
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

J. ADÁMEK

H. HERRLICH

G. E. STRECKER
The structure of initial completions
Cahiers de topologie et géométrie différentielle catégoriques, tome
20, no 4 (1979), p. 333-352
<http://www.numdam.org/item?id=CTGDC_1979__20_4_333_0>

© Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1979__20_4_333_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


333

THE STRUCTURE OF INITIAL COMPLETIONS

by J. ADAMEK, H. HERRLICH &#x26; G. E. STRECKER

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XX - 4 (1979)

Dedicated to Professor Charles Ehresmann 

ABSTRACT.

The functor-structured categories over Set of Hedrlin, Pultr and

Trnkova are generalized so as to admit any base category. The reflective

modifications of such categories are shown to be (up to isomorphism ) pre-
cisely all of the fibre-small initially complete concrete categories. Char-

acterizations are also obtained for the full concrete ( reflective ) ( resp.
E-reflective ) subcategories of functor-structured categories.

INTRODUCTION.

It has been noted long ago by Hedrlin, Pultr and Trnkova ( see

[HPT] and [P] ) that most usual categories of sets with structure are

« controlled» by set functors. More precisely each is a full concrete sub-

category of a so-called functor-structured category S(F) , where F is a

functor F : Set - Set.

In this paper, we introduce functor-structured categories over ar-

bitrary base categories, generalize results of Kucera and Pultr [KP], and

simplify some of their proofs as well. In doing so we answer the following

questions in full generality:
(1) What is the precise relationship between functor-structured cat-

egories and fibre-small initially complete categories?

( 2 ) Which categories can be fully, concretely ( and reflectively)

(resp. E-reflectively) embedded into some functor- structured category?
It turns out that these questions are closely related. In particular, a con-

crete category

(1) is fibre-small and initially complete iff it is concretely isomor-

phic to a reflective modification of some functor-structured category ( 2.5 ),
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(2) can be fully, concretely (and reflectively) (resp. E-reflectively)
embedded into some functor-structured category iff it can be fullly, con-

cretely ( and reflectively) (resp. E-reflectively ) embedded into some fibre-
small initially complete category ( 2.8, 3.2, 4.4).

Categories with the latter properties are characterized using pre-
vious results of the authors [AHS], Hoffmann [Ho 1 Ho2], Wischnewsky
and Tholen [Th] by very satisfactory internal conditions (2.8, 2.13, 3.2,

3.3, 4.4 ).

PRELIMINARIES.

1.1. For the most part we will use the terminology and notation of [AHS]

In particular we will work within a set-theoretic framework consisting of

sets, classes and conglomerates, where every set is a class and every

class is a conglomerate. If a conglomerate is in one-to-one correspondence
with a class, it will be called l egitimate ; and if it is in one-to-one cor-

respondence with a set, it will be called small.

1.2. Throughout we let X be a fixed «base» category. A concrete category
(over is a category K together with a faithful, amnestic functor:

I l : K - X, assigning to a morphism f : v -&#x3E; W in K , the morphism
in

(denoted by the same symbol due to faithfulness, and called a map for

distinction). For each object X in X let

Amnesticity is equivalent to the antisymmetry of the following relation

on K[ X] (for any X in X ) :

iff is a morphism in K .

Thus (K [X], ) is a partially-ordered class (called the fibre of K on
X ). If each such fibre is a set, then K is said to be fibre-small.

A functor O :k -&#x3E; L between concrete categories is called con-

crete provided that for objects O (V) l = lV I and for morphisms O (f)= f.
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1.3. A full concrete subcategory L of a concrete category L is called a

reflective modification of L iff L is a reflective subcategory of L with

reflections carried by identity maps; i. e., iff there is a concrete reflector

R : 3l - 3! . (Example: the category of indiscrete spaces forms a reflective
modification of the category of topological spaces.)

Dual notion: coreflective modification. ( Examp18 : discrete spaces
in Top . )

1.4. Given a concrete category K, a structured map with domain X in K
is a pair ( f, Y) with V an object of K and f: X - lV I a map. It is de-

noted by X f VI . Two structured maps
and

are called structurally equivalent provided that, given l U I ---4-b.-X , then
f. h : U -&#x3E; V is a morphism iff g. h : U - 1P’ is.

