivalences. Other examples of

equivalences of homotopy categories suggest that there should be an ad-

joint pair of functors between Cat and Simplicial Sets such that the ad-

junction natural transformations are weak homotopy equivalences. The ad-

joint pair would then induce inverse equivalences of the two homotopy cat-

e gorie s .
The functor N does have a left adjoint, the functor

c : Simplicial Sets - Cat .

For X a simplicial set, c X is the category formed by taking the category
whose objects are the 0-simplices of X and whose morphisms are freely

generated by the 1-simplices of X , with each 1-simplex x regarded as a

morphism from d, x to d0 x , and then imposing the relations on morphisms

dl x = do x. d2 x for each 2-simplex x

([6], 11.4). However, the adjunction map Id , N c is not in general a weak

homotopy equivalence: applied to the boundary of an n-simplex with n &#x3E; 2

this map is

Recall the adjoint pair of endofunctors on Simpli cial Sets, S d2

and Ex2 from ([12], Section 3, 7 ). Here S d2 is the subdivision functor

S d iterated, and Ex2 is its right adjoint. These yield an adjoint pair of

functors between Cat and Simplicial Sets , c S d2 and Ex2 N . I discovered

that the adjunction maps

I

are weak homotopy equivalences. For a proof of this, the reader is referred

to the paper of Fritsch and Latch [5 .

Now Simplicial Sets carries a closed model structure, i.e., it has

distinguished classes of maps called cofibrations, weak equivalences, and

fibrations satisfying certain axioms. The adjoint pair c Sd2 and Ex2lV is

used to lift this structure to Cat , in the sense that a morphism f in Cat
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will be a weak equivalence or fibration iff Ex2N f is such in Simplicial
Sets.

Not every category can be fibrant, as would have been true if the

attempt of Golasinski [8] to give Cat a closed model structure had suc-

ceeded.

To see this, define the nth homotopy group of a based object C of
Cat or Simplicial Sets as the group of based maps in the homotopy cat-

egory from the homotopy type of an n -s phere into C . Using a closed model

structure as in ( [15], 1.16, Corollary 1), one sees that, for C fibrant,

rrn C is isomorphic to the set of maps Sn - C in Cat or Simplicial Sets,
modulo an equivalence relation of homotopy. Here Sn is any cofibrant ob-

ject of the homotopy type of an n-sphere. (In general, not every map bet-

ween the homotopy types of Sn and C is induced by a map of given sim-

plicial sets representing these types, unless the source is cofibrant and

the target fibrant.) For a product of fibrant objects, this implies that the

homotopy group of the product is the product of the homotopy groups. If

all categories were fibrant, this would then hold for any family of categ-
ories Ci indexed by a set I . As the nerve functor preserves products and

induces an equivalence of homotopy categories, this would also imply

Now let I be any infinite set, and each Ci the category with two objects,

0, 1 and two distinct non-identity morphisms which run from 0 to I . Then

TT1N Ci is Z , and IITT1 N Ci is the group of all functions I - Z . However,

calculation of TT1( II N Ci) by means of the usual presentation of rrl of a

simplicial set ( [6], II.7) shows it is the group of all bounded functions

I - Z . As this differs from the previous group, the Ci cannot be fibrant

in any closed model structure on Cat for which the nerve functor induces

an equivalence of homotopy categories.

I would like to thank Dan Kan for suggesting the problem of lifting
a closed model structure from Simplicial Sets to Cat . J ohn Moore, Joe

Neisendorfer, and Paul Selick helped me realize why I couldn’t prove the

homotopy groups of a product of arbitrary simplicial sets were the products
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of the homotopy groups. William Dwyer, Rudolf Fritsch and Dana Latch

simplified some of my first proofs and explained them to me. Finally, Don

Anderson, Dan Quillen and Steve Wilson were generally helpful.

1. A closed model structure on a category C consists of three distinguish-
ed classes of morphisms : the cofibrations, the fibrations, and the weak

equivalences. The structure is required to satisfy the axioms CM 1 through
CM 5 below. These axioms are given in the form used in [l6], II . 1 ; they
are equivalent to those in [15].

CM 1 : The category C has finite limits and colimits.
CM 2: For any composable pair f , g of morphisms in if any two of

f, g, g f are weak equivalences, so is the third.

CM 3 : If f is a retract of g and g is a weak equivalence, fibration,
or cofibration, then f is also such.

