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FIBRATIONS IN BICATEGORIES

by Ross STREET

Dedicated to the memory of Professor Charles Ehresmann 

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXI - 2 (1980)

INTRODUCTION.

Consider a monoidal category 0 which, for simplicity, we shall

suppose is symmetric, closed, small complete and small cocomplete. For

0-categories A, B, a U-module from B to A amounts to a C-functor
Aop OB-V (these have also been called bimodules, profunctors and

distributors in the literature). In the first instance it seems that in order

to speak of C-modules one needs the extra operations ( )°P and O on

the 2-category o-eat of small 0-categories, and also the 0-category 0
itself which lives outside of V-Cat.

It is shown here that this first impression is false and that 0-mo-

dules are accessible purely from the bicategory V-Cat and certain limits

and colimits (in the sense appropriate to bicategories) therein. Further-

more, it is shown that composition (or tensor product) of V-modules is

also accessible and behaves well due to a certain commuting property
between these limits and colimits.

More precisely, given a bicategory K satisfying certain finitary

completeness conditions, it is possible (purely from these limits and co-

limits) to construct a bicategory B such that, when 1( is V-Cat, B is

essentially the bicategory V-Mod of 0-modules.

In Street [12 , 13], a construction on a 2-category K was given
which generalized the construction of Set-modules from the 2-category
dal . This involved defining the notion of two-sided fibrations in a 2-cat-

egory. Perhaps surprisingly the same basic idea leads to a solution of

the present problem : two variants are needed, one minor and one radical.

The minor variant is forced by the replacement of « 2-category» by
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« bicategory» ( although a solution to the corresponding problem for 2-cat-

egories can be obtained from our work too). Functors which are equival-
ences of categories are not necessarily fibrations or opfibrations in the

sense of Gray [4]. Isomorphisms of categories are both. This indicates

that the notion of fibration (or fibred category) presently in use is a 2-

categorical and not a bicategorical notion. In Section 3 we introduce the

notion of two-sided fibration relevant to a bicategorical approach to cat-

egory theory; that is, we define what it means for a span in a bicategory
to be a fibration (this is quite different from the question of fibrations

between bicategories which is not relevant here ).

In recent years it has become even more obvious that, although
the fundamental constructions of set theory are categorical, the funda-

mental constructions of category theory are bicategorical. Since the paper
B6nabou [1] in which bicategories were introduced, little has been pu-

blished on them explicitly. Much more has been written on 2-categories
and there has been an attempt to introduce as few « pseudo-concepts » ( ter-

minology of Kelly-Street [6] ) as necessary to convey the ideas of a giv-
en situation. Thus we have found it necessary to show systematically

(Section 1) how the ideas of 2-category theory must be modified for bi-

categories. Little use is made here of general morphisms of bicategories

( lax functors ). It has been shown in Street [14] that lax limits can be

calculated as indexed limits ; we avoid lax limits for bicategories by con-

s idering what are called here indexed bi-limits. These are the limits per-
tinent to bicategories.

Doctrines on bicategories are dealt with in the second section.

Problems of coherence are avoided by taking a global approach : a doc-

trine M on a bicategory K is a homomorphism of bicategories from the

simplicial category A to the endo-bicategory K which preserves the mo-

noid structures. After all, the simplicial diagrams that a monad ( = stan-

dard construction) provided were the most important consideration in the

work in which they were introduced (Godement [3] ). Doctrines on bicat-

egories generalize monads on categories. The doctrines which appropriate-

ly generalize idempotent monads are here called KZ-doctrines (see Kock
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[7] and Zöberlein [17] ). The theory of KZ-doctrines is simplified by the

observation (which becomes our global definition) that a doctrine M is

such precisely when it extends from the category A to the 2-category

of finite ordinals.

The condition that a span should be a fibration is that it should

bear a structure of algebra for an appropriate KZ-doctrine on the bicate-

gory of spans with the same source and target. The KZ-doctrine is defined

in terms of finite indexed limits (and so is first-order), With minor chan-

ges the work of Street [14] carries over to bicategories.
Recall that profunctors can be regarded as spans in Cat, and they

are composed by first composing the spans using pullback and then form-

ing a coequalizer. Fibrations in a bicategory are composed by first form-

ing a bipullback and then a bicoequinverter. The details of this composi-
tion are made explicit in Section 4. The composition works best in a fi-
brational bicategory.

Section 5 gives the interpretation of fibrations in Cat and the

proof that eat is a fibrational bicategory.
The radical variant referred to in the fourth paragraph of this in-

troduction is met in Section 6 : instead of looking at fibrations in V-Cat,
we should look at fibrations in (V-Cat)op ; that is, at cofibrations in
V-Cat. The U-modules turn out to amount to the bicodiscrete cofibrations

in V-Cat . The (not necessarily bicodiscrete) cofibrations are also iden-

tified (they amount to what we call C-gamuts : certain diagrams in C-Yff4ad)
and this is used to show that (V-Cat)op is a fibrational bicategory. This
means that cofibrations can be composed and that the composition amounts

precisely to the usual composition of L-modules.

The solution to our problem is then to take ROP to be a fibrational

bicategory and to take 93 to be the bicategory with the same objects as

R and the bidiscrete fibrations in ROP as arrows.

Two solutions to the problem have thus appeared for the case

where V is Set so that V-Cat is (2cA - The contradiction between these

two solutions is resolved by the observation that Cat possesses a very

special exactness property: every (bi)codiscrete cofibration in eat is
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a (bi)cocomma object . This is why Set-modules can be captured by either

starting with spans or starting with cospans in Cat.

This work also clenches the case for working with two-sided fi-

brations. For the example where C is Set this is not so obviously im-

portant. After all a fibration from B to A in eat corresponds ( somewhat

unnaturally) to a fibration over A X B°P and the former is ( bi )discrete iff

the latter is. Cn the other hand, the one-sided cofibrations A - S under

A in (2at, which were considered in Gray [4], do not subsume the two-
sided cofibrations in a similar way at all. A one-sided cofibration under

A in Gray’s sense is essentially a cofibration from the empty category
0 to A in our sense; this amounts to a Set-module with target A . Such

a cofibration is bicodiscrete iff the corresponding Set-module is the unique
one 0 - A . So there is essentially only one bicodiscrete cofibration under

A . This means there is no hope of capturing two-sided bicodiscrete co-

f ibrations from their one-sided counterparts.

Note that we agree with Gray [4] that the fibrations in Catop

should be called cofibrations in analogy with topology. Beware, however

that the term «cofibration » is also used in the literature (after Grothen-

dieck) for fibration in Catco. The two-sided approach avoids the need

for a special terminology for the latter concept : if

is a fibration from B to A then p : E - A is a fibration from 1 to A and

q : E - B is a fibration from B to 1 ; in Grothendieck’s terminology, p

is a « f ibration » and q is a «cofibration ».

The C-module aspect of this work was presented during February-

April 1977 in colloquia at the Universities of Chicago, Illinois (Urbana),
and Montr6al, and at Tulane University (New Orleans ). The bicategorical

aspect has been available in preprint form since February 1978.

Partial support was provided by a grant from the National Science

Foundation of the United-States ( 1976 - 77 ) which enabled the author to

spend his study leave at Wesleyan University (Middletown, Connecticut).
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1. BICATEGORIES.

(1.1) Most of our terminology will be that of the introductory paper of

B6nabou [1]. Suppose T, S: a- K are morphisms of bicategories as

described in [1] Section 4. A transformation a : T - S consists of the

data displayed in the diagrams

in R as f: A - B runs over the arrows in (t , satisfying coherence con-
ditions. A modification s : a =&#x3E; B between transformations a , B: T - S is

a family of 2-cells

With the obvious compositions we obtain a bicategory Bicat (A,K) of

morphisms, transformations and modifications. Morphisms of bicategories
can be composed (Bénabou [1] Section 4.3), and we write Bicat for the

category of bicategories and morphisms.

(1.2 ) Categories will be regarded as special 2-categories with only iden-

tity 2-cells ; 2-categories will be regarded as special bicategories in which

composition of arrows is strictly associative and the identity arrows are

identities. If K is a 2-category, then so is Bicat (A,K).