K is called strongly fibre-small iff for each object II in X there exists

a small system of representatives relative to structural equivalence of

structured maps with domain X .

Dual notions: structured map with codomain X; lVl f-&#x3E; X ; struc-
turally equivalent; strongly fibre-small. 

1.5. A class-indexed family of structured maps with common domain X is

called a source with domain X , denoted by

or just

A concrete category K is called initiall y complete iff, for each source

there exists an object F on X (called the initial lift
of S ) such that:

a) every fi: W -&#x3E; Vi is a motphism, and

b) if for a given IUIÁX 7 every fi. h : U --. Yi is a morphism, then

h : U - O must also be a morphism.

An initial completion of a concrete category K is an initially complete

category L in which K is an snitially dense full concrete subcategory
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( i.e., each object of 2 is an initial lift of some source with codomains

in K ).

Dual notions: sink with codomain X vi l fio, X ); finally com-
plete; final lift; final completion; finally dense.

1.6. A concrete category need not have any initial (or final) completion;
see [H e 1]. If it has any, it has a least one, called the Mac Neille com-

pletion, which is, up to isomorphism, the only initial completion that is

a final completion as well. It can be described via so-called closed sinks :

F or each sink S = (lVi lfi-&#x3E; X ) denote by S°P the (opposite) source of
all the structured maps Xg-&#x3E;lWl with the property that, for each i ,

g . fi: Vi -&#x3E; W is a morphism ; analogously each source S gives rise to the

opposite sink SoP. A sink (or source) is said to be closed iff

If all closed sinks form a legitimate conglomerate, then we can

consider the category 2 of closed sinks, where morphisms from

to

are maps p : X -&#x3E; Y such that for each i there exists a j with

equal to

Y- is a concrete category in the obvious sense, and the assignment of each

object V in K to the (closed! ) sink SV of all structured maps BUBÁV
which are morphisms g: U 4 V in K gives a full concrete embedding of

K into Y- . Then 2 is the Mac Neille completion of K . (Note that if SV
is defined dually, then

and

1.7. A category I is called an (E, M)-category provided E is a class of

fii-morphisms and M a conglomerate of X-sources, each closed under

composition with isomorphisms, such that X has the (E, M )-factorization

property and the (unique) ( E, M ) -diagonalization property ( for details

see e. g. [HSV] ). Note that even though singleton sources in M need not
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be monomorphisms, we will nevertheless call such singleton sources

m: Y-&#x3E;X in M, M-subobjects of X . In this context X will be said to be

M-well-powered iff each X-object has at most a set of pairwise non-equi-
valent M-subobjects. The dual condition is called E-co-well-powered.

2. INITIAL COMPLETIONS AND STRONG FIBRE-SMALLNESS.

2.1. DEFINITION. Let F: X - Set be a functor. The concrete category

whose objects are all pairs

with in X and

and whose morphisms f: (X , A ) -&#x3E; ( Y, B) are all X-morphisms
w ith

will be called the functor-structured category determined by F and will

be denoted by S(F).

2.2. PROPOSITION. Every functor-structured category is fibre-small and

initially complete.

PROOF. Fibre-smallness is obvious. The initial lift of 

is (X, B) wh ere B =nFf-1i [Ai], and the final lift of
is (X, B) where

2.3. DEFINITION. For each fibre-small initially complete category K

(over X ) we define a functor FK:X-&#x3E; Set , called the fibre-functor of

K , as follows:
Each object X in X is assigned to the fibre FK (X) =K[X], and

each morphism f : X -&#x3E; Y in X is assigned to the mapping

defined by: For Ve K[X] put

FK( f)( V) = fin (f , V) = the final lift of the singleton sink l V l-&#x3E;f Y.
(The preservation of composition follows from the fact that final lifts are

unique (by amnesticity) and the composition of final morphisms is final.

