
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

JOHN W. GRAY
The existence and construction of Lax limits
Cahiers de topologie et géométrie différentielle catégoriques, tome
21, no 3 (1980), p. 277-304
<http://www.numdam.org/item?id=CTGDC_1980__21_3_277_0>

© Andrée C. Ehresmann et les auteurs, 1980, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1980__21_3_277_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


277

THE EXISTENCE AND CONSTRUCTION OF LAX LIMITS

by John W. GRAY *)

CAHIERS DE TOPOLOGIE

ET DE GEOMETRIE DIFFERENTIELLE

Vol. XXI - 3 (1980)

0. INTRODUCTION.

Lax limits in a 2-category ( such as Cat ) are objects which satisfy
a universal mapping property similar to that satisfied by ordinary limits

except that the relevant cones, instead of consisting of commutative tri-

angles, consist of triangles with specified 2-cells (e.g., natural transfor-

mations in Cat ) in them. There is a clear analogy with the notion of homo-

topy limits in Topology which were invented at about the same time as lax

limits. The connections between these two kinds of limits are discussed

in [11 and 18].

In this paper we show that if a 2-category is (finitely) complete it

has ( finite ) lax limits. This was first announced in [9], though no notion
of finiteness was considered there. (Cf. also, [8], page 289 and [10] ,

page 188). This first proof was generalized by D. Bourn in [3]. Later R.

Street in [ 161 gave a completely different proof which motivated me to re-

think my original construction. I found that it led to a simple existence

proof together with an algorithm for constructing a lax limit over a 2-cat-

egory I in terms of an ordinary limit over a ( functorially ) associated cat-

egory Proll. A first, partially erroneous version was circulated in 1978.

In the meantime, A. and C. Ehresmann had independently developed a much

more general theory in their series of four papers, «Multiple functors », Ca-

hiers de Topo. et Giom. Diff. XV, 215 - 290 ; XIX, 295 - 333 ; XIX, 387- 443 ;
XX, 59- 104. In particular, they prove (in different notations) Theorems

2.2, 2.3, 5.1.1 and 6.6, but they do not consider Proll for a 2-category

I , or discuss its naturality. They also point out that 1.3 is essentially in

Appelgate-Tierney, «Iterated cotriples», L ecture Notes in Math. 137, 56 - 99.

*) Some of these results were obtained while the author was a Fullbright-Hays fel-
low at the University of Sydney in 1975. Later work was partially supported by NSF

grant nO MCS 77-01974.
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Section 1 is concerned with some preliminary notions about present-
ations and completeness. Section 2 shows that the existence of lax limits

reduces to that of ordinary limits ( e. g., products and equalizers ) plus the

existence of the lax limit of the diagram consisting of a single arrow. As

part of this reduction, the ingredients are constructed for what turns out to

be essentially a lax functor from a diagram 2-category i to the bicategory

Spans A of spans in the 2-category of interest, A . Section 3 describes

such lax functors and shows how to convert such a thing into an ordinary
functor from Prol I to A . Section 4 shows how a 2-functor l: I - A ( where

A is finitely complete ) determines a 2-functor PR (I): Prol I - A and proves
the main theorem that the lax limit of I is isomorphic to the ordinary limit

of PR (I) . Section 5 discusses extensions of this theorem and simplifica-
tions of Proll. Section 6 consists of examples showing how particular lax

limits are given explicitely as limits.

Concerning notation, in gen.eral the terminology of Kelly-Street

[12] will be followed in this paper rather than that of [10]. Thus we write

lax natural rather than quasi-natural, lax limits rather than Cartesian q-

limits, lax functors rather than pseudo-functors, etc. Sets denotes the cat-

egory of ( small ) sets, Cat the 2-category of ( small ) categories, and 2-Cat
the 2-category of small 2-categorie s. Size considerations are consistently

ignored, but two or three universes should suffice. If A is a 2-category,
Ao denotes the underlying category. A 2-cell a between 1-cells f and g

which have common 0-cells A and B as domain and codomain is denoted by

The values of the composition functor A (A , B) X A ( B, C ) - A (A , C) are

denoted by juxtaposition (in reverse order). This takes precedence over

composition within the categories A ( A , B ) which is denoted by a. (3. 2-

categories which are regarded as index categories are denoted by I , with
cells typically written O: s= s’: i - j .

Examples of 2-categories which are complete and hence by the re-
sults of this paper lax complete, or cocomplete and hence lax cocomplete,
are as follows :
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i) Cat is complete and cocomplete.

ii) If V is a closed category which is complete (resp., cocomplete)
then the 2-category of V -categories is complete (resp., cocomplete ) ; e. g.
additive categories, or ( k-space )-categories.

iii ) If A is a category with pullbacks, then the 2-category Cat (A)
of category-objects in A is well-defined. If A is complete, then Cat (A) is

complete and if A is cocomplete with universal, disjoint, monomorphic co-

products, then Cat (A) is cocomplete. Thus CatCop , which is isomorphic
to the 2-category of fibred categories over C , is complete and cocomplete.

Similarly, given any Grothendieck topology on C , the 2-category of categ-

ory-valued sheaves on C is complete and cocomplete.

1. PRESENTATIONS.

Let 1, 2, and 3 denote the categories described in [10], pages 3
and 4. In general, n denotes the ordered category with n objects. Besides

these categories regarded as locally discrete 2-categories, there are 2-cat-

egories based on ordered categories whose hom objects are themselves or-

dered categories. We shall write n m&#x3E; for the 2-category with objects D, ..