( 1.3 ) For bicategories (f, K , our main interest will be in homomorphisms
T: d - K ; these preserve composition of arrows and identity arrows up
to natural coherent invertible 2-cells. A transformation a : T - S of homo-

morphisms is called strong when the 2-cells a f are invertible for all ar-

rows f in S . Write Hom (A,K) for the bicategory of homomorphisms,

strong transformations and modifications. Vfrite Jfam for the category of

bicategories and homomorphisms.

( 1.4 ) Recall the construction of the classifying category C Ct of a bi-

category f ( Benabou [1] Section 7.2, page 56 ). The objects of CQ are
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the objects of Q and the arrows of C a are isomorphism classes of ar-

rows of Q . In fact, we have a functor C : Hom.- eat.

( 1.5 ) Adjunction in a 2-category has been discussed for example in Kelly-
Street [6] Section 2. The adjustments necessary for a bicategory in order

to allow for associativity of composition of arrows only up to isomor-

phism are minor (see Gray [5] page 137) and will not be made explicit
here. An arrow u: A - B in a bicategory Ct is said to be an equivalence
when there exists an arrow f: B - A and invertible 2-cells 1 B =&#x3E; u f and

f u =&#x3E; IA . The invertible 2-cells may be chosen so as to obtain an adjunc-
tion f -l u in li ; so f is unique up to an invertible 2-cell. When there

exists an equivalence from A to B we say that A and B are equivalent
and write A = B .

(1.6) Homomorphisms of bicategories preserve adjunctions and equi-
valences.

(1.7 ) An object A of a bicategory K is called groupoidal when each
2-cell

is an isomorphism. Call A posetal when for each pair of arrows u , v : X -A

ther is at most one 2-cell u =&#x3E; v . Call A bidiscrete when it is both

groupoidal and posetal. The groupoidal objects of K form a full sub-bi-

category of K denoted by GR . Note that G K is a local groupoid. The

bidiscrete objects of K form a full sub-bicategory of K whose classify-

ing category (1 .4) is denoted by D K - For example the groupoidal objects
of eat are the groupoids and G eat is the 2-category of groupoids ; the

bidiscrete objects of eai are those categories which are equivalent to

discrete categories, and D Cat is equivalent to the category $z51 of sets.

(1.8) A category is called trivial when it is equivalent to the category
1 with one object 0 and one arrow 10 . An object K of a bicategory is

called biterminal when, for each object A of the category A (A , K)
is trivial. Biterminal objects are unique up to equivalence. A biinitial ob-
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ject of A is a biterminal object of (fop (we write (to P, aco, (tcoop for

the duals at, (f c , (fs of Benabou [1] page 26 in accord with the notion

of Kelly-Street [6] page 82 for 2-categories ).

(1.9) Yoneda Lemma for bicategories. For a homomorphism T :A - eat of
bicategoiies, evaluation at the identity for each object X of Ct provides
the components

o f an equivalence in Hom. (A, Ct) -

(1.10) Grothendieck construction. For two bicategories A , B and a homo-

morphism R :Aop X B -Cat, we shall describe a bicategory ElR ( or,

more correctly, El (A,R,B ). The obiects ( A, r, B ) consist of objects

A, B, r of (1, :13, li (A, B ) , respectively. The arrows

consist of arrows

of N, S, R(A, B’) , respectively. The 2-cells :

consist of 2-cells a : a = c, (3: b= d of S, S such that

Composition of arrows is given by

where r is the composite

in R ( A. , B"). The other compositions are the obvious ones. First and
last projection give strict homomorphisms P : ElR-A , Q : ElR-B. If

A, B are 2-categories, so is ElR , and P, Q are 2-functors. "Write El0R
for ElR when d = 1 , and write El1R for ElR when B = 1 . An arrow
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( a, p , b) of EliR is called i-cartesian ( i = 0 , 1 ) when p is invertible .

Write Elci R for the locally full sub-bicategory of EliR consisting of all

the objects and the L-cartesian arrows.

( 1 .11 ) A birepresentation for a homomorphism T : A - Cat of bicategories
is an object K of a together with an equivalence

Using (1.9), we see that a birepresentation of T precisely amounts to an

object K of d and an object k of T K such that:

- for each object A of A and obiect a of T A , there exist an arrow

u : K - A in Of and an isomorphism ( T u)k= a in T A ; and
- for arrows u , v : K - A in d and a : ( T u) k - ( T v)k in T A ,

there exists a unique 2-cell o:u=&#x3E; v in A such that ( To) k = a .

This implies that (K, k) is a biinitial object of Elc0 T . It follows

that birepresentations for T are unique up to equivalence in 0 T. Call
T birepresentable when it admits a birepresentation.

( 1 .12 ) Suppose f is a small bicategory and J : A- C-1, S : A - k are

homomorphisms. A J-indexed bilimit for S is a birepresentation (K, k)
for the homomorphism

A particular choice of K is denoted by i /? Sj } and is characterized up to

equivalence by an equivalence

which is a strong transformation in X .

( 1 .14) When K is a 2-category, both sides of (1.13) are 2-functorial in

X and it sometimes happens that {J, S! } can be chosen so that the equi-

valence is in fact a 2-natural isomorphism ; in this case, we will write

psdlim (J,S) instead of ! { J ,S} and call it a J-indexed pseudo-limit for
S . Of course, if K= psdlim (J, S), then K is a 7-indexed bilimit for S.

(1.15 ) PROPOSITION. For any small bicategory Q and homomorphisms
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J, S:A- eat, a J-indexed pseudo-limit for S exists and is given by:

(1.16) There is another type of limit for bicategories which may appear
to give some new constructions but in fact does not. For morphisms of

bicategories J : d - Cat, S: A - K (1 .1), it is natural to ask for an ob-

ject L of R satisfying an equivalence

Such an object can in fact be obtained as an indexed bilimit ; this will

not be needed here so we shall not give the details except to note that

bicategorical versions of Street [14] Section 4 and Gray [5] pages 92-

94 are relevant.

(1.18) There are important 2-categories ( for example, Ham (éî, Cat) and

topoi over a base topos ) which admit certain indexed bilimits which are

not indexed limits or even indexed pseudo-limits. Therefore, in the ab-

sence of a coherence theorem allowing the replacement of a bicategory
and its indexed bilimits by an equivalent 2-category and its indexed limits

w e are forced (even for 2-categories ) into the more involved (yet more

natural ) context. Fortunately, the theory of Street [14] is altered only

slightly by the need to insert isomorphisms in diagrams which previous-

ly commuted.

(1.19) A homomorphism F : K - 1i5 is said to preserve the 1-indexed bi-

limit (K, k) for S : d - K when FK together with the composite

form a .T-indexed bilimit for FS . By abuse of language we express this

as an equivalence F {J , S}= I J, F S I An indexed bilim it is called ab-

solute when it is preserved by all homomorphisms.

(1.20) Combining (1.13), (1.11) , (1.15), we obtain :

PROPOSITION. Birepresentable homomorphisms from a bicategory (t into

Cat preserve whatever indexed bilimits that exist in (t.
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(1.21) The analogue of the representability Theorem (Mac Lane [10] page
118; Schubert [11] page 88) w ill not be needed and is left to the reader.

(1.22) For a category C and an object A of a bicategory K regarded as

homomorphisms 1 - eat, 1 - K , we call C, A} when it exists, a co-

tensor biproduct of C and A ; then there is an equivalence

(1.23) When J: li - eat is constant at the category 1 , a J-indexed bi-

limit is just called a bilimit and we write bilim S in place of t/? S}. In

particular, if A is a set and S a family of objects of a bicategory K the

bilim it of S is called the biproduct o f S and denoted by m S A ( the sym-
A

bol III is to be read ((bi-pi,)). The notions of biequaliz er, bipullback, bi-

kemel pair, ... are now self-explanatory. (Some authors use «limit» for

«bilimit», and some use «2-limit » in the case of 2-categories.)

