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PULLBACK FUNCTORS AND CROSSED COMPLEXES

by James HOWIE

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XX -3 (1979)

1. INTRODUCTION.

This paper contains a generalisation of a result which appeared
in the authors thesis [8]. It is a classification of those morphisms in

certain categories for which the corresponding «pullback functors» have

coadjoints. Two categories were considered in [81, namely gpd (group-
oids) and S§ (double groupoids). Here we consider the category CC of
crossed complexes, introduced by Brown and Higgins in [6], and an in-

finite ascending chain of full subcategories

CC-0 c eel c .....

The first three terms of this chain are naturally equivalent to SeA

(the category of sets), §pd and j§ respectively, so the result here con-
tains the result in [8] as a special case.

I would like to thank Professor P. J. Higgins for suggesting the

problem in the first place, and for his advice during the preparation of the

manuscript.

2. CROSSED COMPLEXES.

The definition given below is due to Brown and Higgins [6]. Cros-
sed complexes are a generalisation of the «group system s » of B lakers

[1] , the «homotopy systems» of Vfihitehead [ 11] and the«crossed resol-

utions &#x3E;&#x3E; of Hilbschmann [9, 10] .

DEFINITION. A crossed complex C consists of :
(a) a set Co ,

(b) a groupoid C 1 with vertex set Co , source and target maps
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and identities e 1 (x) (xE Co ),
(c ) for each n &#x3E; 2 , a collection I Cn (x) I x f Co ! of groups, with

« boundary maps)

(here C1 (x) = Cl (x, x) is just the vertex group of the groupoid C1 at

the vertex x ), f

( d ) for each n &#x3E; 1 , an action of C1 on the collection of groups

( a E Cn (x) , a 6 C1 (x, y) ), which in the case n - 1 coincides with ac-

tion by conjugation in C1, i, e., b a = a-1 b a,

satisfying the following axioms :

( ii) The maps 6 are homomorphisms of groups, and respect the ac-

tion of C i ;
(iii) §5=0;

( iv) F or c c C2(x), 6 c acts trivially on Cn (X) if n &#x3E; 3 , and 6 c

acts on C2(x) as conjugation by c, i, e., dac = c-1 d c .

Let en(x) denote the identity element of the group

For n &#x3E; 2 , let Cn denote the groupoid

i.e., the disjoint union of the groups {Cn(x)} . Then

is the set of identities of Cn , and the boundary maps extend to groupoid
homomorphisms 5 = 5 n: Cn -+ Cn-1 -

DEFINITION. A morphism of crossed complexes 0: A -&#x3E;B is a collection

of maps On: An , Bn which preserve all the structure.

With the obvious definition of composition of morphisms, crossed
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complexes and their morphisms form a category ee.

DEFINITION. The rank of a crossed complex C is the highest integer r

such that CT is not a discrete groupoid ( i. e.,

If no such highest r exists, C has rank oo . .If Cr is discrete for all r &#x3E;1, C

has rank 0.

For any non-negative integer r , let ee", denote the full subcat-

egory of ee whose objects are all the crossed complexes of rank  r .

We will also use the notation CC°°. for ee.One can show that, for n with

0  n  r$ oo , CCn is both reflexive and coreflexive as a subcategory
of CC. of It

Brown and Higgins [6] describe two other categories equivalent
to ee, one of which is the category of w-groupoids. Using the notion of
«thin elements » ( elements minces) described in [6], we can define an

r-tuple groupoid to be an (D-groupoid G such that every element of Gn is

thin for every n &#x3E; r . Then for 0  r  oo , the equivalence of ee with the

c ategory of (D-groupoids restricts to an equivalence of (!C 4 with the full
subcategory of r-tuple groupoids. In particular, there are equivalences

3. FIBRATIONS.

Recall [4,6] that a morphism O: A - B of groupoids is a fibra-
tion if, whenever x E Ao and b E B1 with 5° b = O (x) , there exists

a E A1 such that O(a) = b and 5 a = x.
We can extend this notion to morphisms in ee .

D E F IN IT IO N . A morphism 0: A -&#x3E; B in CC i s a fibration if each groupoid

morphism On: An - Bn ( n &#x3E;, 1) is a fibration of groupoids.

NOTES. 1° Every morphism in CCo is a fibration for trivial reasons.

2° For n &#x3E; 2, An and Bn are totally disconnected groupoids. Hence
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the condition that 0. be a fibration of groupoids is equivalent to the con-
dition that 4)n map each An ( x ) surjectively onto Bn (O x ) .