The preservation of identities is clear. )
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2.4. L EMMA. Any reflective modification of an initially complete category
is initially complete.

2.5. THEOREM. For a concrete category K, the following are equivalent:
(i) K is fibre-small and initially complete.
(ii) K is concretely isomorphic to a reflective modification o f the

functor-structured category S( FK ) determined by the fibre-functor of K .
(iii) K is concretely isomorphic to a re flective modification o f some

functor-structured category.

P ROO F. Clearly ( ii ) implies ( iii ) and by Proposition 2.2 and Lemma 2.4,
( iii ) implies ( i ). To show that ( i ) implies ( ii ) define O: K-&#x3E; S(FK ) by:
O( V ) = (X, A[V], where

and

and O (f) = f . If f : v -&#x3E; U is a K-morphism and c A [V] , then

is a morphism ; hence fin( f, W) U . Hence, so

that O (f) is an S( FK )-morphism. Since 95 clearly preserves identities
and compositions and is one-to-one, it is an embedding. If

is an S( FK )-morphism, then since U E A [ V] , fin (f, V ) E A [U] . Thus

is a K-morphism. Thus O is full. We need only show that O [ K] is a re-
f lectiv e modification of S ( FK). For each A C K[X] let sup A be the

final lift of the sink (lVl 1X-&#x3E;X)VeA . Then

is a morphism since A C A [sup A]. We shall prove that this is a reflec-

tion of the object ( X, A) in O [ K ]. Now if

is an S(FK)-morphism, then for each W E A ,
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is a K-moqphism and

implies that f : sup A -&#x3E; V is a K-morphism, so that for each Z  sup A ,
f: Z-,V is a K-’morphism. Thus

so that f is an S(FK)-morphism. Hence 0 L KI is a reflective modifica-

tion of S(FK).

2.6. EXAMPLE. Let X be the trivial one-morphism category. Then a cat-

egory that is concrete over X equals its (unique) fibre. Hence, for this

situation, fibre-small&#x3E; means. small- and initially completes means

(possible large) complete lattices. A functor-structured category has

the form ( exp M , C ) for some set M . Thus the above theorem ( 2.5 ) as-

serts that every complete lattice is isomorphic to a in f-complete sub-semi-
lattice of some ( exp M, C ).

2.7. REMARK. A structural theory of modifications of functor-structured

categories is exhibited by Menu and Pultr [MP1]. These authors also
characterize concrete categories that are isomorphic to entire functor-

structured categories.

2.8. THEOREM. For a concrete category K over X, the following are

equivalent:
(i ) K can be fully and concretely embedded in some functor-struc-

tured category.

(ii) K can be fully and concretely embedded in some fibre-small
i nitiall y complete category.

(iii) K has a fibre-small Mac Neille completion.
(iv) K is strongly fibre-small ( 1.4).

PROOF. The equivalence of (ii), (iii) and (iv) has previously been es-

tablished, see [AHS]. That (i) implies (ii) is clear from Proposition 2.2
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and that (ii) implies (i) is immediate from Theorem 2.5.

2.9. We now address ourselves to the question of which categories are

strongly fibre-small (and thus are full concrete subcategories of functor-
structured ones ). It turns out that under extremely mild side conditions

these are precisely the fibre-small concrete categories. Before showing
this we wish to mention a pathological example of a subcategory of Set

(concrete in the obvious sense) that fails to be strongly fibre-small. The

objects are all sets, and the morphisms are all bijections and all constant

maps between sets of equal cardinality ( see [KP] ).

2.10. Let X be an (E ,M )-category (1.7). A concrete category K is said

to :

( i ) have weak factorizations if each morphism f : V 4 W factors ( not

necessarily uniquely) as

where (as maps ) e c E and m c M .

(ii) be transportable if for each isomorphism f: X -&#x3E; Y in I and each

V e K[X] there exists some W e K [Y] such that f: V -&#x3E; W is an isomor-

phism in K .

Notice that many concrete categories over Set have both proper-

ties (i) and ( ii ) above (when E = surjections and M = one-to-one maps,

or more precisely point-separating sources ).