Recall a morphism f : X, Y is a retract of g: W - Z if there are

morphisms

such that r i = 1 x, s j = 1 Y ( so X is a retract of W and Y is a retract

of Z ) and also gi= jf, fr=sg.

CM4 (Lifting): Given a diagram of solid arrows (1.1) with i a co-

fibration and p a fibration, if either i or p is also a weak equivalence,
then there is a dotted arrow f making the diagram commute :

CM 5 ( F actorization ) : Any morphism f may be factored both as f = p i
and f = q j , whe:e p and q are fibrations, i and j are cofibrations, and

p and j are weak equivalences.

There is a slightly stronger notion of a proper closed model struc-

ture, as discussed in [2, 16]. These structures must satisfy an additional
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axiom:

PROPRIETY: Consider the diagram (1.2)

If it is a pushout square with i a cofibration and f a weak equivalence,

then g is a weak equivalence. If it is a pullback square with p a fibration

and g a weak equivalence, then f is a weak equivalence.

The standard example of such a structure is the category Simplicial
Sets , monomorphisms being the cofibrations, and Kan fibrations being the

fibrations. The weak equivalences are the maps whose geometric realiza-

tions are homotopy equivalences. For details one may consult [2], [3] VIII
or [15] II, Section 3.

A morphism which is both a cofibration and a weak equivalence is

called a trivial cofibration. A morphism which is both a fibration and a

weak equivalence is called a trivial fibration. An object X is cofibrant if

the unique morphism from the initial object, o - X , is a cofibration. An ob-

ject X is fibrant if the unique morphism to the terminal object, X - *, is a

f ibration.

2. From the introduction, recall the functor Ex2N: Cat - Simplicial Sets.

DEFINITION 2.1. A morphism f in Cat is a weak equivalence iff Ex2 N f
is a weak equivalence in Simplicial Sets .

D E FIN IT ION 2.2. A morphism f in Cat is a fibration iff Ex2N f is a fi-

bration in Simplicial Se ts , i. e ., Ex2 N f is a Kan fibration.

DEFINITION 2.3. A morphism i in Cat is a cofibration iff it has the lift-

ing property with respect to trivial fibrations required by the axiom CM 4.

That is, i: A - B is a cofibration iff, whenever one has the diagram of

solid arrows (1.1) with p a fibration and a weak equivalence in Cat , then

there exists a dotted arrow f making the diagram commute.
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For any small category C , TT 1 C is the fundamental groupoid of C ,

i. e., the category obtained by formally inverting all morphisms in C . It is

equal to the fundamental groupoid of the nerve, TTl N C , as defined by [6] ,
II, Section 7, and is equivalent to the path groupoid of B C .

P ROPO SITION 2.4. The following are equivalent for a morphism f: C - D
in Cat:

lo f is a weak equivalence, i. e., Ex2N f is a weak equivalence.
20 N f is a weak equivalence.
3o f induces an equivalence of groupoids TT 1 C - TT 1 D, and for any

local coefficient system F on D, f induces isomorphisms :

P ROO F. Statements 1 and 2 are equivalent because, for any map g in

Simplicial Sets, g is a weak equivalence iff Ex2g is. This holds because

there is a natural weak equivalence Id - Ex2 by [12] , Lemma 3.T.
From the remarks above, one sees statement 3 is equivalent to the as-

sertion that N f induces an equivalence of fundamental groupoids and an

isomorphism of homology with any local coefficient system. But it is well-

known ( e .g., [15] , II, 3.19, Proposition 4) that this is equivalent to N f

being a weak equivalence.

Recall that the simplicial n-simplex A[ n] contains subsimplicial

sets A [ n, k] called k-horns, for k - 0, 1, ... , n . The non-degenerate sim-

plices of A[ n, k ] are those of A [ n] , except that the non-degenerate top

n-simplex and the n-1 -simplex opposite the vertex k are missing ([3],

VIII, 3.3 ; [6] , IV, 2).
In the Introduction it was observed that Ex2 N has a left adjoint

c Sd2 . Applying this functor to the horns A [n, k ]C A [n] , one gets in-

clusions in Cat :

Call these inclusions the categorical horns.

P ROPOSIT ION 2.5. The following are equivalent for a morphism p ; C - D

in C at :
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10 p is a fibration, i. e., Ex2N p is a Kacn fibration.
20 Given any categorical horn i and any solid arrow diagram (2.1),

there is a dotted arrow as shown which makes the diagram commute.