(1.24) V’e can construct the indexed bilimit I J, S! } as the biequalizer of

a pair of arrows

provided the biequalizer, cotensor biproducts, and biproducts involved

exist.

( 1.25) In a 2-category, indexed pseudo-limits (and hence indexed bili-

mits) can be constructed from cotensor products, products and equalizers.

For, pseudo-equalizers can be constructed from cotensor products and

pullbacks ; so, if we replace the biproducts and cotensor biproducts in

(1.24) by products and cotensor products and then take the pseudo-equal-

izer, we obtain p sdlim (1, S).-

(1.26) For homomorphisms J :Aop - Cat, S: A -K , we write J*S for

I ,l , Sop} and call it the J-indexed bicolimit of S in K.

( 1.27) A bicategory K will be called finitely bicategorically complete
(«finitely bicomplete» would be misleading! ) when it admits cotensor

biproducts with the ordinal 2 , biequalizers, biproducts of pairs of ob-
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j ects, and a biterminal object 1 . There is a notion of finitary homomor-

phism J : (i - Cat which satisfies the appropriate version of Street [14]

Theorem 9, page 163. For example, with such finite bicat. completeness,

any monad (A, t) admits an Eilenberg-Moore object Aft satisfying the

equivalence

(1.29) For a finitely bicat. complete bicategory K, cotensor biproduct
provides a homomorphism of bicategories {,}: Catop fp X K- K, where

P is the full sub-2-category of Cat consisting of the finitely present-
ed categories ( i. e. coequalizers of pairs of functors between free cat-

egories on finite graphs). For C E Cat fp,  A E K , the homomorphisms

preserve finitary indexed bilimits (1.19).

(1.30) A left bilifting of an object X of 2 through a homomorphism
T : K - L of bicategories is a birepresentation of V (X, T=):K- Cat
( 1 .11 ) ; that is, an object S X of K and an equivalence

If each object of L has a left bilifting through T the axiom of choice

allows us to extend the function X l- SX to a homomorphism S:L- K

such that (1.31) becomes a strong transformation in X . This S is unique

up to equivalence in Hom (L, K). When such a homomorphism S exists
we say that T has a left biadjoint and w rite S -l T .

b

( 1.32) A homomorphism with a left biadjoint preserves indexed bilimits.

( 1.33 ) A homomorphism T : K - L of bicategories is said to be a biequi-
valence when :

- for each object X of there exists an object A of K such that

T A = X (1.5); and
- for each pair A, B of objects of K, the functor
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is an equivalence of categories.

Clearly a biequivalence T has a left biadjoint S which is also a biequi-
valence. So biequivalence is an equivalence relation written : -K -L .

(1.34) For bicategories A, B, C, there are natural biequivalences :
Hom (AxB,C)-Hom (A, Hom (B,C)), Hom (1,A)-A.

(1.35) The biequivalences (1.34) show that Hom is a weak kind of car-

tesian closed category. There are canonical homomorphisms

1 -Hom (A ,A), Hom (B,C)- Hom (Hom (A,B), Hom (A,C)).

( 1 .36 ) There is a canonical natural isomorphism

R. ( A, Hom ( B, C)) = Hom ( ’J3, Hom ( (f , C)

in Jfam which is in fact the restriction of a strict isomorphism

Bicat (Aop, Bicat (B, C)op)op =Bicat (B. Bicat (Aop, Cop) op)

2. DOCTRINES.

(2.1) The simplicial category. The full sub-2-category ordf of eat con-

sisting of the finite ordinals is generated under composition by the co-

s implic ia 1 complex :

and the natural transformations am,:; dm+1’ im +1im ; the functors im
are distinct epimorphisms and the functors am are distinct monomor-

phisms. Furthermore, the complex ( 2.2 ) is generated by adjunction and

pushout in eat from the two unique functors
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F or, at each stage in ( 2 .2 ) we have the string of adjunctions

where the unit of d m -l t. and the counit of im -l dm +1 are identitie s ;

and for n &#x3E; I , the squares

(2.5)

are pushouts. The cosimplicial identities :

(2.6)

are consequences of these facts. The 2-category Ordf is locally partially

ordered, and there is a 2-functor

given by the ordinal sum which enriches Ordf with a structure of monoid

in the category of 2-categories and 2-functors. The simplicial category
A is the underlying category of (91 . .
(2.8) The pushouts ( 2.5 ) are also bipushouts in ed.

( 2.9 ) The arrow i0 : 2 -1 is an absolute bicoequalizer ( 1.19 ) of the pair

i0, 67 : 3 - 2 in the subcategory of A consisting of the objects 1 , 2 , 3

and the last-element-preserving arrows (and hence in A and Cal ).

(2.10) Doctrines on a bicategory K. The bicategory Hom (K,K) w ith

composition as multiplication and the category A with ordinal sum as

multiplication are monoids in ham . A doctrine on K is a homomorphism
of bicategories M : A -Hom (K,K) which preserves the monoid struc-

tures. If we put M, n, u equal to the respective images under M of 1 ,

d0 : 0- 1 , to : 2 - 1 , then it follows that the image of ( 2.2 ) under M is
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the diagram

in Hom (K,K). The identities ( 2.6 ) are converted in Hom (K,K) to in-

vertible 2-cells which are coherent ; for example, there are the invertible

2-cells r, l, a given by the composites :

a : u.

and all the other invertible 2-cells can be obtained from these three. In

fact, all the data for M are determ ined by M, TJ, f1, r, I , a.

(2.12) Let °4 uc denote the sub-2-category of Ordf consisting of the

non-empty finite ordinals and the last-element-preserving arrows. Let At 11 c

denote the underlying category of Ordsuc. As pointed out in Lawvere

[8] page 150, /1suc is the Filenberg-Moore category of algebras for the

successor-monad sue. on A described as follows. The category 0 is a

strict monoidal category with ordinal sum as tensor product. The data

(2.3) describe a monoid structure on the object 1 in this monoidal cat-

egory. Thus a monad suc on A is induced with underlying functor :

-+1 :A- A . Clearly Ljsuc is generated under composition by the diagram

(2.14) The monoids A , Hom(K, K) in Ham act on the left on the bicat-

egories A"’ , K, respectively, by ordinal sum and evaluation.
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(2.15) An algebra for a doctrine M on a bicategory K is a homomorphism
of bicategories A : Asuc -K such that the following square commutes.

Let A , a be the image of 1 ? to : 2 - 1 under A . Then commutativity of

the above square implies that the image of ( 2.13 ) under A is the diagram

in K. The identities ( 2.6 ) which do not involve a0 ’s are converted in
K to invertible 2-cells, which are coherent ; for example, there are the

2-cells

obtained from the equations

all the other such 2-cells can be obtained from these two and those for M .

G iven N4 , all the data for A are determined by A, a , l, a.

( 2.16 ) A morphism f : A - B o f algebras for M is a transformation of mor-

phisms of bicategories such that f += eval. ( M x f) . A 2-cell o: f - g

between such morphisms is a modification such that o+ - eval. (Mxcr).
A morphism f is determined by f - fl : A - B and a = flO:
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and a 2-cell a : f=&#x3E; g is determined by o = o1 : f= g.

( 2.17 ) Write KMl for the bicategory of algebras for M , morphisms between

these, and 2-cells between these.

(2.18) A strong morpltism of algebras for M is a strong transformation

f : A - B which is a morphism of algebras for M ; this amounts to saying
that a: B.M f =&#x3E; f.a is invertible.

( 2.19 ) Write KM for the bicategory of algebras for M , strong morphisms
and 2-cells. Alternatively, KM is the equalizer of the two homomorphisms

in the category Ram (see Bénabou [1] 7.4.1 , page 57 ).

( 2 .20 ) A doctrine M on K induces a doctrine M * on Hom (A,K ) , namely
the composite

The isomorphism (1.36)

induces an isomorphism

in Hom.

(2.22) Fvaluation at 1 provides a homomorphism U : KM- R . For each
X of K , the composite

provides a left bilifting (1.30) of X through U ; so we obtain a left bi-

adjoint F :K-KM for v .

(2.23) For each algebra A for M , (2.9) yields the absolute b lcoequalizer



127

 in K.