The following theorem is a generalization of a result of Kucera

and Pultr [KP].

2.11. TIIEOREM (Strong fibre-smallness Criterion). Let X be an ( E, M)-

eategory which is both M-well-powered and E-co-well-powered (1.7). Then

for every transportable concrete category over X with weak factorizations,

strong fibre-smallness is equivalent to fibre-smallness.

PROOF. Clearly strong fibre-smallness implies fibre-smallness. Suppose

that K is a fibre-small concrete category with the above properties. We

shall prove that K is strongly fibre-small.

A) For each structured map X -&#x3E;flVl denote by L(f,V) the con-
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glomerate of all triples ( m , e , V’) with m : X’-&#x3E; X a map in M , V’ an

object of K and e : X I 4 |V’| a map in E , such that there exists a mor-

phism p : V I 4 v in K for which the square

commutes. For two structured maps

and

we shall show that L (f, V) = L ( g, W) implies that ( f , V) and (g, W)
are structurally equivalent ( 1.4 ). Consider a structured map |U| -&#x3E;hX.
A ssuming that f . h: U -&#x3E; h is a morphism we shall prove that g . h : U - W

is one also (so that by symmetry we obtain a structural equivalence). By

hypothesis f . h can be factored as

where, as maps, e E E and m c M . Furthermore we have a factorization

( in X ) of the map h as

with ê f E and m c M . Thus by the ( E, M )-diagonalization property there
is a map f’: X’ -&#x3E; | V’ | such that the diagram

commutes. Now f’ must be in E . Thus

so that there exists a morphism

with
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Hence g . lt = p . e is a morphism.

B) K is strongly fibre-small. For each X f 0- IV | the above conglom-
erate L ( f , V) is a subconglomerate of Q (X) , the conglomerate of all

triples ( m , e , V’) with m : X ’ -&#x3E; X in M and e : X’ -&#x3E;|V’| in E . Consider

the equivalence relation - on Q (X) defined by:

(m , e , V’) = ( m1 , e 1, V 1 ) iff there exist isomorphism s i in X and

j in K such that the following diagram commutes :

Clearly L (f, V) is stable under this equivalence, i. e., if (m, e, V’) is
in L ( f , v ) , then

implies that (ml, el , V’1 c L ( f, V). ( Given a morphism p : V’ 4 V , con-

sider the morphism p . j : V ’1-&#x3E; V.) Thus by Part A it suffices to show

that Q(X) has a small system of representatives with respect to - .

Since X is M-well-powered, we have a small system of representatives
D of M-subobjects m: X’- X . Since X is E-co-well-powered, for each

m e D we have a small system of representatives D(m) of E-quotients
e: X’ 4 Y . Define D * C Q (X) by:

D*= { (m, e, V’) | m e D, e6 D(m) and |V’| is the codomain of e ) .

Since K is fibre-small, D* is a set. For each (m, e, V’) in Q (X) we

have m 6 D isomorphic to in (via an isomorphism i ), and e (D(m) iso-

m orphic to ë. i -1 . Since K is transportable, there exists a K-object V’
such that j : v’ -&#x3E; v’ is an isomorphism in K and
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commutes. Thus (m, e, Y’) = (m, e, V’)c D * . Hence D * is a system of

representatives for = .

2.12. REMARK. The hypothesis that K be transportable cannot be omitted.

For example, a large discrete category made concrete over Set by an ar-

bitrary one-to-one functor to singleton sets is fibre-small and has suitable

weak factorizations, yet fails to be strongly fibre-small. Indeed, given a

singleton set X , two structured maps

and

are non-equivalent whenever V #W . Consider then

is a morphism but g . f -1: V -&#x3E;W is not.

2.13. COROLLARY. Let K be a transportable concrete category with weak

factorizations over an (E ,M)-category that is M-well-powered and E-co-

weu-powered- Then the following are equival ent :
(i) K can be sully and concretely embedded in some functor-struc-

tured category.

(ii) K cam be fully and concretely embedded in some fibre-small
initially complete category.