If O : A - B is a morphism, and y E Bo , let Fn be the subset

Onl ( en ( y)) of An for each n &#x3E; 1 , and let Fo be the subset O-lo (y) of
Ao . It is easy to show that the sets Fn I n &#x3E; 0} form a sub-complex
F = FO ( y) of A . Call FO ( y) the fibre of 0 over y.

Fibrations of groupoids have been studied by Brown [5]. Many of
the results of [5] may be generalised to apply to fibrations of crossed

complexes. An example is Theorem 3.1 below, for which we must first in-

troduce the notion of «homotopy groups » for crossed complexes.

Suppose x E Ao . Define rr0 ( A , x ) to be the pointed set of compo-
nents of the groupoid AI, with base-point the component containing x .

Define rr1 (A, x) to be the cokernel of 52 (x): A2 (x) - Al (x). Finally,
for r &#x3E; 2 , define rrT( A, x ) to be the subquotient

THEOREM 3.1. Let 0: A -&#x3E; B be a fibration, and let

Then there is a long exact sequence

of groups and pointed sets (in the sense of [5]) s uch that

7r, (F, x ) - 11 1 (A, x) is a crossed module.

Furthennore, the whole construction is functorial in the obvious sense.

4. CATEGORICAL CONSIDERATIONS.

If A is an object of the category 8 , let ( Q, A ) denote the cat-

egory of Q-objects over A&#x3E;, i. e., the category whose objects are Q-rror-

phisms with codomain A and whose morphisms are the obvious commutat-

ive triangles in d .
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If 0: A-&#x3E; B is an Ct-morphism, let 4)* denote the induced functor

If Q admits pullbacks, then every induced functor O * has a co-

adjoint ( = right adjoint ) Po (Q, B ) -&#x3E; (Q, A ). P 0 is the «pullback func-
tor&#x3E;&#x3E; determined by 0 , i.e., if 8: C - B is an object of (Q, B), then :

P§( 0 ) : A X C - A is the pullback (in Q ) of 0 by 4 .
B

Q admits pullbacks iff, for every object B of (I (éî, B) admits

products. If 0: A - B, e : C - B are objects of (d, B ) , then the product
0 x 0 in (Q, B ) is the diagonal arrow of the pullback square :

in 8 , i. e.,

Hence, the functor Ox(-):(S,-&#x3E;(8) is the composite

O * o PO - 0 * has a coadjoint PO , so if Pcp has a coadjoint QO then the

composite 0 x ( - ) has a coadjoint (-)0 = Q o PO. If this is true for any
object 95 of (Ct, B ), then (Q, B ) is a cartesian closed category, and the

following «exponential I 1 a w) holds. Let 0, V’, 0 be objects of (Q,B).
Then

Booth [2,3,4] has studied exponential laws in (Q,B) for various cat-

egories 8 of topological spaces, and sufficient conditions for the exist-

ence of (-)O .

In general, the study of pullback functors and their adjoints is of

interest in connection with topos theory. If Q is a topos, then for every

object A of (t, (S, A ) is also a topos. For every morphism 0: A -&#x3E; B in

(f, the pullback functor Po : (Q, B)-&#x3E; (Q, A) is logical, that is, it pre-
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serves the topos structure. Furthermore, Q§ exists, and the adjoint pair

( Pcp , Qcp) forms a geometric morphism from (Q, A ) to (Q,B) [14].
In particular, if B is the terminal object of d , and 96 : A -* B is

the unique morphism, then ( PO , Qcp) is a geometric morphism from ( Q,A)
to d . Among all geometric morphisms (f* f*) with codomain Q those
which arise in the above way may be classified (up to natural equival-
ence) by the property that f * has an adjoint which preserves equalizers
( see for example [13], 1.4).

In an arbitrary category with pullbacks @ , the class of morphisms
95 for which Qcp exists depends to a large extent on properties of Q. For

example, if d has a zero object Z (and so admits kernels), then the ex-

istence of Qo implies that Ker 0 =z Z . If d is a suitable category of ab-

stract algebras, such as a variety of groups, or of groupes w ith operators,

then one can show that Qcp exists only in the trivial case where 0 is an

isomorphism. On the other hand, if 8 is a topos, such as $z51 , then QO
exists for any 0 .

