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NOTE ON UNIVERSAL TOPOLOGICAL COMPLETION

by Rudolf- E. HOFFMANN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XX -2 (1979)

In [8] (1.3) H. Herrlich has introduced a universal topologies 

completion E3: (A, U)- (A3, U3) of a faithful and amnestic 1) func
U: A- X . His examples [8] (3.1 a,b) are in a sense «nega,tive». T

purpose of this paper is to obtain - essentially by the aid of our form

investigations [9, 12] - some «positive» examples, i.e. satisfactory rt

terpietations of the «universal topological completion category» A3 fl- 1.

several familiar functors U : A - X . As an essential application of the . 

interpretations we shall see that even for the forgetful functor

U: Comp- T2 (compact T2-spaces and continuous maps) - Ens

the Mac Neille-Antoine-completion is strictly smaller than the universe 

topological completion.
We give a necessary and sufficient condition for a functor U: A-X

admitting a factorization (1, M) of relative cones ( as indicated in [12],

cage 288) in order that its universal topological completion coincides with

its -canonical extension [12] (1.4). So we only verify the condition undo

which this happens for the examples obtained in [12] Section 3 (and si-

m ilirly for some examples of [9] ) in order to ensure all of them being ex-

amples of the present situation. The general condition obtained implies
that the functor U in question has to be topologically-algebraic in the
sense of S.S. and Y.I-I. Hong [15, 16].

We note that there is a formal analogy between this paper and [14]

concerning the fact that the results of this paper depend on a crucial idea,
that of a basis of a W-co-sieve (1.2), parallel to ( but very much different

from) the concept of a subbasis in [14]. (The present results are, of

course, not comparable with those in [14]. )

1) The hypothesis of amnesticity may be discarded as is pointed out in [ 13]. Then
E3 as constructed in [8], 1.3 will be non-injective on objects, i. e. E3 is only
full and faithful. ( Replacing A3 by an equivalent copy one still obtains an em-

bedding (U,A )- (U,A3).)
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We are working in a fixed universe U . Other than in [8] the cons-

tructions, if necessary, will be carried out in the next universe U+ (with
U E U+ ). Recall that a category C is U-legitimate iff

for every pair A, B of objects of C ; a set M is U-small (resp. a U-class)

iff M E U ( resp. M C U ).

1.1. Suppose W:A-X is a faithful functor. The objects of Au (Herr-

lich’s A3 , [8] page 103) are certain W -co-sieves [13, 22] ; i. e. pairs

( X ,E) with XE Ob X and E a collection of pairs ( u , A ) with

subject to the following requirements :

(i) If (u. 1) E E and g :A -B is an A-morphism, then (W (g) u, B E E,
i. e. (X, 6) its all-co-sieve.

(ii) If (1. - Ai}iEI) is a W-co-identifying cone ( = W-initial

source in [6,8]) indexed by a 1)"’-small set 1 and u : V , WA is n Y-
morphism such that r W (fi) u , Ai)EE for every i E I , then ( U, A)EE.
The morphisms of 1"’ from ( X, E) into (X’,E’) are those X-morphisms

v : X, X’ such tha:

(Hom-sets bave to be made disjoint in the canonical way.) Composition
in Au is othe same » as in X .

A faithful functor Wu:Au-X is obtained by the assignment

A full and faithful functor F : A- 4 U is described by

( F is an embedding iff W is amnestic. )

Note that Au need not be II -legitimate [8] (3.1 b). We observe

that W is a topological functor in the universe U+ (W trivially satisfies

the U+-smallness condition [10] , 2.1 (a) 1). In view of [8] (1.3.3),
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F : ( A, W) - (Au, WU) may be called the universal topological completion

o f the faithful functor W: A , X .

1.2. For application in the proof of our criterion (1.7) we need the notion

of a W-basis of a W-co-sieve consisting of an X-object X and an arbitra-

ry collection /3 of pairs (u , A) with

The W-co-sieve (X, (3 ’) generated by (X, (3) is

(X, I ( v: X- WB, B) I there is some (u, A)EB and some

1.3. (a) Suppose W : A - X is a functor. A W-relative cone consists of a

set I , an I-indexed family { Ai}iE I of A -objects and a cone

in X . A factorization of W-relative cones consists of a class 1 of W-epi-

morphisms 2) and a class M of cones in A indexed by sets ( up to a suit-

able size - see below) subject to the following requirements :
0 ) For every A -isomorphism k : A - B holds (W k, B)f 1. ( A s a

consequence, W has to be faithful. ) Furthermore, if

and k: A -&#x3E; B is an A-isomorphism, then

(1) For every W-relative cone ( X ; ui : X-WAi , Ai licj) whose in-

dex set does not exceed a certain size (to be specified below) we assume

the existence of members (u: X -WA, A) and (A, {mi: A- Ai}iEI.
of J and, re sp. , M such that W ( mi) u = ui for every i E I.