.. , (n - 1), whose hom objects are given by

and O otherwise,

and in which composition is the isomorphism mj-i x mk-j -mk-i. It is easy-
ly established that the full subcategory (resp., sub-2-category) of Cat

(resp., 2-Cat ) generated by 3 (resp., 33&#x3E;) is dense and hence every

small category (resp., 2-category) is a coequalizer of a pair of maps bet-

ween coproducts over suitable index sets of copies of 3 ( resp. 3  3 &#x3E; ).

These presentations are canonical and usually are much bigger than

is necessary. In general, if A is a subcategory of a category B , let A1
denote the closure of A under finite colimits in B , let

1.1. DEFINITION. Let (2 ) (resp., (2 2&#x3E; )) denote the full subcategory
of Cat (resp., 2-Cat) generated by 2 (resp. 2 2&#x3E; ). A small category
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(resp., 2-category) is called finitely presented if it belongs to (2)oo ( resp.

(22&#x3E;)oo).

Actually, (2)2 = (2)oo in Cat and (2 2&#x3E; )3 - (2 2&#x3E; )oo , and these

notions coincide with the Gabriel-Ulmer notions of finitely presentable ob-

jects in Cat and 2- Cat respectively.

In order to utilize presentations in the construction of lax limits,
we need some properties of complete 2-categories. Recall that a 2-category
is a category enriched in the cartesian closed category Cat , so complete-
ness for a 2-category A means that A has limits preserved by the Cat-
valued representable functors and that cotensors exist ; i. e., if A f A and

VE Cat , then there is an object VQ A c A and a Cat-natural isomorphism

(cf., Day and Kelly [6] ). We call A finitely complete if it has finite lim-

its and cotensors with finitely presentable categories.

1.2. PROPOSITION. A 2-category A is (finitely) complete iff it has (fin-
ite ) limits and 2Q- exists.

PROOF. Note that VQ A turns colimits in the first variable into limits.

Since 3 is the colimit in Cat of the diagram

this determines 3 Q A from 2 Q A . Since any 1" has a presentation in terms
of 3 , this in turn determines VQ A . Clearly, if V is finitely presentable
then only finite limits are needed to construct VQ A .

We need one more property of complete 2-categories. Let A be a

fixed 2-category and let AI adj I 2-Cat denote the category whose objects

are 2-functors F : A- B where B is any 2-category and where F has a

Cat-enriched right adjoint. A morphism from F, to F2 is a 2-functor

H : B1 - B2 such that H F1 = F2 .

1.3. PROPOSITION. I f A is complete, then so is AI adjl 2-Cat.

PROOF Let I be a small category with objects and morphisms denoted by
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pji: i , j. Let l: I- Aladil2-Cat be a functor with values denoted by

Let B = lim Bi , the inverse limit being taken in 2-Cat with respect to the

functors Hji , and let F : A -B be the functor induced by the Fi ’s. For
each i , choose a right adjoint Ui to Fi and let 0ji: Ui - Ujlfji be the

( enriched ) natural transformation which is transpose to the identity mor-

phism HjiFi = Fj . It follows from [10], Theorem I, 6.8, that the 0ji’s
compose properly so the maps

(here Hi ; B - Bi is the limit-cone ) determine a diagram in AB whose limit

U = Lim UiHi is right adjoint to F since

Hence F is the limit of I in AI adjl 2-Cat.

2. EXISTENCE OF LAX LIMITS.

If A and B are 2-categories, let Fun ( A , B) denote the 2-category
whose objects are 2-functors from A to B , whose 1-cells are lax natural

transformations ( = quasi-natural transformations in [10] ) and whose 2-

cells are modifications (see [10], page 28). For any pair of 2-categories,
I and A , there is a constant imbedding AI:A-&#x3E; Fun (1, A ) and a Cat- en-

riched right adjoint to AI is called a lax Limit functor. It is denoted by

llimj: Fun A. ( In [lO], llim is written Cart q-lim . The dual no-

tion is often abbreviated to Q in calculations there. )

The functorial behavior of lltml in the variable I is discussed in

[ 10], pages 189- 197, in the greatest possible generality. Here we can use

a simpler result since we can work in the category (2-Cat)0 . Let [A] de-

note the constant 2-functor equal to A , it and Fun (- , A) being regarded
as contravariant functors from (2-Cat)0 t o 2-Cat .

2.1. PROPOSITION. The 2-functors lliml are the 1-cell components of a



282

l ax natural trans formation from Fun (- , A ) to [A] .

PROOF. If F: I - I’ is a 2-functor, then Fun ( F, A )AI, = AI so there is

a transpose natural transformation denoted by

The point of Theorem I, 6.8 in [10] , is that if llimF is defined this way

then the equations of lax naturality are satisfied provided 2-cells are not

allowed from an F to an F’ .

We are now in a position to reduce the calculation of lax limits over
a colimit of 2-categories to the lax limits over the factors. Let

be a functor from a small category D whose objects and morphisms are de-

noted by Oji: i - j , Write

Let I = l; Ii be the colimit in 2-Cat with structure maps Gi : li - I .

2.2. THEOREM. I f A is a complete 2-category, then for any F: I - A, one

has llim, F = limD (llimIj( FGi)).
i

P ROOF . Recall from [10], I, 4.4, iii or 4.14, that Fun( -,1) turns colimits

in the first variable into limits. Hence Fun ( I , A) = limD ( Fun ( I i , A)). This
is the situation of 1.3 where Fi there is A, here. The induced functor

-i

F there is dI here and the right adjoint Ui there is llim, here. The trans-

pose natural transformations are the llimGji from 2.1 and hence the right

adjoint to A1 is given by the indicated formula. This formula can also be

derived from Street [16].