If Q is one of the categories CCr( 1  r  °°) , there is a non-

trivial classification of those morphisms 0 for which QO exists. They

turn out to be precisely the fibrations. Note that this classification also

holds for r = 0 , since every morphism in CCO is a fibration. This clas-

sification is our main result, and will be proved in the next section. The

proof is essentially the same as that given in [8] for the case U=JL§. 
A corresponding classification result for the case Q= Cat, the

category of (small) categories, was proved by Conduche [12], who gave
conditions on 0 which are necessary and sufficient for the existence of

Qo . Let U: §pd -&#x3E; Cal denote the forgetful functor, and suppose 95 : A-&#x3E; B

is a morphism of groupoids. Then U ( 0 ) satisfies Conduche’s conditions

iff cp is a fibration. To this extent, our results agree with [12].

The following lemma, and its corollary, will be required in the

next section.

L EMMA 4.1. Let Dom: (Q, B) -&#x3E; S denote the « domain » or forget ful func-
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tor, and let C be any small category. Then 0: A - B is the colimit of
the diagram g): C -&#x3E; ( (Q, B) iff A = Dom( 95) is the colimit of the diagram
Dom 0 g): C -&#x3E; Q.

COROLLARY. Let 0: A , B be a morphism in (1. Then the object 0 of
(Q, A) is the colimit of the diagram Q: C --&#x3E; ((f, A) iff O*(8))=O 0 0 is

the colimit of the diagram O *o§: C -&#x3E; (Q, B).

5. RESULTS.

T H EO R EM 5. 1. Fix r ( 0  r  °°), and let O : A , B be a morplaism in

CCr. Then the following are equivalent:
(i) O is a fibration.
(ii) Pcp has a coad joint QO : (CCr, A) -&#x3E; CCr, B).
(iii) X (-) has a coadjoint (-)O (CCr, B) -&#x3E; (CCr , B).

R EM ARK. The equivalence of (ii) and (iii) may be deduced from Lemma

4.1 using the Adjoint functor Theorem. However it is just as easy to prove
it directly.

P ROO F. (ii)=&#x3E; (iii). A s remarked in Section 4, 95 = QO 0 P is co-
adjoint to O X ( - ) .

(iii) =&#x3E; ( i ). If S6 x ( - ) 96 * o Pcp has a coadjoint, it preserves co-

limits. By the Corollary to Lemma 4.1, so does PO. In particular, Pcp pre-
serves pushouts . It is sufficient to prove that :

a) O1 is a fibration of groupoids ; and

b) For x c Ao and 2  n  r , the group homomorphism

is surjective. ( F or n &#x3E; r , this is trivial. )

a) Let T be the tree groupoid with three vertices xo , xl , x2 , i. e.

the free groupoid on the tree

Let To , T 1, T 2 be the full subgroupoids with vertex sets
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respectively. Then

is a pushout in §pd, and so also in eet, if we identify §pd with the

coreflexive subcategory eel of CCr. Suppose

Define a morphism 8: T - B by

Writing T for T X A and T L for T l X A ( i = 0 , 1, 2 ) , we have
B B

By two applications of Lemma 4.1, together with the fact that Po pre-
serves pushouts, if follows that

is a pushout in CCr. Hence 7" is generated by its subcomplexes T1, r2.
Now T=TXA is a subcomplex of TXA, and k = (g1 g2, el (x)) is

an element of T1, since

Hence k can be written as a composite k = k, k2... kn with, for 1  i  n ,

either ki E T 1 or ki E T2 1 . Thus

L et j be the smallest subscript such that S 1h = x. - Then 8° h . = x o ,
so hj £ T . Hence kj$ T , so kj E T , and hj E T . Since 0 hj £- Xo, it

follows that
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Let a - P 0 ( 0) (k, ... kj). Then 6 0 a = x and

Hence cp 1 is a fibration of groupoids.

b) If r  1 , we are finished. Suppose 2  n  r , and let W be the

following rank n crossed complex :

and in the case n = 2, W1 ( xo) acts on W 2 ( xo) by conjugation. ( For

n &#x3E; 3 , there is no need to define an action, since Wi (xo) is trivial. )

Let (B1 , B2 ) be a basis for W n (xo) ( either as a free group or as a free

abelian group). Then {B 1 , B2} is a basis for Wn-](xo). Let Wi (for
i = 1, 2 ) denote the subcomplex of W generated by Bi . That is

and

Win(xo), Win-l(xo) are cyclic with generators Bi, 5Bi respectively.