( 2 ) ( J , M) satisfies a diagonal condition : Whenever

2) A W-epimorphism is a pair ( u , A ) with AE Ob A , uE HomX(X,WA), such that,
whenever W ( f ) u = W ( g ) u for some f, g E Hom A (A,B) with B( Dbj, then

f - g 
-



202

commutes for every i (I w ith

then there exists a (necessarily) unique A -morphism

(hence) mi h = fi for every i E I ( since W is faithful and, A) is a W-

epimorphism ).
(3) The upper cardinal bound for the index sets I may be chosen as

the cardinal of the universe U itself.

For the following it will be relevant to observe that a W-relative

cone (X,{ui:X-WAi,AI}Iei) whose index set I is too large can be

suitably re-indexed; Take the identity on the set {(ui, Ai) iEI} of W-
morphisms ». After factorizing this W-relative cone according to (1), one

may re-index the M-cone thus obtained by the set I . Thus the meaning of

M-cone is extended to the case of arbitrary index sets : (0), (1), ( 2 ) re-

main valid (cf. [10] 2.0 3) ).

Generalizing H. Herrlich’s concept in [7], this definition was pro-
posed in [12] page 288, but not explicitly given. A (variant of a) special
case was studied earlier by Y.H. and S.S. Hong [15,16]. The concept
also appears in a recent series of preprints of N". B. VG’ischnewsky and W.

Tholen; some details given below were worked out independently by these

authors and by myself ( unpublished ).

(b) Under the hypothesis that W admits a factorization ( J , M) of

relative cones, one readily observes that:

3) Note that in [10] the terms «cone» and « co-cone » are interchanged.
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(1 ) W has a left adjoint L , given by factoring the relative cones

with domain X E O b X and «co-domains» varying over all A c 0 b A .

( 2 ) With

we obtain a factorization of cones in A subject to the requirement that

EA E E for the co-unit E : L WA - A of the adjunction L- W. (*)

(3) Conversely, given a (faithful) right adjoint functor W: A , X

w ith unit n: idX - W L and a factorization ( E, M ) of cones in A subject
to condition (*) , then W admits a relative factorization (J, M) of cones

with

From (1), ( 2 ), ( 3 ) and the theorem on factorizations in [11] 1.1,
we deduce by the intersection property ( [11], 1.2 ( c ) ) that, if W admits

a factorization of relative cones, then W also admits a smallest factor-

ization (J, M) of relative cones in the sense that J is the smallest pos-

sible class of W-epimorphisms inducing a factorization of W-relative cones.

Furtherm ore, by ( 1 ), ( 2 ), ( 3 ) many of the standard results on fac-

torizations of cones carry over to factorizations of relative cones (cf.

[11] Section 0), e. g. that f determines M and vice versa.

1.4. (a) With the preceding definition one has the following Lawvere type
comma construction (cf. [12] 1.4) which we shall call the J-canonical

extension of Al.

Suppose 9/: A-X is a (faithful) functor admitting a factorization

(J, M) of W-relative cones. The objects of AJ are precisely the members

of J . The morphisms of 1.1 from (u: X-WA, A) to (v: Y-WB, B) are

pairs ( s , g ) E HomX ( X , Y ) X HomA ( A , B ) such that
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commutes. (Hom-sets are made pairwise disjoint in the standard way.)

Composition is defined co-ordinatewise.

There is a full embedding f : A fl Al with

and a faithful functor Wl : AJ - X mapping ( u , A), ( s , g) into their first

coordinate.

(b) Moreover WI: Al -+ X is a topological functor (in the wider sense
of [4; 6; 10, 2.1 (b)] ): Suppose {(ui: Xi , WAi , Ai)}iEI is a family of
objects of Al and ( X, si : X - Xi }iE I) is a cone in X , then factor the

W-relative cone

in order to obtain a member (u:X-WA,A) of J and a member

of M . In an obvious way these data are interpreted as a cone in Af which
turns out to be the Wl.co-identifying lift of the given (lifting) datum.

1.5. LEMMA. Suppose W: A+ J admits a factorization ( J , M) o f relative

cones. If (B, {mi:B- Bi} iEI)E M, then ( B, { mi}iEI) is W- co-identifying.
PROOF. For a cone (A , I fi: A , Bi Ji( I) in.4 and a morphism

for every i EI,

consider

By 1.3 (2) there exists a morphism h : A - B with W h = v . Since W is

faithful, h is uniquely determined.