2.3. THEOR EM. Let A be a 2-category. I f A is ( finitely) complete then

A has lax limits of type I for all (finitely presentable ) small 2-categ-

ories 1.

PROOF. Let I be a small 2-category. By 2.2, llim, can be computed as a

limit of lax limits over the constituents of any presentation of I. Hence
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by Section 1, it is sufficient to show that llim3 3&#x3E; exists together with
the required maps for endofunctors of 33&#x3E; . Actually, we shall show that

LLimI exists for any object in 33&#x3E;} (the full subcategory of 2-Cat det-

ermined by the n m&#x3E; ’s with 1  n , m  3 ). The induced maps between

lax limits corresponding to functors in this subcategory exist, because

Fun(-, A ) is a functor in the first variable, but some of these will be des-

cribed explicitely because they are needed later.

Step 1. Locally discrete 2-categories. If I - 1 then the lax limit of a func-

tor from 1 to A is just the value of the functor. The case 1 = 2 is the

most important and determines everything else. Write 2 as 0t-1 . The

two functors 0, 1: 1 - 2 and the natural transformation with component t

from the first to the second determine, for an object B f A , a diagram

( where, e. g., (d0)B = 0Q B , etc ) which is universal for such diagrams in

the sense that given any 2-cell a : f = g : A - B , then there is a unique

1-cell a * : A - 2Q B such that uBa * = a . Let

Then the lax limit of I is easily seen to be the pullback

and the universal lax cone is the diagram
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where 1 f = (d1)B qf and 0 f = fl B qf . Note that there is the map

characterized as the unique map such that 0fBf= id f . In parti cular, the
unique functor T: 2 - 1 determines the natural transformation with com-

ponents iA = Àid A : A .... llim2 (idA). In Cat , where 2Q B = B2 , the pull-
back (2 ) describes the comma category f/B , so we shall adopt this as a

general notation for llim2 f although it suggests an asymmetry that is not

present and could be avoided by the clumsier notation A/f/B. We shall

frequently regard (3) as a span in A ( cf., [10], page 46)

from A to B . In this notation, the map iA above can be regarded as a map
of spans

Now consider the case I = 3. Since 3 is the pushout of two copies
of 2 , functors from I to A are of the form

By 2.2, llim1  f, g&#x3E; is the indicated pullback

which is drawn as the composed span Sg S f in A . Not indicated in the dia-
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gram is the important 1-cell

which corresponds to the « composition » map y : 2-3. It is the unique 1-

cell satisfying the equation

and is to be regarded as a map of spans from Sg S f to Sg f . We note, for
future reference that if y : A x f/ B - ( f idA )/ Band

A

are the canonical isomorphisms, then

(with a similar equation for

Once lax limits over 3 are known to exist, it follows by the density of 3

in Cat that lax limits exist over all small categories (resp., finitely gener-
ated categories ).

Step 2. Arbitrary 2-categories. It is easily verified directly from the defi-

nitions that if a 2-category I has the property that each 1 (i, j) has a ter-
minal object and if these terminal objects form a subcategory I’ , then lax

limits over I are isomorphic to lax limits over the category 1’. Clearly,
the 2-categories nm&#x3E; satisfy this, the subcategory being isomorphic to

n . Hence lax limits over 3 3&#x3E; exist, which completes the proof of the

theorem. We note for future reference that if a: f» f’: A - B is a 2-cell

in A , then there is a uniquely determined 1-cell

and this determines a map of spans
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which satisfies obvious compatibility conditions with the maps cA and

c f, g in (6) and (8).

2.4. DISCUSSION. In this construction of lax limits via presentations, the

idea is to replace each map f in the original diagram by the corresponding
span Sf . For each composition g f , there is a composed span with a map

Cf,g: Sg sf - Sg f, for each object there is a map CA: A - SidA and for each

2-cell a : f =&#x3E; f’ , there is a map Sa : Sf S f . Regarding all of these spans
and maps between them as a bigger diagram, then the lax limit of the ori-

ginal diagram is just the ordinary limit of this bigger diagram. The problem
is to describe this bigger diagram in some systematic fashion.

3. THE PROLONGATION OF A 2-CATEGORY.

Recall that a lax functor as described in Street [15] ( or a pseudo-
functor as in [10] , page 40) between 2-categories A and B assigns to

each object A c A an object F (A) E B , to each pair of objects, A , B c A ,
a functor F : A ( A , B)- B ( F A , F B) , to each compos able pair of 1-ce lls

(f, g), a 2-cell c f,g: F(g)F(f) - F(gf) and to each object A c A , a 2-

cell cA : idFA- F ( idA ) such that the usual coherence conditions are sat-
isfied. If A and B are only bicategories then the equations are more com-

plicated (see [10]). An op-lax functor has the 2-cells c f,g and cA going
the opposite direction. If, for any 2-category A , we write °pA for the weak

dual in which only the direction of 2-cells is reversed, i. e.,

(°pA)(A, B)= A( A, B)OP,

then clearly F : A - B is a lax functor iff °pF: op A- °PB is an op-lax

functor, where °pF has the same values on n-ce lls, n - 0 , 1, 2, as F . If

the 2-cells c f,g and cA are isomorphisms for all A, f, g, then F is call-

ed a pseudo-functor. By taking inverses, pseudo and oppseudo can always
be converted into the opposite case. By a lax natural trans formation bet-
ween lax functors we mean a left lax transformation as in Street op. cit., or

a quasi-natural transformation as in [10], page 43.