Let Wo denote th e non-empty rank 0 subcomplex of W. That is,

It is easy to show that the square

is a pushout in CCn ( and hence also in CC,, , since CC" is coreflexive

in CCII ). Suppose x E Ao and 8 c B,, ( 0x ) Ve must find

aE.An(x) suchthat 0(a)= B.

Define a morphism 0: W , B by
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Arguing as in Part a, and writing

we have that

is a pushout in CCr, and i is generated by its subcomplexes W1, w2.
Regarding i as a subcomplex of W X A (and hence Wo as a subset of

Ao ), we have A= ((:3 1 (:321 , en ( x)) E Wn(x) , since

lience k may be written as a product

in W n ( x) with, for 1  i  s, h ( i ) E WI ( Yi ’ x ) for some Yi I W 0 , and
either ki C Wl ( yi) or Ài c i2(yi ) - For each i , po (O ) (khi (iJ) is f3(fiJ orn a n a 8 i

Bq2 (i) for some integer q(i) . . Hence

If d is the highest common factor of the non-zero q(i) ’s, then

is a product of conjugates of powers of Bd1 and Bd2 in W (xo). By the
definition of Wn (xo) , this is impossible for d &#x3E; 1 . Hence d = 1 , and so

there are integers p (i) ( 1  i  s ) such that

Define
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and so On (x ): An (x J -&#x3E; Bn (x) is surjective, as required.

(i) =&#x3E; ( ii ) . The actual description of a coadjoint Q4, to the pull-
back functor Po depends on some rather unnatural-looking constructions.

We will not give a detailed proof - merely describe the construction of 

Qcp (rfr) for a given object alr of (eell’ A ). The details are straightforward
but tedious. We require two definitions.

D E FIN ITIO N . Let 8 : C - D be a morphism of crossed complexes. If G is

a subcomplex of D , then a section of 0 on G is a morphism ç: G - C,
such that 0 o 6 is the inclusion morphism G &#x3E; D.

D E FIN IT IO N . Let 0, C, D be as above. If X is a subset of Dn ( n &#x3E; 0 ),
then a pseudo-section of 0 on X is a set-map 1J: X -&#x3E; Cn such that On 0 1J
is the inclusion map X % Dn -

Now suppose Y : D - A is an object of (CCr , A ) . We must define
an object QO (Y ) : D’, B of (CCr, B). The trickiest part is the descrip-
tion of the crossed complex D’.

Define Do to be the set of all pairs ( y, 6) with y c Bo and 6 a sec-
t ion of y§ on FO (y) . If ( yo , 6o ), ( yl , ç1 )E Do , define

to be the set of all pairs ( b, n) with b E BI ( yo , Y1) and 11 a pseudo-
section of V, on ¢l 1 (b) satisfying the following two properties :

(K1) Whenever g, a, h c Al such that

and gah is defined in A 1 , then

(Ki ) Whenever are such that

then ç 1 (a a) = (ç 0 ( a- ) ) r ( a) in Dn .
If n &#x3E; 2 and (y, ç ) c D’ , define Dn ( y, ç) to be the set of all pairs

(13, ,) with fi c Bn (y) and £ a pseudo-section of rfr on 0-n1 (,8) satis-
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fying the follow in g property:

(Kn) Whenever ao E and are

such that

and

then

The next stage is to define the groupoid structure on Dn for n &#x3E; 1 .

Suppose and

Note that for n &#x3E; 2 , this is possible only if the (yi , gi) all coincide.

Define a pseudo-sectionç’=ç1 ç2 of Y on O-1n (B1B2) as follows. If

a E An ( xo , x2 ) with O(a)=31 32 , then ( since cPn is a groupoid fihra-

tion) we can find x i e Ao and a1 E An (xo , x1) with cP (a 1 ) = (3 1 . Let

(so that O (a2 ) =(3 2 ), and define )= ( a ) =ç1 ( al ) (2(u2).
It follows from ( K1 ) and (Kj ) ( for n - 7 ), or from ( Kn) (for n &#x3E; 2 ),

that ç1 ç2 is well-defined, and that

Define

We must also define boundary maps for D’. Suppose n &#x3E; 2 and

( 13, C) f Dn’(y, 6) for some ( y, ç)E Do’ . Define a pseudo-section (60 ’
of Y on 0 - 1 5,8) as follows: Suppose

(For n&#x3E; 3 , this implies x’ = x ) . Since O(x) = y and 0 is a fibration,
we can choose a c An (x) with 0 (a) = f3 . Then c = a 5a)-1 is defined

in An 1 with 0(c) = en-l(y). Define

It follows from (Kn) that (5ç) is well-defined, and that
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Define 8 ( B, £) = ( 8B , 8 £) .