( 2 .1 )

P ROOF. Under the adjoint functors c Sd 2 - Ex2N , there is a natural bij-
ective correspondence between diagrams ( 2.1 ) in Cat and diagrams ( 2.2 )

(2.2)

involving horns in Simplicial Sets . Under this correspondence, statement

2 is equivalent to the condition that Ex2N p is a Kan fibration, i. e., to

statement 1.

There is an explicit description of c Sd 2A[n,k] and c Sd2 A [n] ,
which will be needed later. Let K be any simplicial set which is equival-
ent to an old-fashioned simplicial complex with an ordered set of vertices.

Then Sd K is the old-fashioned barycentric subdivision of the simplicial

complex K . The vertices of SdK are the non-degenerate simplices of K ,
and there is an edge e of SdK with

iff v is a face of w considered as simplices of K . From this, one sees

that the category c Sd K is the poset of non-degenerate faces of K , order-

ed by inclusion. Further, N c SdK is then SdK , as noted in the third para-

graph of [14], Section 1. Applying this to K = SdA [ n, k] , Sd A [n] , one

gets that c Sd 2A( n , k] and c Sd 2A[n] are the posets of faces of the sim-

plicial complexes S d A [ n, k] and SdA [n] . Further,

is the obvious inclusion and is a weak equivalence, as N sends it to the
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weak equivalence SdA[n, k] -+ SdA[n] .

PROPOSITION 2.6. The following are equivalent for a morphism p : x - Y

in Cat :

lo p is a trivial fabraction; i. e., Ex2Np is a trivial fibration in

Simplicial Sets .

2d Given any solid arrow diagram ( 2.3) involving the canonical mor-

phism c Sd 2 N [ n] - c Sd 2A [ n] , there is a dotted arrow making the dia-

gram commute.

PROOF. The equivalence follows from the bijective correspondence bet-

ween diagrams (2 .3 ) and diagrams ( 2 .4 ) in Simplicial Sets .

3. I shall now proceed to verify the proposed closed model structure on

Cat satisfies the axioms.

Axiom CM 1 is well-known. Axioms CM 2 and CM 3 for weak equival-

ences and fibrations hold in Cat because they do in Simplicial Sets , and
because a morphism f in Cat is a weak equivalence or fibration iff Ex2 N f
is such in Simplicial Sets.

It is just a little harder to verify CM 3 for cofibrations.

The half of Axiom CM4 dealing with the case where p is a weak

equivalence is true by definition of cofibration. The half of the Axiom Pro-

priety dealing with fibre squares holds as it does in Simplicial Sets , be-
cause Ex2N preserves fibre squares (it is a right adjoint), and because f
is a weak equivalence iff Ex2 N f is.

This leaves only the half of CM4 dealing with the case where i is

a weak equivalence, the factorization axiom CM 5, and half of Propriety to
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be verified.

4. In order to verify these remaining axioms, it is necessary to consider

a new class of morphisms in Cat , the Dwyer maps. These maps will turn

out to have good properties with respect to taking pushouts in Cat .

Recall that a subcategory A of a category B is called a sieve (cri-

ble) if for every morphism b: B - B’ in B where B’ is an object of A ,

then also B is an object of A and b is a morphism in A . In particular,
A must be a full subcategory of B . Dually, a subcategory A of B is a

cosieve if for every b : B - B’ in B with B in A , then B’ and b are also

in A .

DEFINITION 4.1. A morphism i: A - B in Cat is a Dwyer map if i em-

beds A as a sieve in B , and there is a cosieve W in B containing A .

Further, it is required that i : A - W be a reflection, i, e., it has a right

adjoint r: W- A such that ri = IA and the adjunction map 1- ri is the

identity. (Note two related inclusions are named «i ». )

Note if i : A- ’V’ has a right adjoint r , it may be chosen to satisfy
the extra conditions, as is easily seen using the fact that A is a full sub-

category of W.

The definition is best clarified by giving the examples of Dwyer

maps that will be most useful:

PROPOSITION 4.2. L et L C K be an inclusion of simplicial sets which
arise from ordered simplicial complexes. Then the induced c Sd2L - c Sd2K
is a Dwyer map.