For any category A with pullbacks, let Sp ans (A) denote the bi-
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category of spans in A (cf. [10], page 46, [12] or [2]). Lindner [ 13 ]
shows that the classifying category of Spans ( 4) ( see [2]) represents

Mackey-functors, which identifies functors with this as domain. We are con-

cerned here with op-lax functors with codomain opSpans ( A ) . In a certain

sense, prolongation will be a «left adjoint » to °PSpans (- ) .

3.1. DEFINITION. Let a: F =&#x3E; G : A - ’PSpans (B) be a lax natural trans-
formation between lax functors. Q is called special if for every A c A ,

a A is given by a span of the form

NOTE . The description of lax naturality in this case reduces to giving maps

Or so that the diagrams

commute for every f : A - B in A . The composition of these reduces to

composing the QA ’s and the a f’ s.

3.2. DEFINITION. i) Lax (resp., op-Lax ) denotes the category whose ob-

jects are ( small ) bicategories and whose morphisms are lax (resp., op-

lax) functors. ( For composition, see [10], page 42. ) If B and B’ are bi-

categories, then op-Lax( B, B’) denotes the bicategory whose objects are

op-lax functors from B to B’ , whose morphisms are lax natural transfor-

mations and whose 2-cells are modifications. (Cf. Pseud ( B , B’) in [10]

page 45. )

ii) L ex denotes the 2-category of ( small) categories, left exact func-

tors ( i. e., those finite limits that exist in the domain category are preserv-

ed ) and natural transformations.

3.3. THEOREM. There is a functor Prol: 2-Cato - L ex and for any 2-cat-

egory A with pullbacks, a functor
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which is natural in I. ( The s means only special lax natural trans for-

mations. )

P ROOF . Step 1. If I is a category, then Proll is the total category of the

discrete 0-fibration corresponding to th e functor

Here {3} is the full subcategory of Cato determined by 1, 2 and 3 , and

th e indicated functor is regarded as covariant ( cf. [10], page 210 f where
this is denoted by [1, F,l ). The fibres of Proll over 1, 2 and 3 resp-

ectively are the sets of the (names of the) objects, morphisms and com-

mutative triangles of I. Since these fibres are discrete, the only limits in

Proll are those which come from colimits in {3}, the only non-trivial one

being 3 as a pushout of two copies of 2 . If s : I - j and t : j - k in I , then

the pullback of

in Prol I is denoted by  s , t&#x3E; . (The bars denote the objects in Prol I cor-

responding to data in I . ) If F: I - I’ is a functor, it determines a natural

transformation

and hence a ( cartesian ) functor Prol F : Prol I - Prol I ’ between the as-

sociated 0-fibrations which is clearly left exact. This gives a functor

If I is a 2-category then corresponding to the non-identity 2-cells

in I , we adjoin maps in Prol lo subject to equations, as follows : let

be 2-cells in I . The following maps are added to Prol10 :

satisfying the relations

and the commutativity of the diagrams
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Step 2. Let K : I - oPSpans:1 be an op-lax functor, where I and A are 2-

categories. Let RI(K) = K *: Prol l - A be the left exact functor given by

K*( i ) = K ( i ) and if K ( i ) --- K ( s) )K (j) denotes the span which
K assigns to s : i - j in I , then K * takes the diagram on the left below

to the indicated maps in A :

where P is the pullback. If (A and Y are 2-cells as above then

while K *(  O,Y&#x3E;) is the induced map between pullbacks. By construction

K * is a left exact functor. Clearly, a special lax natural K1 -K2 deter-

mines a natural transf ormation K 1-+ K*2 and there are no non-identity mo-
difications between special lax natural transformations.

Step 3. Lex(Prol -, A) is clearly a contravariant functor from 2-Cato to
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2-Cat . Furthermore, from the description of the composition of special lax

natural transformations, it follows that op-Lax( 1, OPSpans A)s is a locally
discrete 2-category and RI is a functor. It is easily checked that if M: I’- I

is a 2-functor then ( K M )* = K *o Prol M so that R (- ) is a natural trans-

formation.

REMARK. If Prol I is defined over 1 4}op instead of ( 3)°P then the defi-

nition of Ri extends to an equivalence of categories and then the identity
functor on Proll corresponds to an op-lax functor TJ I satisfying :

given an op-lax functor K , then there is a left exact functor K * making
the diagram commute up to a special lax natural equivalence and K* is

unique up to a unique natural equivalence. This property will not be used

here.

One can clearly recapture the 2-category I from the fibred category

Proll. An aspect of this will be needed in the proof of the main theorem.

Recall that L TT0 I denotes the category constructed from the 2-category I
by replacing each category I (i, j) by its set 170 I (i, j) of path compon-

ents (cf. [10] , page 10).

3.4. PROPOSITION. There is a natural trans formation PI: Proll, L TT0 I .
PROOF. Let PI(i) = i and if s : I - j in I , then

where [ s ] is the equivalence c las s of s in L7?o/ . If 0 : s = s’ is a 2-

cell, then PI (O) - idi and if t : j - k then

See also [10] , page 210. By construction, PI is natural in 1.
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4. THE PROLONGATION OF A FUNCTOR AND LAX LIMITS.

In all of this section A is a finitely complete 2-category.