( 2.24) The functor 4- : Asuc - [Asuc, Asuc] corresponding under the car-

tesian-closed adjunction to ordinal sum induces a homomorphism

which restricts to a homomorphism

Thus we can regard each algebra A for M as an algebra for M* ( 2.20 )

on Hom (Asuc ,K) . Applying (2.23) to A regarded as an algebra for M *

we obtain an absolute bicoequalizer

in Hom (A)suc, K).

(2.27) A KZ-doctrine ( Kock [7], Zöberlein [15] ) on K is a doctrine M

on K for which there is a homomorphism of bicategories

such that the following square commutes ( 2.12 ).

Since all the 2-cells in Ordfsuc correspond under adjunction to equalities

and M must preserve adjunction ( 1.6 ), M is unique if it exists. The im-

age of ( 2.13 ) under M is just ( 2.11 ) with all the top arrows Mn TJ omitted.

Moreover, in this image diagram each arrow is a left adjoint for the one

below it ( if it has one ) (1.5), (2.4). In fact, it can be seen that M is a

KZ-doctrine iff J1 U n M with counit l :u.nM= lM.
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(2.28 ) Any algebra A for a KZ-doctrine M has a unique extension to a

homomorphism A : Ordfsuc- K . To see this, first note that evalX M pro-
vides the unique lifting of each « free» algebra F X (2.22). Then the bi-

coequalizer ( 2.26 ) can be used to define A on 2-cells giving an exten-

sion A which is unique since all the 2-cells in Ordfsuc correspond under

adjunction to identities.

( 2 .29 ) It follows from (2.28), (1.5), (2.15) that, for any algebra A for

a KZ-doctrine M, there is an adjunction a -l 71 A with counit I , and the

isomorphism a is uniquely determ ined.

( 2.30) The homomorphisni U : KlM- K given by evaluation at 1 is fully
faithful ( = local isomorphism ) when M is a KZ-doctrine. For algebras
A , B and an arrow f : A - B , the 2-cell a: B. M f = fa which corresponds
under the adjunction a-l nA, B-l nB to the isomorphism

enriches f with a structure of morphism f : A - B which is unique with

the property that Uf=f. Any 2-cell a: f =&#x3E; g will clearly respect such

a ’s and so be a 2-cell in Kp -

3. FIBRATIONS.

Throughout this section we shall work in a fixed finitely bicateg-

orically complete bicategory K (1.27).

(3.1) A span (u, S, v ) from B to A is a diagram

’U7hen u, v are understood, (u , S, v) is abbreviated to S . Identify A with

the span (1 A , A , 1 A) from A to A .

( 3.2 ) A homomorphism (O, f ,Y) : ( u, S, v) - ( u’, S’, v’) of spans is a di-

agram
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in which the 2-cells o ,y are invertible. When cp, t/I are understood

(o , f ,Y) is abbreviated to f . V/hen 96, Vi are identities, f is called a

strict homomorphism ( or an arrow o f spans ).

(3 .3) A 2-cell o : (O,f,Y)=(y,g,k) o f homomorphisms o f spans is a

2-cell o: f = g such that

(3.4) Let (Spn K) ( B , A) denote the bicategory of spans from B to A ,

homomorphisms, and 2-cells, with the obvious compositions. When K is

understood we write 6p.(B, A)

( 3.5) For each list of objects A0 , ... , An , we have a homomorphism of
bicategories

called composition whose value at Sn, ... , S1 is the bilimit of the diagram

denoted by Si o ... o S,, . Of course, it is understood that, when n = 0 ,

the span Ao from Ao to 40 is picked out by Cmp0, and, when n = I ,
Cmp1 is the identity homomorphism.

( 3 .6 ) Suppose n1,...,nk is a list of integers and put

mj=n1+... +nj for j = 0,...k.
For any list A0 , .... , 9 A.kof objects, there is an equivalence

and any diagram involving expanded instances of a and a-1 commutes
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up to a unique canonical invertible modification.

( 3.7 ) For a span ( u, S, v ) from B to A and arrows a : X , A, b : Y - B,

the composite span ( 3.5 )

from Y to X is denoted by S(a, b) and called the fibre of S over a, b .

The notion of «fibration» below arises from the question : for what S is

S ( a, h) functoria 1 in a, b ?

(3.8) For each object A , we write H A for the span (do, {2, Aid,) from
A to A , where

For arrows a : X - A, b : Y - A , the span H A ( a, b) ( as defined in (3.7)

with H A for S ) is called the bicomma object of a, b . The canonical

arrow H A ( a, b)-{2,A} corresponds to a 2-cell

and H A (a, b ) can also be characterized as appearing in the biuniversal

such diagram with a, b fixed.

( 3.9 ) In Sp-( A, A ) , there is an equivalence

which is unique up to a unique isomorphisms. Thus the functors to : 2 - 1 ,

d1 : 2- 3 induce homomorphisms of spans

for which there are unique canonical invertible 2-cells
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These data uniquely determine a homomorphism of bicategories

which preserves the monoidal structures ; in particular, the image of ( 2.3 )
under H A is (3.10).

(3.11) A more global description of H A is as follows. First observe that

A is isomorphic to the dual of the category of non-empty ordinals and

f irst-and-last-element-preserving functors (leave off the top and bottom

a ’s from ( 2.2 ) and what remains is the dual of ( 2.2 ) after renaming). So

we have a full monomorphism A - Aop given by

P efer now to (1.29) and consider the diagram

This induces a homomorphism of bicategories A -Spn (A, A) which is

equivalent to H A .

( 3.12 ) Composition of spans Cmp 2 ( 3.5 ) determines a homomorphism of

bicategorie s

and composition of this homomorphism with H A yields a doctrine L on

8p.n(B, A ) . Dually (replacing K by Kco ), we obtain a doctrine R on

Spn ( B, A) using H B . Composition of spans emp3 (3.5) determines a

homomorphism of bicategories

and composition of this homomorphism with
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yields a third doctrine M on Spn ( B , A) (which is the «composite» of

L , R in the sense of «distributive laws » whose theory we do not develop
here ).

(3.13) Write

for the bicategories of algebras for L , R , M , respectively, where in each

case the arrows are the strong morphisms (2.19). The objects of these

three bicategories are respectively called left fibrations, right fibrations,
fibrations, from B to A . For a given span E from B to A , a structure

E of ( left, right) fibration on E is called a ( le ft, right) cleavage for E.

( 3.14) The adjunctions i0-l d1-l L 1 between the two ordinals 2 , 3 give
rise to adjunctions

with unit for the first being r B , and counit for the second being l B .

From ( 2.27 ), (3.12), we obtain :

(3.15) R is a KZ-doctrine in Spn (B, A) . It follows from (2.29) that

a right cleavage for a span E from B to A is unique up to isomorphism,

if one exists at all.

(3.16) For each span (p, E, q ) from B to A , there is an arrow ( 3.8 )

4: H E , H B (q, 1B) which is unique up to isomorphism with the property
that X q= qX . In fact, q c an be regarded as an arrow in Spn (1,A) where
the necessary arrows into A are

(3.17) Chevalley criterion. There exists a right cleavage for the span

(p, E, q) from B to A iff the arrow q: H E - HB(q, 1B ) in Spn (1, A)

has a left adjoint with invertible unit.

P ROO F . Since {d0, 1}: 12, B}- B has a left adjoint {0 , 1} w ith in-

vertible unit, so does
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The counit of the latter adjunction is a 2-cell beween endo-arrows of

H B ( q , 1B). This 2-cell yields an arrow

If (C, 1, a) is a right cleavage for E then the composite

is a left adjoint for 4 with invertible unit. Conversely, if h -l q with
invertible unit then the composite

is a left adjoint for E o 77 B with invertible counit l ; this leads to a

right cleavage (C, l , a ) for E . n

(3.18) It follows from (3.14) that L is a «dual» KZ-doctrine on

6"( B, A). In particular, left cleavages lead to right adjoints to 77 A o E
with invertible units. So left cleavages are unique up to isomorphism.