Finally, we must define the action of Di on the collection of

groups Dn for n &#x3E; 2 . (The action of Di on its own vertex groups may be

defined to be by conjugation in Di.) Suppose

D efine a pseudo-section of on as follows. If

then (since O&#x3E;1 is a groupoid fibration ) we can find

Define

It follows from (K’i ) and ( Kn ) that ç(b,n) is well-defined, and that

Define

The various crossed complex axioms for D’ follow from those for

A, B and D by virtue of the conditions (Kn) ( n &#x3E; 1) and (K 1)’ as does
the fact that rank D’  r . It is clear that the rules

determine a morphism Qo (Y) : D’ - B of crossed complexes.

All that remains is to check that the definition of Qcp extends to

a functor (eer, A ) -&#x3E; (CCr, B ) , and that (PO, Qo) is indeed an adjoint
pair. This is straightforward.

COROLLARY 1. If B is a rank 0 crossed complex, then (CCr B) is a

cartesian closed category.

P ROO F. This follows from the Theorem and the remark that any morphism
with rank 0 codomain is a fibration.
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COROLL ARY 2. CCr is a cartesian closed category.
P ROO F. eer, has a terminal object, namely the rank 0 crossed complex
* such that *o is a singleton. By Corollary 1, (CCr,*) is cartesian

c losed. But since * is terminal, Dom : (eer, *) -&#x3E; ee/1, is an equivalence.

COROLLARY 3. Any colimit diagram in ee/1, can be « pull ed back » along
a fibration to another colimit diagram o f the same type.

P ROO F. If B is the colimit of a diagram S: C-&#x3E; CCr, let (D, B ) denote

the diagram C -&#x3E; (CCr, B ) which sends every object C of e to the cano-

nical morphism :D( C) -&#x3E; B in ee/1, . Then

so by Lemma 4.1, 1 dB is the colimit of (D, B ) .
if 0 A - B is a fibration, then the « pullback of the diagram T along

O is just the diagram Dom o Po o ( Ð, B). But both Dom and PO preserve
colimits, by Lemma 4.1 and Theorem 5.1. ilence

NOTE. Corollary 3 contains as a special case the fact that colimit dia-

grams in §pd can be «pulled back)) along coverings to colimit diagrams
of the same type. For a direct proof of this, see Higgins [7].

6. REMARKS.

Corollary 2 to Theorem 5.1 states that, for any fixed r , CC,, is a

cartesian closed category. That is, if A is any crossed complex of rank

not greater than r , then A X(-): CCr -&#x3E; CCr has a coadjoint (-)A . Let
C be any object of eell’ and let * be the terminal object. Replacing glr by
the projection A X C -&#x3E; A and 0 by the canonical morphism A - * in the

proof of Theorem 5.1, we obtain the following description of the crossed

complex CA :

(CA)o is the set of morphisms A -&#x3E; C in CCn, i.e.,
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If are morphisms, then is the set of

maps n: Ao - C1 satisfying the properties :

If g: A - C is a morphism and n &#x3E; 2 , (CA)n (ç) is the set of maps

C satisfying the property :

Suppose A , B, C are objects of eelt. Let XA denote the map

CCr( B, C)-&#x3E; CC,,,( BA, CA ) determined by the functor (- )A . One can
also show the following

THEOREM 6.1. There is a morphism w : CB -&#x3E; (CA)(BA ) in CC,, such
that wo = XA 

If A is connected ( i. e., if A 1 is a connected groupoid), then we

c an obtain the following alternative description of the groups (CA ) n (ç)
(n &#x3E; I , ç E (c A)o ):

Choose an arbitrary element x of Ao , and let y = ç ( x) E Co . Then

for n j 2 , ( CA )n (ç ) is isomorphic to the subgroup of Cn (y) consisting
of those elements left fixed by the action of ç ( A 1 ( x) ). (CA) 1 (ç) is

isomorphic to the subgroup of C 1 ( y) consisting of those elements which

act trivially on ç ( An ( x)) for all n &#x3E; 1 . In particular, if either A or C

has rank not greater than 1, (CA)1 (ç) is isomorphic to the s centraliser

of ç ( A 1 ( x )) in C 1(y).
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