4.1. P ROPO SITION. There is an op-lax functor OA: A - opSpans (A) which
is « op-lax natural&#x3E;&#x3E; in A .

P ROO F . On objects, (DA (A) = A . If f : A - B is a 1-cell in A , then

(cf., 2.3 (5)). If a: f=&#x3E; f’ is a 2-c ell, then

as in 2.3 (10). The structural maps cA and c f g are described in 2.3 (6)

and (8). Since OA (a) is contravariant, we must view this operation as

taking values in opSpans (A) , where cA and c f,g therefore go the other

way. As noted in 2.3 this data satisfies the definition of an op-lax functor.

VGe regard oPSpans(-) as a functor from the category of finitely

complete 2-categories to the category of bicategories and op-lax functors.

This does not underly any 2-category or bicategory so, strictly speaking,

(DA cannot be op-lax natural. Nevertheless, if F: A-B is a 2-functor,

then there is an op-lax natural transformation

whose components are (OF )A = idFA and, if f :A-B is a 1-cell in A ,
then (OF)f : F ( Sf) - SFf is the unique 1-cell such that

Note that (OF ) f goes the other way in opSpans (B) . Uniqueness implies
that (D F is op-lax natural and, if G F is defined, that OGF= OG lu 4YF .

4.2. PROPOSITION. Composition with (DA determines a natural transforma-
tion

between contravariant functors from 2-Cat, to Cat0.

PROOF. A 2-functor I : 1-+ A is taken to the op-lax functor
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and a lax natural transformation o: I - I’ goes to the special op-lax nat-

ural transformation OA o a whose components are

where os : I (s)/ I(j)- I’ (s)/ 1’( j) is the unique 1-cell such that

It is easily checked that (DA o ( - ) is natural in I .

4.3. DEFINITION. Let PRI(-) denote the composed functor

from 4.2 and 3.3. Thus,

so, e. g., PR (I) (i) = I (i) and if s : i- j , then PR (i)(s) = I (s) / I (j) ,
etc.

4.4. THEOREM. There is an isomorphism

P ROO F . In order to carry out the proof we must make PR (I) functorial in

I in a way that carries some information about limits. We first describe the

appropriate categories.

i) Let (Cat=Ao ) denote the category whose objects are functors

I: I - A0, where I is a small category, and whose morphisms are pairs

( M, m ): I - I ’ , where M : I’ - I is a functor and m : I M - I is a natural

transformation ; i. e., 

in the notation of [10]. The name functor N : A0 - ( Cat = A0) takes an

obj ect A! Ao to its name A : 1-+ Ao and a morphism f : A - B to the map

( id, f ): A-B. The category 40 is complete iff N has a right adjoint,
l im . ( Cat.= A0) is the underlying category of a 2-c ategory ( Cat.=A) , in

which a 2-cell is a pair
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where n : M - M’ is natural and X: m- m’ . I n is a modification. Limits in

A are Cat-enriched iff lim is a Cat-enriched right adjoint to N , where N

is extended to 2-c ells by the rule N (o ) = (1,o).

ii) Similarly, let (2-Cat=l A)0 denote the category whose objects
are 2-functors I: I- A where I is a small 2-category and whose morphisms
are pairs ( M , m ): 1 , I’ where M : I’ -I is a 2-functor and m : IM - I’ is

a lax natural transformation. There is a 2-category (2-Cat=A) in which

a 2-cell is a pair ( n, A) exactly as above except that n is a Cat-enriched

natural transformation. As above, there is a name 2-functor

and A has all (small) lax limits iff N’ has a right adjoint llim . In [10],

page 1.89, a larger enrichment is considered in which n is only required
to be lax natural. It is proved there (in dual form ) that llim (there called

Cart q-lim ) is the enriched right adjoint to N’ .

Let

be the inclusion and extend the definition of PR to give a functor

as follows : on objects I: I - A , we take PR (I): Prol I, Ao as before. If

(M, m ) : I - I’ is a morphism, then by the naturality of OA o ( - ) and RI,
PR(IM) = PR (I) o ProlM so we may take

Since Prol and PR are functors, the extension of PR is also a functor.

We have now that N d lim and N’ -l llim . Since J N = N’ , if we also had

J d PR , then the result would follow. Unfortunately PR is not right ad-

joint to J , but it is close enough as the following lemma indicates.

4.5. LEMMA. There is a natural trans formation

between Cat-valued functors, which is an isomorphism when 1 lies in the
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image of N .

Using the lemma, one completes the proof of 4.4 by the usual se-

quence of isomorphisms.

where the third isomorphism comes from the lemma.

PROOF OF THE LEMMA. Using the functors PI from 3.4, we construct

a candidate for an adjunction morphism (P, À): ld - PRo J. If I is a cat-

egory, and I: I -A0, then (PI, BI): I - PR(J (I)) is the morphism in

( Cat= A ) in which BI: I o PI - PR (J(I)) is the natural transformation

with components (_I)i = idI (i) and if s : i -j in I , then (Bl)s = BI (s)
(Cf. 2.3 (4).) Since PR ( J (I)) is left exact, there is a uniquely determin-

ed value for (BI)s,t&#x3E; making Xi natural. It follows easily from the unique-
ness in the definition of ÀI (8) and Oo o that A is natural in I . The nat-

ural transformation A is then given by composition with (PI, BI); i. e.,

and AI,I,(n,d)= (n ,0) where

is equal to n PI.: M PI’- M’PI’ , using the naturality of PI , and

has components given by

The commutativity conditions satisfied by d imply those for 8 . Clearly,

AI,I’ is a functor.