(3 .19) The doctrine M (3.12) is a «composite» of the KZ-doctrine R

and the dual KZ-doctrine L , yet it is not in any sense a « KZ-doctrine »

itself. However, cleavages on a span are unique up to isomorphism as

can be deduced from the following :

(3.20) PROPOSITION. Suppose (C, l, a)is a cleavage for a span E
from B to A . Then:

( i ) composition with nAo 1 : E o H B - H A o E o H B yields a

right cleavage ((0’ 10 , a0) for E ;
(ii) composition with 1 o q B : H A o E , H A o E o H B yields a left

cleavage ((1,ll,a1) for E ;
(iii) there are canonical invertible 2-cells
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which, together with 10, ao, 11 , al uniquely determine l, a. 0

(3.21) Suppose f: E - E’ is a homomorphism of spans from A to B .

From (2.30) we see that right cleavages for E, E’ give rise to a unique
structure of morphism of R-algebras ( 2.16 ) on f ; when this morphism is

strong (2.18), we say that f is right cartesian . The arrows of Fir (B, A)
are precisely the right-cartesian homomorphisms. Dually, the arrows of

Fil (B, A) are called left-cartesian homomorphisms. Cleavages for E ,

E’ give rise, by (3.20), to right and left cleavages for E, E’ . The unique
structure of morphisms of R-, and L-algebras on f yield a unique morph-
ism of M-algebras on f . V’hen this morphism is strong we say that f is

cartesian ; this amounts precisely to saying that f is both left and right
cartesian. The arrows of Fik (B, A) are the cartesian homomorphisms.

(3.22) Suppose (p, E, q) is a right fibration from B to A . For each ar-

rom e : Y- E and 2-cell 13 : q e = b , an arrow Y - H B( q , 1B) is in-

duced (3.8) (it is unique up to isomorphism), and composition with a

left adjoint h of q ( 3.17 ) yields an arrow Y -HE. This arrow corres-

ponds to a 2-cell !;f3: e = B* (e) , called the direct image of e under f3
with the f ollow ing properties :

( i ) pCB: p e =&#x3E; p (3*( e) is an isomorphism ;

( ii ) there is an isomorphism y: b =-&#x3E; qB*(e) such that y .B=qCB
and, for all 2-cells

there exists a unique 2-cell

(iii) for all y: Y’- Y , the canonical 2-cell (By)*(e y)=&#x3E; B*(e)y
is invertible.

Notice that the notion of direct image contains the heart of the Chevalley
criterion (3.17); the left adjoint for 4 corresponds to the direct image of

do : HB ( q, IB)- E under B : q d0= dl (3 .8).

(3.23) Dually to (3.22), for a left fibration (p, E, q) we have the no-
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t ion of Lnvers e image f : a *( e)= e of an arrow e : X - E under a 2-

cell a : a=p e.

(3.24) PROPOSITION. For arrows a: X - A, b: Y , B, if E is a (left,

right) fibration from B to A then the fibre E(a, b) (3.7) is a (left,
right) fibration from Y to X .

PROOF. Consider the diagram which follows :

If E is a left fibration we can apply inverse image (3.23) to the part of

the diagram obtained by ignoring the dotted arrows. This yields a 2-cell

which corresponds to an arrow HXoE (a,b)-E. This, together with

the canonical arrow s

gives a left cleavage C: HX o E(a, b)-(a, b) for E(a, b). Dually,
if E is a right fibration we obtain a right cleavage for E (a, b ) . If E is

a fibration, it can be seen that the left and right cleavages so obtained

yield a cleavage (3.20) (iii). n

(3.25) For a left fibration E from B to A , we shall now describe a ho-

momorphism of bicategories
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For a: X , A , put E(-, B)a = E(a, B ) , the fibre of E over a, 1B . For

any 2-cell a : a = a’ , we obtain a left cartesian homomorphism denoted

by E (a , B ): E (a’, B ) - E (a, b ) as follows. Apply inverse image to the

diagram

to obtain a 2-cell whose source is an arrow E (a’, B)- E , which, together
with E (a’, B) - X , determ ines the required arrow E (a , B ) .

(3.26) Dually, a right fibration E from B to A determines a homomor-

phism of bicategories

(3.27) A fibration E from B to A determines a homomorphism of bicat-

egories

( as foreshadowed in (3.7)). By (3.24) we may take

F or a : I we take E ( a , (3 ): E ( a’, b)- E(a, b’) to be

isomorphic to the composite

( or the dual isomorphic composite ).

(3.28) The bicategories Spn (B,A), Fil (B,A), Fir (B,A), Fik (B,A)
are finitely bicat. complete (1.27). For a span (u, S, v) from B to A,

the cotensor biproduct {2, (u , S, v)} in Spn (B, A) , denoted by {2, S}AB,
is the bilim it in K of the diagram
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The biterminal object of 8"(B, A) is (pr1 , A III B, pr2) (1.23). The

biproduct SIIIB T of spans S, T from B to A is the bilimit in K of

the diagram 

The biequalizer of two homomorphisms f, g: S - T of spans from B to

A is just the biequalizer of f, g in K made into a span in the obvious

way. Any bicategory of algebras and strong morphisms for a doctrine on

a finitely bicat. complete bicategory is finitely bicat. complete and the

underlying homomorphism preserves the indexed bilimits.

(3.29) A (left, right) fibration E from B to A is called groupoidal, po-
setal or bidiscrete according as the underlying span has the property in

the bicategory 8p.(B, A ) (1.7). Clearly (as is more generally true for

bicategories of algebras of a doctrine) this amounts to saying E has the

property in the appropriate bicategory Fil (B,A), Fir (B, A), Fik ( B, A).
Vle have locally groupoidal bicategories

and categories

in the notation of ( 1.7).

(3.32) PROPOSITION. Any homomorphism of spans (3.2) from a (le ft,
right) fibration to a groupoidal (left, right) fibration is automatically

(left, right) cartesian ( 3.20 ).

P ROOF. If f: E - E’ is a homomorphism between right fibrations, then

the unique structure of morphism of R-algebras on f (3.21) is a 2-cell

between homomorphisms of spans from E o H B to E’ . So, if E’ is group-

oidal, this 2-cell is an isomorphism and hence f is right cartesian. Left
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cartesian follows dually and cartesian conjunctively. 0

(3.33) COROLLARY. The forgetful homomorphisms from the bicategories
(3.30) and the categories (3.31) to 8p-(B, A) are fully faithful (that is,
local isomorphisms.

( 3.34) Let Iso denote the category with two distinct objects and an iso-

morphism between them ; and let Ppr be the category with two distinct

objects, two arrows between them in one direction and no arrows in the

other direction (the only other arrows being identities ). The functors

(the latter two being bijective on objects) induce arrows

for each object A of K. The object A is respectively groupoidal, po-
s etal, bidiscrete (1.7) iff the first, second, third of these arrows is an

equivalence (1.5). This shows the bilimit-nature of these conditions and

applied in the bicategories of spans yields the next two statements .

(3.35) The bicategories (3.30) are finitely bicat. complete and the cat-

egories (3.31) are finitely complete; the bilimits and limits are cons-

tructed as for spans (3.28).

(3.36) I f S is a groupoidal, posetal, bidiscrete span, then so is any fibre
S(a, h) (3.7) o f S.

( 3.37) There is a homomorphism of bicategories

described as follows. For objects B, A, the category D Fik (B,A) is

the category of bidiscrete fibrations from B to A (3.31 ). For arrows

a : X - A , b : Y- B , the functor

is given on objects by D Fik (b, a) E = E ( a, b) and on arrows by using
the biuniversal property of the fibre. For 2-cells a : a=&#x3E;a’, (3: b=&#x3E; b’ ,
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the natural transformation D Fik (a,B) has E (a,B) (3.27) as its comp-
onent at E .

(3.38) Of course, for objects A, B, there are homomorphisms of bicat-

egories

described similarly.

(3.39) REMARK. The 2-category Cal appearing in (3.37), (3.38) is bas-

ed on a category of sets large enough to contain the set of 2-cells of X

as an object.