PROOF, A s noted after the proof of Proposition 2.5, c Sd 2 K is the poset

of faces of the simplicial complex SdK , ordered by inclusion; there is a

similar description of cSd2L . The cosieve in c Sd2 K is the subposet
of all simplices of SdK that meet Sd L . Note that as SdL C SdK is sub-

divided, any simplex Q of SdK that meets SdL does so in a face; i. e.,

an SdL is a, not necessarily proper, face of a . Then the reflection :

r: W - c Sd 2 L sends each object o of W to the non-empty face o n Sd L .

C learly, ri = 1 and i r - 1 at a is the inclusion of the face an Sd L in
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o . The verifications that W is a cosieve in c Sd 2K and c Sd 2L is a

sieve in c Sd 2 K are easy.

The idea is roughly that for i: A - B to be a Dwyer map, A must

be a «deformation retract» of its « star neighborhood » W. Consider now a

pushout diagram in Cat

One can apply the nerve functor to this and obtain a diagram in Simplicial
Sets . Compare this to the pushout of N B and N C under N A . There will

be a canonical map

induced by N j and Ng . In general, this map is neither an isomorphism
nor a weak equivalence. The reader may find examples in the work of

Fritsch and Latch [5], Section 3. The utility of Dwyer maps arise from
the propos ition :

P ROPO SIT IO N 4.3. In a pushout diagram (4.1) in Cat, i f i is a Dwyer

map, the canonical map (4.2) is a weak equivalence. Furthermore, j is a

Dwyer map.

COROLLARY 4.4. I n a pushout diagram (4.1) in Cat with i Dwyer if f is
a weak equivalence then g is, and if i is a weak equivalence then j is.

PROOF. The corresponding property holds for pushouts in Simplicial Sets.

Note as i is an inclusion of categories, Ni is an inclusion of simplicial

sets. As i is Dwyer, Proposition 4.3 gives that the nerve of the pushout
in Cat is weak homotopy equivalent to the pushout of nerves. The result

now follows using Proposition 2.4 and the property for pushouts in Simpli-
cial Sets corresponding to the corollary.

Let 1 be the category with two objects 0, 1 , and one non-identity

arrow 0-1.
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L EMM A 4.5. A subcategory A of B is a sieve iff there is a functor X : B -1
such that X-I (0) = A . 1 f such a functor exists, it is unique. Call it the

characteristic functor of A. Dually, A C B is a cosieve iff there is a func-

tor x : B - 1 such that X-1 (1) = A .

P ROO F. Define x on objects by X ( B ) = 0 or 7 as the object B of B

is in A or not. If A is a sieve, there is an obvious unique way to extend

this to morphisms to get a functor X : B - 1 with X’1 (0) = A . Conversely
for any X : B - 1 , X-1 (0 ) is a sieve in B , essentially because 10 is a

sieve in 1 .

I will now give the proof of Proposition 4.3. Let A -W-&#x3E; B be a

factorization of i : A - B which satisfies the conditions of Definition 4.1.

Let V C B be the full subcategory of B whose objects are the objects of

B not in A . This V is a cosieve in B as A is a sieve. One sees easily
that WnV is a cosieve in W and in V , and that B is the pushout of W

and V under WQV .

I claim N B is the pushout of NW and N V under N (WQV) . For a

p-simplex of N B is a string of p composable maps in B :

A s V and W are both cosieves in B , the entire string lives in V or W

if B 0 does. As V U W contains all objects of B , this shows the disjoint
union of NV and Nw maps onto NB . The strings common to NV and N W

in N B are precisely those in NVr’1NW= N(VQW). This shows NB is

the pushout as claimed. Consider now the pushout squares in diagram

Let W’ be the pushout of W and C under A, and V’ be the full subcat-

egory of D whose objects are those not contained in C . Here D is the
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pushout of B and C under A . I claim j : C - D is a Dwyer map, and that

C - W’- D is a factorization satisfying the conditions of Definition 4.1.

First C is a sieve in D ; for the characteristic functor x : B - 1 of A in

B , together with the functor C - 1 sending everything to 0 , induce a func-

tor X : D - 1 with x-1 (0) = C . Then Lemma 4.5 shows C is a sieve. A

sim ilar argument shows 1" is a cosieve in D . Finally, the retraction

r: W - A and natural transformation I r - 1 induce a retraction

and a natural transformation j r’ - 1 . The proper identities are easily ve-

rified. Note that V’ is a cosieve in D as C is a sieve.