1.6. THEOREM. Suppose jV: A - X admits a factorization (1,M) o f rel-
ative cones, then there is a full and faithful functor K : Au- 41 with:
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PROOF. Let (X,6)cObA’. (X,C) may be considered as a W-relative

cone and may be factored by 1.3 (1) into a member ( p : X - tFB, B) of

J and an M-cone

, then there is a mapping

thus the following square commutes

with

By the diagonal condition 1.3 ( 2 ) there exists a morphism

Thus a functor K : Au -AJ with WJ o K = Wu is defined. One readily
checks that K o F= ,l . Now suppose that we are given the commutative

square

with h E MorA ( B, B’) and with p, p’ arising from (X ,E) and, resp.,

by factoring (but no further hypothesis on ,

then hence
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morphism. In consequence,

1.7. THF0REM. Suppose W: A - X is a faithful functor. Then the follow-
ing assertions are equivalent:

(a) W admits a factorization ( J, M ) of relative cones such that there
is an equivalence K: Au - Al with WJo K = Wu and K o F = J .

(b) There is a factorization

(J* {W-co-identifying cones indexed by U-classes}

o f W-relative cones.

I f (a) or (b) is satisfied, then

1 = 1*, M = {W-co-identifying cones indexed by U-classes I .
P ROOF. (a) = ( b ) : Since F preserves co-identifying cones [8] (1.3.1),
so does J . Suppose

is W-co-identifying, thus (u:WB-WA, A) as constructed in 1.3 ( b ) from

(replacing the corresponding data in 1.3 ( a ) ) must be of the form

(W(k), A) for an isomorphism k : B - A .

In consequence,

Now, conversely, suppose that (

is W-co-identifying by 1.5.

(b) = (a) : 5e use the same functor K as constructed in the proof
of 1.6 when applied to

(1 , {W-co-identifying cones indexed by U -classes }).
Suppose that (v: X -WB, B )E J* and consider the W-co-sieve (X, 6)
generated by the W-basis { (v, B) I We have to verify 1.1 ( ii ) four 6 : If



207

for every iE 1 , then - by hypothesis - u i = W (gi ) v for some gi : B - Ai in

A , hence we have a commutative diagram

Since (v, B ) f ,j and ( A , {f i}iEI) is W-co-identifying, there is - by hypo-
thesis - a «diagonal» h: B - A with u = W(h)v , hence (u, A) c In

consequence, ( X ,E)E Au. The «composite» of (v, B) and the W-co-iden-

tifying (, ! ) cone of all A-morphisms with domain B ( including idB!) is
(X, 6) ; hence K(X,E) is equivalent to (v, B).

1.8. R EM ARKS. (i) If (a) and (b) of 1.7 are satisfied, then

( E,{W I W-co-identifying cones in A})

is the smallest factorization of relative cones which W admits.

(ii) Under the hypothesis of 1.6, A u is U-legitim ate (cf. [14] ).

’B1:le observe that the J-canonical extension of a faithful functor W

admitting a factorization of relative cones itself has a very natural univer-

sal property which is completely analogous to the result in [9] 1.1 (since

the J-canonical extension is analogous and, moreover, in some sense a

generalization of the construction in [6] 9.1 ) : 

1.9. THEOREM. Suppose W:A-X admits a factorization (1,M.) of rel-
ative cones ; suppose T : Y - X is a topological functor which lifts iso-

morphisms uniquely. Suppose G : A - Y with T o G = W takes every M-
cone in A into a T-co-identifying cone in Y . Then there is a unique func-
tor Gl : AJ- Y with

which takes all WJ--co-identifying cones into T-co-identifying cones.
P ROO F . CI maps ( u : X - W A , A) (1 into the domain B of the unique

( ! ) T-co-identifying morphism f: B - A with T ( f) = u . The remaining
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considerations are completely given in the proof of the analogous result

[9] 1.1. 

1.10. REMARKS. (a) If W : A - X is a topological functor, then it ob-

viously satisfies the conditions of 1.7 ( b ).

( b ) If T : A - X is an (I, N )-topological functor in the sense of [6]
- where (I , N) denotes a factorization of cones in X - then (IT, NT) is

a factorization of cones in A satisfying the condition in 1.3 ( b ) ( 2 ), with

and

NT : all T-co-identifying cones indexed by U-classes which
are taken by T into N -cones} .

SECTION 2.