(3.40) When dealing with spans from B to 7 we write (S, v) instead of

( u, S, v ) since u is unique up to isomorphism. Note also that

(3.41) PROPOSITION. A span (p, E, q) from B to A is a right fibra-

tion iff (E, q) is a fibration from B to A and (p): (E, q) - (A m B, p r r)
i s a cartesian homomorphism. o 

q

(3.42) PROPOSITION. Suppose r: ( E, q) (E’, q’) is a homomorphism

from B to 1 and that (E’, q’) is a fibration from B to 1. Then (E, r)
is a fibration from E’ to 1 i ff (E, q) is a fibration from B to 1 and

r: (E , q - (E’, q’) is a cartesian homomorphism. Under these condi-

tions, (( E, q r) is a fibration from (E’, q’) to 1 = (B, 1B ) in the

bicategory j=Fik (B, 1). 0

(3.43) PROPOSITION. For each object A, the span HA from A to A

is a bidiscrete fibration. The cleavage is a, a, , A}: {0, A}- {2 , A I.

(3.44) Each bicomma o bject (3.8) is a discrete fibration ( combine (3.24),
( 3.36 ), (3.43)). In general there are bidiscrete fibrations not equivalent
to bicomma objects ( see (4.10) ).
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4. FIBRATIONAL COMPOSITION.

( 4.1 ) The set of path components of a category A can be constructed in

eat as the coidentifier of the 2-cell

( see Street [14] page 153 for the notion of identifier ). This construction

is not bicategorical. The most obvious analogue which comes to mind is

the bicoinverter of

but this only gives the reflection of A into the 2-category of groupoids.
Further investigation leads one to see that the reflection of A into the

2-category of bidiscrete categories can be obtained as the biuniversal

A - 77 A which renders the two birepresenting 2-cells

equal and invertible. This leads us to the following definition.

(4.2) Let 23 denote the 2-category whose distinct non-identity arrows

and 2-cells are depicted below

Let J : 2)P - eat denote the 2-functor which assigns the natural isomor-
phism 

( e ither non-identity such w ill do; see (3.34)) to both the non-identity

2-cells of 23 . Any pair of 2-cells

in K determines a homomorphism of bicategories S: 23 - K . A J-indexed
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bicolimit J * S (1.26) of S is called a bicoequinverter o f a, r ; it am-

ounts to a biuniversal arrow w : B - C such that wQ, wr are equal in-

vertible 2-cells .

(4.3) The following lemma on bicoequinverters will be of use in our dis-

cussion of fibrational composition. Consider the data displayed in the

diagram

together with invertible arrows

and an invertible 2-ce 11 rjJ: h’v= w h . Suppose that the top row is a bi-

coequinverter and, for each object K , the functor

is fully faithful (as is the case for example when u is the bicoequinver-

ter of some pair of 2-cells ). Under these conditions, the bottom row is a

bicoequinverter iff h’, w, rfr form a bipushout for h, v.

(4.4) Suppose E is a right fibration from B to A and F is a left fi-

bration from C to B (3.13). Let C0:E oHB-E, C1: HBoF-F be

right, left cleavages for E, F, respectively. The Chevalley criterion

(3.17), (3.22) gives 2-cells

which compose with

pr1: EoHBoF - EoHB, pr2: EoHBoF- HBoF
to yield two 2-cells which induce (using the bipullback property of E o F)
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a 2-cell

(4.5)

in 8"( C, A ). Composition of ( 4.5 ) with the arrow

yields a 2-cell canonically isomorphic to the identity 2-cell of the identi-

ty arrow of E o F . Next, form the bilim it of the diagram

which yields two arrows pr1 , pr2 : E I F - E o HB o F and invertible 2-

cells

Composing with each of prl , pr2 yields two 2-cells

(4.6)

where

(4.7) The fibrational composite E O F of E, F is the bicoequinverter of

the two 2-cells (4.6) as a span from C to A ; it is unique up to equival-

ence when it exists. There is a canonical homomorphism of spans

( 4.8) PROPOSITION. (a) For any left fibration F from B to A , the fol-

lowing diagram is an absolute bicoequinverter.
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(b) For any right fibration E from B to A, the following diagram is
an absolute bicoequinverter

(c ) A fibration (p, E, q ) from B to A is bidiscrete iff a cleavage
for E induces an equivalence

HA(A, p)O H B(q, B) = E

in Spn (B, A). Furthermore, in this case, the following diagram is an

absolute bicoequinverter.

PROOF. Let

denote any of the diagrams in ( a ), ( b ), ( c ) . In case ( a ), one finds ar-

and coherent isomorphisms

these equations together with the fact that wQ = wt and is invertible

yield the bicoequinverter property which must thus be absolute. Case (b)

is similar. In case (c ) one sees that wa = wt and is invertible precisely
when E is bidiscrete, and one always has arrows

with coherent isomorphisms

and 2-cells t1 =t2 =&#x3E; t3 such that v inverts the first of these 2-cells,

u inverts the second and each ti equalizes Q, r . U

(4.9) In the situation of ( 4.8 ) (a), for any arrow a: A- A , bipullback
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a long a preserves the bicoequinverter, so there is a canonical equival-

ence

Similarly, in the situation of (4.8) ( b ), for any arrow b : B’ - B , there

is a canonical equivalence

(4.10) As pointed out in (3.44), not every bidiscrete fibration is a bi-

comma object; (4.8) (c) shows that every bidiscrete fibration is a fi-
brational composite o f two bicomma objects.

(4.11) Fibrational bicategories. A bicategory K will be called fibra-
tional when it is finitely bicategorically complete, each pair of 2-cells

with the same source and target has a bicoequinverter, and bipullback

along a leg of a fibration preserves bicoequinverters.

(4.12) It will be assumed for the remainder o f this section that we are

working in a fibrational bicategory K.

(4.13) PROPOSITION. I f E is a ( right) fibration from B to A and F is

a fibration from C to B then EO F is a (right) fibration from C to A .

P ROO F . The bicoequinverter of (4.6) is taken to a bicoequinverter by

- o H B from (4.11). The right cleavage of F induces an arrow

whose composite with E o F -EOF renders equal and invertible the two

2-cells obtained by applying - o H B to (4.6). So an arrow

is induced which is a right cleavage for E OF. o

(4.14) Suppose E is a right fibration from B to A , F is a fibration from

C to B, and G is a left fibration from D to C . Define the span E G FOG

from D to A by the following bipushout, which exists by (4.3) and

(4.11).
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Moreover, the equivalences a of ( 3.6 ) induce equivalences

ab of E OFOG with (EOF)OG and Ee(FeG)

which are left cartesian when E is a fibration and right cartesian when

G is a fibration.

(4.15) More generally, for each list of objects A0, ... , An , we have a
homomorphism of bicategories

called n-fold fibrational composition. For n = 0 , the homomorphism picks
out the fibration IlAo from Ao to A0. For n = I , the homomorphism is
the identity. For n = 2 , the value at F, E is EOF (4.7). For n = 3,

the value at G, F, E is EOFOG (4.14). For n &#x3E; 3 , the value at

En, ... , EI is the bicolimit of the following n -1 arrows with common

s ourc e :

Write E 1e ... 6E for Fikcmpn ( En , ... , E 1). There is a canonical homo-
morphism of spans

these provide the components of a strong transformation

(4.16) The equivalences a of (3.6 ) lift through the underlying homomor-

phisms Fik (Ai, Aj) - Spn (Ai, Aj) to yield equivalences : 
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Any diagram involving expanded instances of these equivalences and their

inverses commute up to a unique canonical invertible modification.

( 4.17) A fibration E from B to A is said to be Cauchy ( inspired by
Lawvere [9] page 163) when it has a right biadjoint E * ; that is, a fi-

bration E * from A to B such that, for all objects C , the homomorphism
of bicategories EO-: Fik (C,B) -Fik (C,A) is a left biadjoint (1.30 )
for E *O -. Thus there are equivalences

In more elementary terms, we have arrows

in Fik (B,) Fik (A , A), respectively and c oherent invertible 2-cells

It thus follows that we also have equivalences

wh ich also determine the biadjunction E b E *,

(4.21) PROPOSITION. Cauchy fibrations are bidiscrete.