In general there is no inverse to A , but if I is in the image of N,

i.e., I = X: 1- A, then A is a bijection since any map (R, r): X- PR(I’)
is uniquely of the form (R, r) =A (M, m) where M:I’-l is the unique
such functor and m: XM- I’ is the lax natural transformation (i.e., lax

cone from X to I’ ) with components = ri and ms = 0I’ (s) rs’
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4.6. COROLLARY. I f U is a 2-functor which preserves limits and cotensors

with 2, then U preserves lax limits.

5. EXTENSIONS AND SIMPLIFICATIONS.

5.1. L ess lax limits. There are numerous examples of « lax limits » which

are universal for lax cones in which some ( or all) of the 2-cells in the cone

are required to be either isomorphisms or identities. If all are isomorphisms
then the corresponding (c lax limit » is called a pseudo-limit and if all are

identities then we get an extension of the idea of an ordinary limit to what

we shall call an ordinary limit of a 2-functor.

Let Triplet denote the 2-category whose objects are triplets (!;!1’!2)
consisting of a 2-category I and two 2-subcategories h and 12 of 1, and

whose morphisms are 2-functors F: 1-+1’ such that F(li) C 1!. The 2-
cells are lax natural transformations m : F h G such that if s : i - j is a

1-cell in I i then ms is a 2-cell in Ii , for i = 1, 2 . There is an imbedding
Tr : 2-Cat - Triplet taking a 2-category A to the triplet ( 4, iso A, id A ) ,
where iso A ( resp., id4) is the 2-subcategory of all isomorphic (resp.,

identity) 2-cells in A . A lax natural transformation

where 11 and 12 have no non-identity 2-cells, is an ordinary lax natural

transformation whose restriction to 11 is pseudo-natural and whose restric-

tion to I2 is natural.

As in the absolute case, let ( Triplet-1 Tr A ) denote the 2-cat-

egory whose objects are triplet functors I : ( I ; I1 , I2 ) - Tr A and whose

morphisms are pairs (M,m): I - I’ where M: (I’;I’1, I’2)- (l;h, j2) is a

triplet functor and m : IM - I’ is a triplet lax natural transformation. 2-

cells are pairs (n,B):(M,m)= where n : M =M’ is a Cat-en-

riched triplet natural transformation and B : m - m’ , In is a modification.

As before there is a name 2-functor N’: A - (Triplet=l Tr A ) taking A E A
to A : ( 1; 1, 1) - Tr A . The right adjoint to N’, if it exists, is still denoted

by llim , its value on I being written llim(I ;I r )1 and called a relative2 
lax limit of 1.
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5.1.1. THEOREM. There is a functor PR : (Triplet=lA) - (Cat=A) such

that

PROOF. The category Prol (I ;I1, I2) is constructed from Prol I by ad-

joining a span (i--- s-j) and a map of spans from this to (i- s j)
for each 1-cell s in I1 , and an arrow tx: I - t whose composition with

the (unique) map t -i is the identity on I for each I-cell t in 12 . All
other compositions are free.

Given I: (I ; I1 , I2 ) - Tr A , then PR (I): Prol (I ;I1, I2) -A0 will
be the functor whose restriction to Proll is as before and whose value on

tB for a 1-cell t in 12 is ÀI (t). (See 2.3 (4 ). ) To describe the values of

PR (I) on the spans added to Prol (I) for the 1-c ells in l i , let E denote

the category with two objects 0 , 1 and two maps

m: 1 - 0, n: 0 -1 such that m n = nm = id.

Define f/i B analogously to the definition of f/ B = llim2 f in 2.3 (2) with

2 replaced by E . This determines a span A- fli B -B and a 2-cell

of as in 2.3 (3) which is the universal pseudo-cone over f . In particular
there is a unique map

For each 1-cell s in 11, let PR (I)(s) = I (s)/iI (j) and PR(I) takes

the map of spans from 9 to s to the map y 1(8). These constructions det-

ermine a pullback preserving functor PR(I) as before. With obvious modi-

fications, the proof of 4.4 proceeds as before.

5.1-2. COROLLARY. I f A is a complete 2-category then A has relative lax
limits. In particular, it has pseudo-limits and ordinary limits of 2-functors.

5.2. Laxer limits. It can happen that a 2-category is not finitely complete
but does admit weaker notions of limits (an example is the category of

Grothendieck topoi) corresponding to more general kinds of adjoints to

constant embeddings. In the terminology of [10], page 168, these are strict,
i-weak, i-quasi-adjunctions. Following Grothendieck [7] and Cole [5], this
notion will be denoted by a capital letter. A Limit looks like a pseudo-limit
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as in 5.1 except that the universal mapping property is only satisfied up

to isomorphic 2-cells. Explicitely , let Funp (I, A) be the 2-subcategory of
Fun (I , A) consisting of pseudo-natural transformations (all 2-cells are iso-

morphisms ) and let A: A- Funp ( I, A) be the constant imbedding. By Pro-
position I, 7.8.2 of [10], a strict, i-weak, i-quasi-right adjoint to A , called

LimI: Funp (I , A ) - A , is determined by giving for each I: I - A a pseudo-
natural transformation EI:ALimII-I which is Terminal in the 2-comma

category [A, I] ; i. e., if h : A X - I is any pseudo-natural transformation

then there is a map h’: A X - L imII and an isomorphic modification

such that, given any other

r: X - LimII and p;h-EI(Ar),
then there is a unique isomorphism

o;h’=&#x3E;r such that EI (Ao) . n= p .
This same description can be used even if I is only a lax functor. How-

ever such a lax functor can always be replaced by a strict 2-functor7: 7 , A

using the construction in I, 4.23 of [10] since one easily demonstrates the

following result.