(iii) K has a fibre-small Alac Neille conipl etion.
(iv) K is fibre-smau.

3. REFLECTIVE INITIAL COMPLETIONS.

An important generalization of initial (or final) completeness has

been introduced by Trnkova [Tr] (weak inductive generation ), Hoffmann

[Holl (semi-identifying functors ), Vischnewsky [W] and Tholen [Th]

(semi-topological fianctors). See also [E1] (functors with quasi-quo-

tients ). Here we call such concrete categories finally semi-compl ete.

3.1. A concrete category || : K -&#x3E; X is called finally semi-complete pro-

vided that each sink (lVil -&#x3E;fiX ) has a semi-final li ft, i. e., a structured
map x-&#x3E;g|W| with the properties:
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( i ) each g, fi : Vi-&#x3E; W is a morphism ;

(ii) whenever X g-&#x3E;|W’| is a structured map such that each g’. fi 
is a morphism, there exists a unique morphism p: W -&#x3E; W’ with g’ = p. g.

3.2. THEOREM. For any concrete category I I : K -&#x3E; ï, the following are

equivalent:
(i) K has a re fZective, fibre-small initial completion.
(ii) K has a full reflective concrete embedding in a functor-struc-

tured category.

(iii) K is finally semi-complete and strongly fibre-small.
Furtherrrcore if K is co-well-powered and X is cocomplete, the above are

equivalent to :

(iv) K has free objects (i. e., I I has a le ft adjoint), is cocomplete
and is strongly fibre-small.

P ROO F. (i) =&#x3E; ( ii ). Let L be a fibre-small initial completion of K. B y
Theorem 2.5, fl is concretely isomorphic to a reflective modification of

some functor-structured category S(F) . If K is reflective in L , then it

w ill also be reflective in S(F) .

(ii) =&#x3E; ( iii ). Any concrete category that has a reflective initial com-

pletion is well-known to be finally semi-complete [Th, HS2]- By Theorem
2.8 any such category that has a full concrete embedding in a functor-

structured category must be strongly fibre-small.

(iii)=&#x3E; ( i ). Any concrete category that is finally semi-complete is

well-known to have a reflective Mac Neille completion [Th, HS2] and by
Theorem 2.8 such a completion must be fibre-small.

(iii) =&#x3E; ( iv ). This is established in [Holl and [Th].

3.3. COROLLARY. Let K be a co-well-powered, transportable concrete

category over Set in which each extremal epimorphism is surjective. Then
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K can be fully reflectively embedded in a functor-structured category iff
K is fibre-small, cocomplete and has free objects.

P ROO F. Clearly if K can be so embedded, it must be fibre-small, cocom-

plete and have free objects. To show the converse, apply Theorem 2.11

with X = Set, E = surjective maps and M = point separating sources

( = mono-sources). Indeed, a co-well-powered cocomplete category al-

ways has (extremal epi; mono )-factorizations of morphisms [HS1]. Since

X has free objects, monomorphisms are one-to-one, and by hypothesis ex-

tremal epimorphisms are surjective. Hence K has weak factorizations

(2.10) and so it is strongly fibre-small. Thus Theorem 3.2 can be applied.

3.4. REMARKS. (a) A reflective full concrete embedding of K in a func-

tor-structured category does not guarantee that K is co-well-powered. In

fact Herrlich [He3] has exhibited a reflective subcategory of the category
of topological spaces that is not co-well-powered.

( b ) There is a fibre-small concrete category that is not strongly fibre-
small in spite of being finally semi-complete. See [He4]. Thus, a concrete
fibre-small category can have a reflective Mac Neille completion that fails

to be fibre-small.