P ROO F . From (4.20) with Q = H A we obta in the equivalence

From (3.29 ), (3.43 ), the right-hand side is equivalent to a discrete cat-

egory whence the left is, for all P . By (3.29 ), E is bidiscrete. 0

(4.22 ) A fibration E from B to A is said to be convergent when there

exists an arrow f: B -A and an equivalence E = H A (A, f ) in Fik (B,A).
By (3.44 ), convergent fibrations are bidiscrete, but we can go further

and prove :

(4.23 ) PROPOSITION. Convergent fibrations are Cauchy.
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PROOF. We claim that H A ( f, A ) is a right biadjoint for H A(A, f) .
The identity 2-cell of f induces an arrow H B - H A ( f , f) whose com-

posite with the equivalence

(4.9 ) yie lds an arrow

The free M-algebra on the span ( f, B, f) from A to A is

so the isomorphism of spans (n A ) f ; ( f, B, f) -HA induces a cartesian

homomorphism H A ( A, f ) o H A ( f, A)-HA which can be shown to equal-
ize and invert the appropriate two 2-cells (4.6). Hence a cartesian homo-

morphism

is induced (4.7 ). Properties (4.19 ) for these n, c can be verified. D

(4.24) An object A is said to be Cauchy complete when, for all objects
B , all Cauchy fibrations from B to A are convergent.

(4.25) The Cauchy extension R of the bicategory K is the bicategory
whose objects are the objects of K, whose hom-categories K ( B, A ) are

the full subcategories of the categories D (Fik K) (B, A) consisting of

the Cauchy fibrations from B to A , and whose composition is fibrational

composition (4.7). Ve can identify K with the sub-bicategory of R con-

sisting of the convergent arrows.

5. FIBRATIONS BETWEEN CATEGORIES.

(5.1 ) The 2-category eat of small categories is the example for which

the theory of Sections 3 and 4 is essentially folklore [4, 12]. However,
the familiar results do require minor alterations owing to our insistence

that eat should be dealt with as a bicategory for our present purposes,

although it does enjoy a strictly associative composition of course. The

main point of deviation is that we are unable to capture bicategorically
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the strict fibre of a functor p : E - A over an object a of A , and we must

settle for the bipullback of a: 1 - A and p . To this extent our terms

« fibres and «fibration» differ from common usage. The advantage of our

fibrations is that an equivalence of categories is both a left and right fi-

bration. On the other hand, every left (right) fibration over A is isomor-

phic to a composite of an equivalence and a ( co- )fibration over A in the

sense of Grothendieck.

( 5 .2 ) Write (2allbB for (Spn Cat) (B,1). For a left f ibration E from B

to A in Cat, we have a homomorphism of bicategories (3.25 )

which yields, on setting X = 1 and using (3.40 ), a homomorphism of

bicategories

Similarly, when E is a right fibration, respectively, fibration, we obtain

(3.26), (3 .27 ) the homomorphism s

These assignments of homomorphisms to fibrations are the object func-

tions of biequivalences; this result is the appropriate modification of

Grothendieck’s result (see Gray [4] page 32 ) for our fibrations.

( 5.3 ) For categories A, B, there are biequivalences of bicategories

We shall indicate the first of these, the other two are similar. Suppose

E, E’ are left fibrations from B to A . Each homomorphism of spans

f : E - E’ induces a functor

by the property of bipullback. ’When f is left cartesian ( so that it com -

mutes with inverse images) these are the components of a strong trans-

formation f (-, B): E(-, B ) = E’(-, B ) (3.25 ). The remainder of the
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definition of the homomorphism

is easily supplied and it may be checked that is is a local equivalence.
It remains to see that it is surjective on objects up to equivalence. A

homomorphism R: A’P - Cat/bB gives a strong transformation

Apply the Grothendieck construction (1.10 ) to DO R to obtain a category

E = El1 (D0R) and a projection p : E - A which can be seen to be a

left fibration. Then r : D0R= B induces a functor q: E , B which

makes (p , E, q) a left fibration from B to A for which there is an equi-

valence E (-, B )=R.

( 5.4) Let Gpd be the 2-category of small groupoids and let Set be the

category of small sets. The biequivalences of ( 5.3 ) restrict to biequi-
valences of bicategories

and restrict further to equivalences of categories

where the square brackets on the right-hand sides denote the functor cat-

egories. In fact, if Cat is a 2-category of categories based on a cat-

egory SET of sets which includes the set of 2-cells of Cat (3.39 ), this

last equivalence enriches to an equivalence in
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between the homomorphism D (FikCat) ( see ( 3.37 ) ) and the 2-functor

(5.5 ) TH EO REM. Suppose q : E , B is a fibration from B to 1 in Cal.

The homomorphism o f bicategories

o btain ed by bipullback along q has a right biadjoint.

P ROO F . In fact what we shall prove is that the 2-functor

obtained by pseudopullback along q has a right adjoint whose value

(X,u) at an object (X, u) of Cat/bE has the property that the inclusion

is an equivalence for all w : Z - B .

An object (b, x, 0) of X consists of an object b of B , a func-

tor x : E b - X ( where E b is the pseudopullback of b : 1 - B along q ),

and a natural isomorphism 0 :

An arrow (B,E): (b, x, 0) -(c, y, 0) in X consists of an arrow (3: b-c
in B and a natural transformation

such that the follow ing equality holds :
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The functor u : X - B is given by u(b , x , 0 ) * b, u(B,E) = B. Then we
have an arrow

in Cat/b E given by

for

in E 1fj X, where : (EB ) ( e,u ) - (d, v ) is induced by À using the un-

iversal property of direct image (3.22 ) ( ii ).

The arrow (E ,0 pr1) induces a functor 

which we shall describe explicitly and prove is an isomorphism. For

Then

The value of ú) at o: f = g is described as follows. For each z put

then the components of wo : w (f)=w(g) are the arrows
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With this description one sees clearly that o is fully faithful and bi-

jective on objects ; and so o is an isomorphism.

It remains now to prove that ( 5.6 ) is an equivalence. It is c lear-

ly fully faithful. Take an object (h, Y):

of the target of (5.6). For z c Z, suppose h z - ( bz , xz , 0). Then the
diagram

gives an object (wz,x’"z,0’)=h’z of X and an isomorphism hz =h’z 
in X - Defining h’ on arrows in Z in the obvious way, we get

and an isomorphism ( h, Vi (h’, 1) in (Cat/b B)((Z, w), (X, u)). 0

(5.7) COROLLARY. eat is a fibrational bicategory (4.11 ).

P RO O F . If ( p ,E , q) is a fibration from B to A in C-1, then p : E - A
is a fibration from 7 to A and q : E - lj is a fibration from B to I. So,

by ( 5.6 ) and its dual ( obtained by applying ( )°P ), bipullback along p
and bipullback along q have right adjoints and so preserve all bicolimits

including bicoequinverters. D

(5.8) The results of this section for eat generalize to the 2-category

ed(Ct) of categories in A where (f is a finitely complete, finitely co-

complete, and internally complete [ 161 category.

6. HOM·ENRICHED CATEGORIES.

(6.1) The base monoidal category 0 will be assumed to satisfy the fol-
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lowing conditions :

( a ) V is finitely complete and locally small ;

(b) V has all small colimits and, for each object X , the functors

X O- , -O X preserve them.

( 6.2 ) Under these circumstances the 2-category V-Cat of small V-cat-

egories is finitely complete and small cocomplete. It follows from (1.14 )
that V-Cat has finite bilimits and small bicolimits.

(6.3 ) Our intention in this section is to interpret the work of Sections 3
and 4 in the case where K is the 2-category (V-Cat)op . For this it is

convenient to use dual terminology so that we can really work in C-Cal

instead of K.

(6.4) A span in Hop is called a co sp an in K. Write (Caspn H) (B,A ) (B, A)
for (Spn Hop) ( B, A)OP , or simply Cospn (B, A) when H is understood.