Now I claim that the functor g : B - D induces isomorphisms

For g certainly induces an isomorphism of the quotients

But B/A is the category V with one new object * added, and with a un-

ique new morphism * -+ V for each object U of V QW. This description
makes sense, i, e., composition of morphisms is defined, as V QW is a

cosieve in V . The object * is the image of A in the quotient. The cat-

egory D/C has a similar description with V’ replacing V and V’ nW’ re-

placing V QW. Thus the isomorphism B/A = D/C is seen to imply the ex-

istence of isomorphisms

induced by g , as claimed.

Just as NB is the pushout of NW and NV under N (W QV) , N D

is the pushout of NW’ and NV’ under N ( W’ nV’ ) . By the above, this im-

plies N D is the pushout of NW’ and NV under N (W nV).
As a final preparation note that the inclusion and retraction

i : A - W , r:’W - A

induce inverse homotopy equivalences NA = NW, as the natural transfor-

m ations 1 -+ r i , i r - 1, induce sim plici al h omotopie s
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( [14], Section 1, Proposition 2 ). Similarly, the inclusion map N C W NW’

is a homotopy equivalence.

Putting all these observations together, one gets a string of iso-

morphisms and weak equivalences :

as required. The first map is induced by the homotopy equivalences

and is a weak equivalence by the well-known glueing Lemma of Brown (e.

g.,[1], Lemma 2.5 ). This completes the proof of Proposition 4.3.

PROPOSITION 4.6. Let L - K be a cofibration in Simplicial Sets . Then

c Sd 2 L - c Sd 2 K is a co fibration in Cat .

PROOF. There is a natural bijective correspondence between diagrams

( 4.6 ) in Cat and diagrams ( 4.7 ) in Simplicial Sets , induced by the ad-

j ointness of c Sd 2 and Ex 2 N .

LEMMA 4.7. 1° I f A - B is a co fibration in Cat, and A -C is any mor-

phism, the induced morphism into the pushout C - B II C is a co fibration.
A

2° I f A0 - A1 - A2 -+... is a s equence Of cofibrations in Cat and

Aoo=lim An’ th e canonical morphism A0 - 1B0 is a cofibration. If each
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Ai - Ai + 1 is a vreak equivalence, so is A0 -Aoo.
PROOF. The assertions that maps are cofibrations follow from the defini-

tion by a mapping property and the universal mapping properties of push-
outs and direct limits.

Suppose now each Ai - Ai+l is a weak equivalence. As N preser-
ves direct limits, N£ = limNAi . Using the fact that in Simplicial Sets
the homotopy groups of a direct limit are the direct limits of the homotopy

groups, one sees that as each NAi- NAi+1 is a weak equivalence, so is

Thus A0 - Aoo is a weak equivalence.

L EMMA 4.8. The categorical horns c Sd 2 A [n , k ] - cSd2 A[ n] are tri-

vial cofibrations.

P ROOF. They are cofibrations by Proposition 4.6. That they are weak equi-
valences was noted just before Proposition 2.6.

I’m now ready to verify the factorization axiom CM 5. Let f : A - B

be any morphism in Cat . I will first show it factors as f = p i , with p a

fibration and i a trivial cofibration. Consider the set of all diagrams (4.8)

involving the categorical horns

(4.8)

Take the coproduct of all such categorical horns indexed by the set of all

diagrams (4.8) :

This map is a trivial cofibration as it is a coproduct of trivial cofibrations

by Lemma 4.8. Further, it is a Dwyer map by Proposition 4.2.

The morphisms a; c Sd 2 A [n, k]- A in all the diagrams (4.8)

induce a morphism II c Sd 2A[ n , k]- A . Let Al be the pushout of A and
II c Sd2 A [n] under II c Sd2 A [n, k]. Then the morphism A - A1 is a
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cofibration by Lemma 4.7 and a weak equivalence and a Dwyer map by Co-

rollary 4.4 and Proposition 4.3. The morphisms b: c Sd 2 A[n]- B in the

diagrams (4.8) and f : A - B induce a morphism pl : A1 - B . The compo-
s ition A - A1 - B is the original f . Further by construction any

in any diagram (4.8) lifts through Al - B extending

Applying this entire construction to the new morphism A1 - B , one pro-
duces another factorization Al -+ A2 -+ B through p 2 : A2 - B.