5.2.1. PROPOSITION. I f A has small Limits and if I: I - A is a lax func-
to r, th en LimI I= L im=I .

Limits of arbitrary 2-functors will not be required in the following
but only Limits of 2-functors I: I - A such that for every 2-cell o- in I,

I(g) is invertible in A . Call such 2-functors special . It is immediate from

the construction of I that if I is a special pseudo-functor, then I is a spe-

cial 2-functor.

What we are interested in here is the corresponding weakened no-
tion of lax limit, to be denoted by L lim ; i. e., a strict, i-weak, i-quasi-
right adjoint to A : A , Fun ( I , A ) . The difference is that EI and h are

lax natural transformations, but 77 and o- are still isomorphisms.

The other necessary ingredient is the existence of Cotensors ; i. e.,

the representable functors .1 (-, B ): Aop - Cat should have strict, i-weak,
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i-quasi-left adjoints denoted by - 4i B : Cat - A°P . In general, these pseudo-
functors need only be defined for finite categories ; in fact, as before, it

suffices that 2 A- be defined, provided A has Pullbacks. This reduces

to the following elementary condition (by applying I, 7.8.1 of [10]) : for
each B there is a functor nB : 2 - A (2 B, B ) , such that, for any

h : 2 - A (A, B ) there is an h’: A - 2 AB and a modification

Bh : A (h’, B )nB = h

which is unique in the sense that given any other

g : A - 2 ih B and y: A(g, B)nB = h,
then there is a unique isomorphic 2-cell

t : g =-&#x3E; h’ such th at y = Bh . A (t , B) .
An analogous condition holds for 2-cells.

5.2.2. THEOREM. If A has Cotensors with 2 and Limits of special 2-func-
tors, then A has Lax Limits and LlimII= LimProlIPR(I).
PROOF. Proll is the same category as in Section 3 and PR(I) is compo-
sition with a modified functor OA: A- ’PSpans (A) ( cf., 4.1) constructed

as before except 21fiB and pullbacks are replaced by 2 diB and Pull-

backs. The resulting operation PR (I) is only a pseudo-functor since the

diagrams that used to commute, by the pullback and cotensor properties,
now all have specified isomorphisms in them. However, the proof of 4.4

goes through as before by replacing the sequence of isomorphisms at the

end of the proof by a corresponding sequence of equivalences. This com-

bined with 5.2.1 gives the result.

These notions can also be combined with those in 5.1 leading to

an isomorphism :

Llim (I; I1; I2)I= LimProl(I; I1, I2) PR (I).
5.3. Simplifications. In calculating llimll from llimProl IPR(I) one may

of course restrict attention to any initial subcategory of Proll . In particular

PR(I) is pullback preserving so objects of the form  s , t&#x3E; are taken to
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pullbacks and hence can frequently be eliminated.

i) Objects of the form  s , t&#x3E; where at least one entry corresponds
to an identity morphism can be eliminated.

ii) Call s s’ = t t’ a trivial equation for s s’ if either

a) one of t or t’ is an identity,
or b) t t’ arises from s s’ by rebracketing using the associative law.

If s s’ satisfies only trivial equations and there are no non-identity 2-cells

with domain or codomain s s’ , then  s , s’&#x3E; can be eliminated.

iii) A presentation of I in terms of Street’s computads [16] can be

used to simplify Prol 1.

6. EXAMPLES.

We recall here a number of standard examples and then show in more

detail how algebras for a monad fit this scheme. Finally we discuss lax ends

and indexed limits.

6.1. Comma objects. Let 1 be the category with three objects 0, 1, 2 and
two non-identity morphisms d i : i - 0 , i = 1, 2 . Let l i = 0 and 12 = 1 d21
If I : I - A is given by I ( d i) = fi : A i - B , then

is the comma object of f1 and f2 . Using 5.3, one sees that it is the pull-
back of the diagram

Also Lim (I;O,I2) ;1 is called a Pullback and Llim (I ;O, I2 ;1 is a Comma
object.

6.2. Inserters, Identi fiers and Inverters. These names were suggested by
R. Street for the following notions.

i) Let 1 be the category with two objects, 0 and 1 , and two non-

identity morphisms s 1 and s2 from 0 to 1 . Let I1 = 0 and I2 = 1 S2 1 - If

I : I- A is given by I ( s i ) = f i : A - B , then
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is the universal solution to the problem of giving a map g : X - A together

with a 2-cell u: f1g= f2 g ; i. e., of inserting a 2-cell from f1 to f2 . By
5.3, it is the equalizer of 

ii) Let I = 2 2&#x3E; be represented as the 2-cell O: sl =&#x3E; s2 : 0-7, let

l i = p and 12 = l. If I : I - A is given by I (O ) = a : f1 &#x3E; f2 : A - B ,

is the universal solution to the problem of giving a map g : X - A such that

a g = id ; i. e., of making a an identity 2-cell. By 5.3, it is the equalizer

of the two maps A f 1 and (al B )À/2 from A to f1 / B .

iii) Let 1 : 2 2&#x3E; - 4 be as in ii and let Ii = I s i } f or i = 1, 2.

is the universal solution to the problem of giving a map g : .Y - A with a g

invertible ; i. e., of inverting a . By 5.3, it is the equalizer of the two maps

y f 1 and (a/ B )Bf 2 0f 1 from fl/i B to fi / B . A coinverter is a localization.