A fibration from B to A in Hop is called a co fibration from B to A in

H (in agreement with the terminology of Gray [4] rather than with that

of Grothendieck ). Write (Cofik H) (B, A) for (Fik Hop)(B,A)op; it is

the bicategory of coalgebras for a codoctrine M on (Caspn H)(B,A).

(6.5 ) Posetal, groupoidal and bidiscrete objects in Hop are called co-

posetal, cogroupoidal and bicodiscrete objects in H. We write CogH,
CodH for (GHop)op, (DHop)op, respectively.

(6.6) For C-categories A, B, we recall the definition of a C-module

0 from B to A ( called «bimodule&#x3E;&#x3E; by Lawvere [9] - we drop «bi» be-

cause two-sidedness is already apparent from « from B to A » ; other au-

thors have used the terms «distributor» and « profunctor»). The basic data

involved in 6 are objects 0 (a, b ) of C and arrows

A(a’, a)O0(a, b)- 0(a’, b), 0(a, b)OB (b, b’)- 0(a, b’)

in C satisfying the appropriate five axioms. Write V-Mod( B, A) for the

category of L-modules from B to A .

(6.7) Recall also that tensor product of modules provides a functor
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whose value at (1), tjJ) is denoted by oOY. This is the composition for

a bicategory C-mQd whose objects are small C-categories and whose ar-
rows are U-modules.

(6.8) There are two homomorphisms of bicategories

which are the identity on objects, locally fully faithful, and, for f: B- A
in V-Cat, the module f* from B to A consists of the objects A(a,fb)
and the module f * from A to B consists of the objects A (fb,a). Re-
call that f*-l f* in V-Mod.

(6.9) Suppose A, B are C-categories. A V-gamut from B to A is a dia-

gram ( 0 , X , E , E, m) :

in V-Mod. A n arrow

of C-gamuts c ons ists of a C-functor f : X , X ’ and arrow s

of L-modules such that:

In this w ay w e obtain an obvious 2-category V-Gam ( B , A) of V-gamuts .

(6.10 ) There is a locally fully faithful 2-functor
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described as follows. For each V-gamut (0, X, E, E, m), the 2-functor

S gives a cospan S from B to A . The set of objects of S is the dis-

joint union of the sets of objects of A , X , B . For a, a’ E A, x, x’ f X ,

b, b’ E B,

Composition in S is given by composition in A, X, B , the actions of

A , X , B on the modules 0 , E, E, and the arrow of modules m - Routine

diagrams show that S is a C-category. There are fully faithful L-functors
u : A ---j S, v : B - S which are given on objects by inclusion and which

have identity components for their effects on homs. A strict homomorphism
h of cospans is assigned by I to each arrow (t, f, z, z) of V-gamuts ; h
leaves the objects of A, B fixed and applies f to the objects of X ; the
effect of h on homs is obtained from the effect of f on homs and from

t, z,z .

( 6.11 ) For any cospan S from B to A , the cospan M S from B to A (as

described in (3.12 ) with K= (V-Cat)op) can be obtained by applying
l to the V-gamut

In fact, if we take 2 *A to be the tensor product of 2 with A in I-d«i

(and not just any tensor biproduct), one easily sees that I applied to

this C-gamut appears in the following diagram of pushouts in c-eat.

Furthermore, these pushouts are also bipushouts (this is not a general

phenomenon: pullbacks in Cat are not bipullbacks in general! ) so that
M S is the NI S of ( 3.12 ) for this K . The objects of M S are elements of

the disjoint union of the sets of objects of A, S, B ; it is convenient
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to denote the elements in the copy of A by ( 0, a) and in B by (1 , b )
where a E A, b E B . Similarly, the objects of L S will be taken to be of

the form (0, a ) for a c A and s for s f S.

The counit and comultiplication for the codoctrine M are actually
strict homomorphisms of cospans E S : M S - S ,d S : M S - M M S and the

2-cells r, l, a (2.10) are identities. Indeed, M induces a comonad on

the 2-category of cospans from B to A and strict homomorphisms.

(6.12 ) The 2-functor I of (6.10) factors through the forgetful 2-func-
tor eae-i£.( B, A)- Cospn (B, A ). For each cospan S from B to A cons-

tructed as in (6.10), we obtain a coalgebra structure X: S - M S which

takes objects a, x, b to (0, a ), x, (1, b ) , respectively, and which has

identity components for its effect on homs ; the 2-cells 1, a of ( 2.15 ) are

identities. Clearly h as constructed in (6.10) is a strict morphism of co-

algebras (that is, a as in ( 2.18 ) is an identity).

(6.13) THEOREM. For small V-categories A, B, the 2-functor E of
(6.10 ) induces a biequivalence :

P ROO F . Let S denote a cofibration from B to A with M-coalgebra struc-

ture X : S - M S, 1, a . By (3.20 ), (3.18 ), (2.29 ), the composite

is a left adjoint for the counit (0 S: L S - S of L at S . So there is a

V-natural isomorphism
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which can be seen to be the effect of u on homs A (a, a’ ) - S(u a, u a’) .

So u , and s im ilarly v , is fully faithful.

Suppose S(s, u a’) is not initial in C. If xl s - s’ for some

s’ E S , then

a contradiction. So XI s = (0, a) for some afA; so

So s is in the replete image of u .

Similarly, if S ( v b’, s ) is not initial 1 in V, th en s is in the re-

plete image of v .

Let X denote the full sub-V-category of S consisting of those

objects which are not in the replete image of u and not in the replete

image of v . Let e, E, E denote the L-modules made up of the objects
0(a, b)= S(ua,vb), ç(a,x) = S(ua,x), E(x, b)=S(x,vb),

with obvious actions. Composition in S gives an arrow of modules:

m :EOE=0 . So we have a C-gamut ( 0 , X , E , E , m ) whose image under
E is now easily seen to be equivalent to S.

The remainder of the proof is routine. o

(6.14) The codiscrete objects of Cospn (B, A) are precisely those co-

spans

for which each object of S is isomorphic either to an object o f the form
u a or an object of the form v b . This follows easily from (6.5 ), ( 1.7 ).

Then (3.29 ), ( 6 .13 ) give:

(6.15) A V-gamut (0, X ,E,E, m) from B to A is bicodiscrete in

1.§mn( B, A) iff X is the empty V-category. So a bicodiscrete C-gamut
amounts precisely to a V-module.

(6.16) COROLLARY. For small C-categories A, B, the 2-functor E of
(6. 10) induces an equivalence: V-Mod ( B, A) - CodeoP-’&#x26;( B, A). o
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(6 .17 ) PROPOSITION. Suppose j: A - C is a fully faithful V- functor such
that, for each a c A, c e C, the object C(c, ja) is initial in V. The

pushout o f j and any V- functor u : A - X is obtained by applying the con-
struction Y- to the codiscrete C-gamut arising from the C-module u*Oj*
from C to X . Furthermore, this pushout is also a bipushout. 0

(This generalizes the bipushout constructions used in (6.11). )

(6.18) PROPOSITION. For a C-functor j: A , C as in (6.17), bipush-
out along j, as a homomorphism o f bicategories

Cospn (B,A) -  Cospn (B,C),
preserves biequinverters.

P ROO F. The biequinverter of a pair of 2-cells

in Cospn (B, A ) can be obtained as the full sub-C-category R of S con-

s isting of those objects s of S for which o s = r s and o s is an iso-

morphism. With the description of bipushout along j given in (6.17), one

now easily verifies the result. 0

(6.19) The last two propositions with their appropriate duals yield the

fact that bipushout along a leg of a cofibration in c-eat preserves bi-

equinverters. This is what is needed to complete the proof of :

(6.20) THEOREM. For 0 as in (6.1), the 2-category (C-eat)OP is a

fibrational bicategory. r-1

(6.21) PROPOSITION. Fibrational composition of bidis crete fibrations in

(U-Cat)oP corresponds, under the equivalence of (6.16), to tensor pro-

duct o f lkmodules.

The proof of this is left to the reader.

(6.22) It is therefore possible to construct the bicategory U-mod, up to

biequivalence, purely from the 2-category c-eat by internal bicategorical
constructions.
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