4. E-REFLECTIVE INITIAL COMPLETIONS.

4.1, If the base category I is an ( E, M )-category ( 1.7 ), then a concrete

category K over X is said to be :

( i ) initially M-complete ( = (E, M)-topological in [He2l and [Ho] )

iff every source (X-&#x3E;fi |Vi|) that is carried by an M-so urce (fi: X-&#x3E; Yi
has an initial lift; 

( ii) finally E-semi-complete iff it is finally semi-complete and each

semi-final lift X -&#x3E;g |W I is carried by an E-map, i. e. g E E ;

( iii ) M-hereditary iff each singleton source X m-&#x3E;| Y, | in M has an

initial lift;

( iv) topologically algebraic iff each source has a ( generating 1),
1) A structured map ( f , V ) is said to be generating provided that for each K-object
W and each pair of morphisms r, s : V- lY, r. f = s , f implies r = s .
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initial-)factorization (see [HS2] ).

4.2. THEOREM. If I is an (E,M)-category then for each transportable
concrete category K over X, the following are equivalent:

(i) K is initially M-complete.
(ii) K is topologically-algebraic and M-hereditary.
(iii) K is finally E-semi-complete.
(iv) K is E-reflective in its Mac Neille completion.
(v) K is E-reflective in each of its final completions and has at

least one final completion.

PROOF. (i) =&#x3E; (ii). Let S = (X -&#x3E; fi |Vi|) be an arbitrary source. The

underlying map-source factors as an E-map g: X -&#x3E; Y followed by an M-

source (Y-&#x3E; fi |Vi|. The latter has an initial lift, say W , and we have
a factorization of S as a generating map X W| followed by an initial

morphism-source (fi: W -&#x3E; Vi). Thus K is topologically-algebraic. That

K is M-hereditary is immediate.

(ii)=&#x3E; (iii). Given a sink S = u j, l hj-&#x3E;X), consider the opposite

source SOP =X fi-&#x3E;|Vi|). By (ii) SOP has a factorization as a generat-
ing structured map X -&#x3E;|W| followed by an initial source (fi: W - Vi).
Let

be the (E, M )-factorization of g . Then, by the M-hereditary property, there

exists an object U such that Y = I f/ | and m : V - W is initial. Since

for each i , j we have a morphism

initiality implies that each e. hi : Uj - V is a morphism. Clearly V I
is a semi-final lift of S.

(iii)=&#x3E; (v). Since K is finally semi-complete it has a (reflective)

final completion L. We wish to show that K is E-reflective in î. Now

each object P of fl is the final lift of some sink (| Vi | f -&#x3E;X with each

Vi in K. By finality the semi-final lift X IWI | ( with ge E) induces
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an L-morphism g: P 4 W that is obviously an E-reflection.

( v ) =&#x3E; ( iv ). Clear.

(iv) =&#x3E; ( i). Let S = (X fi -&#x3E;| V |) be an M-source. Its ( closed ) oppo-

site sink S°p = (|Uj| hj-&#x3E;X) is an object of the Mac Neille completion.
Hence it has an E-reflection g : S°P -&#x3E; Sw where W is an object of K . For

e ach i , j, fie hi: U j -&#x3E; vi is a morphism, so that by reflectivity each f i
factors through g . 

Since S is an M-source that factors through g c E , it follows that g is

an isomorphism. Clearly W is the initial lift of S.

4.3. REMARKS. The equivalence of (i) and (iv) in the above theorem was

established in [He2l and the equivalence of (i) and (ii) in [Holl. Uni-
versal initial completions form an important type of initial completions

( see [He,] ). In [HS2] it is proved that a concrete category has a reflec-

tive universal initial completion iff it is topologically-algebraic. This is

a strictly stronger condition than having a reflective Mac Neille comple-
tion (i.e., stronger than final semi-completeness ) ; see [BT] and [HNST1.
(For related results, see [E2] .) In contrast, given an (E,M )-category X :

A concrete category K over X has an E-reflective Mac Neille com-
pletion iff it has an E-reflective universal initial completion.
P ROO F. If K has an E-reflective Mac Neille completion then by Theorem

4.2 it is topologically-algebraic and M-hereditary. Thus the category of
semi-closed sources ( which is the universal initial completion ) is le-

gitimate (see [AHS, 3.2] ). Factoring a semi-closed source S as X g |W|
with g c E , followed by an initial source, we see that X-&#x3E;g|W I must be

a member of S . Hence g: S4 SW is a reflection for S in K ; so that K
has an E-reflective universal initial completion. The converse is clear.