6.3. Some different examples. i) Let I = 2 X 2 and let 1: 2x 2 - A have

as image the commutative square given by the diagram

Then llimI I is the pullback of the diagram

ii) Constant functors. Let A A: I- A denote the constant 2-functor

whose value is the object A of A . Since A( B, llimIA A) is isomorphic
to the category of lax cones from B to A A , it follows that

In particular, for a category I , the value is IQA . Thus the existence of
lax limits implies the existence of cotensors. Writing
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gives another proof that if A has limits and cotensors with 2 , then A has

all cotensors.

iii) Functors with codomain Cat . Lax limits and lax colimits of 2-

functors I- Cat are explicitely known (cf., [10], pages 201 and 219).

It is an amusing exercise to verify that these are the appropriate limits and

colimits of the associated functors ( which of course differ, since for co-

limits 2OA replaces 2QA) from Prol I to Cat .

6.4. Algebras for a monad. We shall analyze lax limits over the sequence
of 2-categories with one object * , N C N C A , where N is the semi-group
of natural numbers regarded as a locally discrete 2-category with one ob-

ject, N has N as underlying category and strictly monotone maps as 2-

cells, and A (the usual simplicial category) is the same as N except it

has all monotone maps as 2-cells. In all of these, 0 represents the iden-

tity 1-cell of * and 1 generates the 1-cells since n = In for all n . The

2-cells of k are generated (by horizontal composition with 1 ) by the sin-

gle 2-cell p : 0 =&#x3E; 7 and the 2-cells of A are generated by p and the 2- 

cell (7: 2 =&#x3E; 1 subject to the monad identities

Q. 1p =o. p 1 = id and o. o 1 = o. 1 o.

i) Algebras for an endomorphism. A functor I : N - A is completely
determined by the object A = 1(*) and the endomorphism t = I (1): A - A .

Similarly a lax cone v : X - I is determined by a single 1-cell x = v*: X - A
and a single 2-cell E= vl : t x =&#x3E; x since the equations for lax naturality

require that v2 = v 1 . tv 1 , etc. If A = Cat , then the universal solution to
this problem is called the category of t-dynamics (cf., [14] ). By 5.3, it

follows that Dyn (t) = llimN I is the equalizer of the two maps 0, and 1 t
from t/ A to A . We denote the equalizer map here by dt : Dyn (t) - t/ A.

ii) Algebras for an endomorphism with a unit. A 2-functor I: N - A is

determined by the preceding data together with a 2-cell I ( p ) = q j idA =&#x3E; t .

A lax cone is as above except that the equations for lax naturality require
that e. 17 x = idx . Some calculations and simplifications show that
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is the equalizer of the two maps (n/ A) dt and iA ltdt from Dyn (t) to

idA / A . Let et : A(t,n)- Dyn (t) be the equalizer.
iii) Algebras for a monad. A 2-functor 1: A - A is determined by the

preceding data together with a 2-cell 11 = l(g): t t - t satisfying the usual

monad equations. A lax cone satisfies one more equation, E. tE= E.ux.
Thus llim AI = A T is the object of Eilenberg-Moore algebras for the mon-

ad T = (t, n, u) on A . The presence of the 2-cell Q means that Prol A

does not simplify as far as before. However, by 5.3, it follows that A T is

the limit of the diagram

where a and b describe the pullback of Ot and 1 t . If f t : Dyn (t) - tl A X t/A
A

is the induced map, one can show that A T is the equalizer of the two maps

( f-l/ A ) d t e t and ct,t ft et .
. iv) Algebras for a distibutive law. Given monads (t, n ,u,) and (t’, n’, (1’)

on A a distibutive law is a 2-cell o: t t ’= t’t satisfying appropriate
identities (cf., Beck [1] ). This corresponds to a suitable 2-functor I : I - A_
such that llim II is the object A (o) of algebras for the distributive law. .

One can show that it can be calculated as the equalizer of two maps from

AT X AT’ to tt’/A.
A

6.5 . Lax ends. By analogy with the terminology of [10], these are called
cartesian ends in [4]. Let T : Iop X I - A be a 2-functor. Denoting the lax

end by l f , T ( i , i), we wish to show that

for a suitable 2-functor T : J- A . To construct 1, start with Prol_lo and
add 1-cells 0 and 2-cells 00, Ol as illustrated
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for each 2-cell 0: s = s’: i - j in I as well as 1-cells  O, Y&#x3E; and 2-cells

O,Y&#x3E;0, O,Y&#x3E;1 as illustrated

for each composable pair where y§ : t =&#x3E; t’: j - k , subject to the relations

Call this category J’ and let J = ( l’ )OP . Let T : J - A be the 2-functor

taking ( I ) to

In addition, 

T(as, t)=T (i, t), T(bs,t) =T(s,k), T(cs,t) = id, T(O,Y) =id,
T ( ci) = id and T ( O,Y&#x3E;0) = T ( i, Y), T ( O,Y&#x3E;1)=T(O,k).

Let J1 = O and J2 be the subcategory consisting of all 1-cells except the

0s ’s for s = id and the as ,i ’s for t = id . Then l fi T (i , i) is the relative

lax limit of T .

6.6. Indexed limits. Let J: I - Cat . In [16] Street constructs a 2-category
El J and a 2-functor P : El J - I t ogether with a 2-subcategory el J of ElJ

such that for any l: I - A , the indexed limit lim (J, I) is isomorphic to the

relative lax limit llim (ElJ;O, elJ )I P . Hence
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