Iterating countably many times, one obtains a sequence of co fibra-

tions and weak equivalences

and a family of morphisms pn: A n- B such that An - An+1 composed with

Pn+1 ls p n· Let A, = lim An . Then i: A-Aoo is a cofibration and a weak

equivalence by Lemma 4.7. The morphisms p n: A n - B induce a p: Aoo -+ B .

I claim that p is a fibration. It satisfies statement 2 of Proposition 2.5.

The construction of the factorization required by the second half

of CM 5 is similar. Consider all diagrams

and let

be the coproduct indexed by all such diagrams. This morphism is a cofi-

bration by Proposition 4.6. Let A1 be the pushout of A and II c Sd 2 A[ n]
under IIc Sd 2 A[n] . Then A - Al is a cofibration by Lemma 4.7, and

f: A - B factors as A - Ai - B with Ai - B induced by

Iterate this construction countably many times to produce j : A - 1B0 and
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q: A. - B such that f factors as q j . Then j is a cofibration by Lemma

4.7, and by construction, using the fact c Sd 2 A[n] is finite and so any

m orphism c Sd 2 A [n] - Aoo factors through some finite stage Am , q has
the lifting property mentioned in Proposition 2.6, and so is a trivial fibra-

tion. This completes the verification of CM 5.
It remains to verify half of CM 4 and the extra axiom of Propriety.

To verify CM 4, it must be shown that given a diagram (4.10) in Cat , with

k a trivial cofibration and q a fibration, then the dotted arrow B - X ex-

ists. First note the lift B - X will exist if k is a categorical cofibration

constructed by the process in the verification of the first half of CM5.

Now take k : A - B any trivial cofibration, and use the above pro-
cess to factor it as k = p i , p a fibration and i a trivial cofibration. Note

p is also a weak equivalence by CM 2, as k and i are. By the above ob-

servation on the cofibration i : A-Aoo, there is a lift g: A. -+ X such that

f or i has the required lifting property with respect to fibrations. If there is

a section s : B - Aoo of the fibration p such that p s - 1 and sk =i , then

g s: B - X will serve as a dotted arrow in the original diagram (4.10).

Consider now the diagram ( 4.11 ). A s k is a cofibration and p is

a trivial fibration, the dotted arrow exists by definition of cofibration. It is

the sought for section s.

This completes the verification of CM 4, and so the proof of:
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THEOREM 4.9. Cat, the category of small categories, is a closed model

category under the structure proposed by Definitions 2.1, 2.2, 2.3.

L EMM A 4. 10. L et i : A - B be any co fi bration. Let i = q j, j: A - Aoo a

co fibration, and q: A. B a trivial fibration, be the factorization cons-
tructed by the process used in veri fying CM5 above. Thus j is the cano-

nical map A = Ao - lim An = Aoo, with each An - An + 1 induced by a
coproduct o f morphisms c Sd 2 A [ m] - cSd2A[ml pushed out via a mor-

phism II c Sd 2 A. [m] - An . Then there is an

s : B - Aoo such that s i= j and q s =1,

i. e., i is a retract o f j .

PROOF. The description of j may be read off the construction. The exist-

ence of s follows from axiom CM 4.

5. It remains to show Cat satisfies the extra axiom of Propriety. To do

this, I will show all cofibrations are Dwyer maps and invoke Corollary 4.4.

I will also show all cofibrant categories are posets.
I need to use a characterization of Dwyer maps slightly different

from Definition 4.1, and due to Fritsch and Latch.

D E FIN IT IO N 5.1. Let A be a subcategory of B . Then Z A is the cosieve

generated by A in B ; i. e., the full subcategory in B of objects B such

that there exists a map A - B in B with A in A . (Note the dependence
of Z A on B is suppressed from the notation. )

L EMM A 5.2. The following are equivalent for a morphism i : A - B in Cat :

1 a i is a Dwyer map;
20 i is a sieve and A C Z A is a reflexion; i. e., there exists a re-

traction r: Z A - A which is right adjoint to the inclusion.

P ROOF. To see 1 implies 2, let W C B be a cosieve as in Definition 4.1 .

As AC W and V’ is a cosieve, Z A is contained in W . On the other hand,
for W in W the adjunction map 71 : i r W - W has i r W as an object of A ,
so W is contained in Z A . Thus W = Z A , and the conditions of Definition

4.1 imply those of statement 2.
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To see 2 implies 1, let W = Z A. The conditions of Definition 4.1

are met.