4.4. THEOREM. I f the base category X is an (E,M J-category, then for
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each transportable concrete category Kover ï, the following are equi-
valent :

(i) K has an E-reflective, fibre-small initial completion.
( ii ) K has a full concrete E-re flective embedding in a functor-struc-

tured category.

(iii) K is initially M-complete and strongly fibre-small.
Furthermore if ï is complete and E-co-well-powered, the above are equi-
valent to :

(iv) K is fibre-small, M-hereditary and has concrete products 1).

P ROO F. ( iii ) -&#x3E; ( ii ). By Theorem 2.8. the Mac Neille completion 2 ( i. e.,

the category of closed sinks ) is fibre-small. Thus by Theorem 2.5, î is

a reflective modification of S( F2 ) when each object S of fl ( i. e., each

closed sink in K ) is identified with (X, A [S] ) where

and

Recall from 1.6 that each object V of K is identified with the sink Sv in
L. Thus, now we identify each h in K with

in where

We shall verify that K (or, more precisely, the full subcategory determined

by objects V with V f K ) is an E-reflective subcategory of S(FL). An

object (X, A) in S(F2) is a collection A of closed sinks with codomain

X . The union of all these sinks is a (not necessarily closed) sink T*=UA

which, by Theorem 4.2 (iii), has a semi-final lift X IWI with g e E.

We claim that g : ( X, A)-&#x3E;W is a reflection map for ( X, A ) .

(a) We claim that g: (X, A)-&#x3E; (Y, A[SW]) is a morphism in S(F2)
(where Y = | W| ). For each sink T = (| Uj hj-&#x3E; X )jE J in A we must show

1) concrete products are products preserved by the forgetful functor.
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that fin ( g, T)C SW . Now fin (g , T) is the final lift (in L ) of |T|g-&#x3E; Y .
This is the least closed sink with codomain Y that contains

for each

Since T C T *, it is clear that each g . hj: Uj -&#x3E; W is a morphism in K ; in

other words each l Uj I g.hj-&#x3E;Y is an element of SW. Thus the sink Sw
is closed, so that fin(g, T ) C Sw -

(b) Suppose that g’: ( X, A) -&#x3E;(Z , A [SV]) is another morphism in

S( Ff). Since X g-&#x3E;| W I is a semi-final lift of T*, to show that g’ fac-

tors through g it suffices to show that, for each i, g’. fi : vi -&#x3E; V is a

morphism. But since g’ is an S(FL)-morphism, 7e A implies

Thus g’ [T*] C A[SV], so that g’. fi is a morphism.

( ii ) =&#x3E; ( i ). Immediate from Proposition 2.2.

(i)=&#x3E; ( iii ). Immediate from Theorems 2.8 and 4.2.

(iii) =&#x3E; (iv). We need only show the existence of concrete products.

If P = ( X Pi-&#x3E;Xi) is a product in X with each Xi = |Vi| , then P is an

A4 -source and its initial lift clearly gives the product of (Vi) in K .

(iv) =&#x3E; ( iii ). By the M-hereditary property, each structured map from

X e X can be written as

with e6 E and m : U -&#x3E; V an initial morphism. Given a structured map

|Q|h-&#x3E;X , then m . e . h : Q - V is a morphism iff e , h : Q 4 Ú is. It follows

that:

( a ) two structured maps

are structurally equivalent iff

are. Since K is transportable and fibre-small and since X is E-co-well-

powered, it is clear that K is strongly fibre-small.
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(b) For each source S

any initial lift is the same as the initial lift of S’ = ( X ei-&#x3E;|Ui| ). Hence
by E-co-well-poweredness it suffices to consider only sources indexed

by sets. Now given a smalls-source S = ( X fi-&#x3E;|Wi|)ie I, let

The induced map f: X - Y belongs to M , so that by the M-hereditary pro-
perty we have an initial lift W of X Lt II Wi t . Thus W is the initial

lift of S.
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