L EMMA 5.3. 10 The composition of two Dwyer maps yields a Dwyer map.
20 L et Ao - A1 - A2 -... be a s equen ce watlt each An - An + 1 a Dwy-

er map. Then the induced A0 - lim An = Aoo is a Dwyer map.- n

3o Any retract o f a Dwyer map is a Dwyer map.

P ROO F. To prove statement 1, let i : A - B and j : B - C be Dwyer maps.
It is easy to see that j i : A - C is a sieve, as i and j are. Let Z A , Z B

be the cosieves generated by A in B , and by B in C , respectively. Let

Z’A be the cosieve generated by A in C . Let r: Z A - A , s: Z B - B be

the retractions which exist as i and j are Dwyer maps.
The inclusions A C B C C induce inclusions Z A C Z’ A C Z B .

Further, s (Z’A ) is contained in Z A . For if C is an object of Z’ A there

is a morphism A - C in C with A an object of A , the morphism

shows sC is in Z A . A s s (Z ’ A ) C Z A ,

is defined. This t = rs is right adjoint to j i as s is right adjoint to j
and r is right adjoint to i . Further, t is a reflexion as

Now Lemma 5.2 shows j i is a Dwyer map.

The proofs of the other statements proceed in a similar spirit.

P ROPOSITION 5.4. Every cofibration in Cat is a Dwyer map.

P ROOF. Let i: A - B be a cofibration. Then by Lemma 4.10, i is a re-

tract of a cofibration j: A - Aoo with a structure as described in Lemma

4.10. By Lemma 5.3, 3 it suffices to show j is a Dwyer map. To do this,
it suffices byLemma 5.3, 2, to show each An - An + 1 occurring in the cons-
truction of j is a Dwyer map. As each An - An + 1 is the pushout of a co-

product of canonical morphisms
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by a morphism II c Sd 2 A [m] - An , it suffices to show by Proposition 4.3
the coproduct of canonical morphisms is a Dwyer map. But this is true by

Proposition 4.2. Note this argument parallels the proof that j is a cofi-

bration in the verification of CM 5, using Lemma 5.3 and Proposition 4.3
in place of Lemma 4.7, and Proposition 4.2 in place of Proposition 4.6.

COROLLARY 5.5. Cat is a proper closed model category.

P ROO F. Apply Proposition 5.4 and Proposition 4.3 to verify the axiom of

Propriety. Then the result follows by Theorem 4.9.

L EMMA 5.6. 10 For any simplicial set K, c Sd 2K is a poset.

20 1 f A0 - A1 - A2 -... is a sequence of posets, then Aoo = lim An
is a poset.

3o Any subcategory of a poset is a poset.
4P L et A , B , C be posets, and i.- A -+ B a Dwyer map. Then for any

morphism A - C the pushout D of B and C under A is a poset.

PROOF. Statement 1 holds for K a simplicial set coming from an ordered

simplicial complex by the description of c Sd2 K preceding Proposition
2.6. This is the only case used in the proof of Proposition 5.7 below ; the

general case then follows from Propositions 5.7 and 4.6.

The proofs of statements 2 and 3 are trivial.

To prove statement 4, refer back to the proof of Proposition 4.3. Let

W, V , W’’, V’ be as in that proof. One must show that if D, D’ are objects
of D , then D ( D, D’) has at most one element, and that if there are mor-

phisms D - D’ and D’- D , then D = D’ . This may be done by a case by
case check as D and D’ range over objects in C and in V’ , using the

facts that C and V’ = V are posets, that W’ and V’ are cosieves in D ,

that C is a sieve in D and that C is a reflexive subcategory of W’ . 

PROPOSITION 5.7. Every cofibrant category is a poset.

PROOF. Let C be cofibrant. Then J6- C is a cofibration, where 16 is the

empty category. By Lemma 4.10, C is a retract, and hence a subcategory,
of a category Aoo constructed by the process described in Lemma 4.10. By

Lemma 5.6, 3, it suffices to prove Aoo is a poset. By Lemma 5.6, 2, it suf-
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fices to prove each An is a poset. One does this by induction. A0=O is

a poset. Suppose An is a poset. Then An + 1 will be a poset by Lemma 5.6,

4 and Proposition 4.2, provided II c Sd 2 A [m] and I1c Sd 2 A [m] are po-

sets. But this is true by Lemma 5.6, 1.
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