In this section we investigate examples. In order to get an inter-

pretation of the universal topological completion for W: A - X we shall

in some cases verify the conditions of 1.7 and, moreover, that I of 1.7
(b) is the class of all W-epimorphisms. Then we obtain the examples of

[12] Section 3. In some other cases we will use that Au coincides with

the construction in [61 9.14). Then we shall obtain examples from [6] and
[9] 1.8, 2.8.

lke begin with a list of examples whose universal topological com-

pletions will be investigated. The underlying sets of the structures men-

tioned are always supposed to be U-small.

2.1. EXAMPLES.

( E1) The forgetful functor W: Gr - Ens with

Gr = groups and homomorphisms.

( E 2 ) The forgetful functor W : A b Gr - Ens with

A bGr = abelian groups and homomorphisms.

4) We observe that this construction yields a topological functor only if the functor
to which it is applied is a relatively topological functor in the sense of [6].
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(E 3) The forgetful functor W : So b - Ens with

Sob = sober spaces and continuous maps.

( E 4 ) The forgetful functor W : C-Unif - Ens with

C-Unif = C auchy-complete separated uniform spaces
and uniform ly continuous maps.

( E 5 ) The forgetful functor W : C omp- T 2 -+ Ens with

Comp-T2 - compact T2-spaces and continuous maps.

( E 6 ) The forgetful functor W : C-qM et - Ens with

C-qM et = C auchy-complete separated qmetric spaces

and non-expansive maps.

d : M X M -[0,oo] is called a q-metric on M iff

(1 ) d(x, y) = d(y, x),
(2) d(x, x) = 0,

(3) d(x, y)~ d(x,z)+d(z,y),
for any elements x, y, Z c M (Separated means

( E 7 ) The forgetful functor W : qBanK - vecK with

vecK - K-vector spaces and K-linear maps ( K = R or C),

q BanK = category of qB anach K-spaces and non-expansive maps.
The prefix « q» indicates that 11 x ll =oo has to be admitted (in order to

make this functor W right adjoint ).
( E 8 ) The forgetful functor Wi: Ti - Ens with

Ti = Ti-spaces and continuous maps

( i - 0, 1, 2, 3 ; T3 - regular and To ).

( E 9 ) The forgetful functor : Sep-Unif - Ens with

Sep-Unif = separated uniform spaces and uniformly continuous maps.

(Similarly for proximity spaces. )
(E 10) The forgetful functor W: Poset - Ens with

Poset = Partially ordered sets and isotone maps.
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( E11) The forgetful functor W: Sep-qm et - Ens with

Sep-qMet = separated qmetric spaces and non-expansive maps.

(E 12) The forgetful functor W: Sep-qn-VecK- VecK with

VecK = K-vector spaces and K-linear maps,
Sep-qn-vecK = separated quasi-normed K-vector spaces

and K-linear non-expansive maps

(quasi-normed means that

is admitted; separated means that 11 yll=0 implies y = 0 ).

(E 13) The forgetful functors

W: To-k-spaces, sequential To-spaces, resp. locally connected

To-spaces ( and continuous maps Ens.

2.2. In case of the category Gr of groups it is due to J . C . Taylor [21]

(example 4) that the W-co-identifying cones are precisely the joint-in-

jective cones (in case that the index set is O, we add that it is precisely
the 0-group). It is well known that

(I Gr-epimorphisms} joint-injective cones in Grl

is a factorization of cones in Gr which satisfies the requirement of 1.3

(b) (2) above (note that

Gr-epimorphism = surjective homomorphism

The elements of the associated class J are now easily recognized as be-

ing groups G together with a map q5 : M - G such that the image O[M]
«generates» G , i. e., groups G equipped with a distinguished family of

generators.

The situation with A b Gr is analogous (and simpler ).

Some topological examples will be handled with by the aid of the

following lemma, a special case of which I learned from [17] ( Y = T1) :

Suppose JV : Y - Ens is a faithful functor and let
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commute for some functor V and the usual forgetful functor T0 - Ens .
Furthermore, we assume the following conditions to be satisfied:

(i) For every X , Y E Ob Y with WX =O and every constant map

95 : WX - W Y there is a morphism f : X - Y in Y with W (f)=O .
( ii ) There is some Yo c Ob Y such that VY0 is a non-discrete space.

2.3. L EMM A. Under the above hypotheses one has :

I f (A , {gi : A- Bi lif I) is a W-co-identifying cone in Y , then

is joint-injective (if I = (J, then card WA  1 ).

PROOF. Suppose (Wgi)(x) = (Wgi)(y) for some x, y E W A, x # y and
every i E I . Since V Y0 is non-discrete, card W Y0 ~ 2 . Since V A is To ,
there exists an open subset U of V A containing x , but not containing

y (or vice versa). Let S be any subset of WY0 and let

then 1 is a constant map, hence

by condition ( i ). In consequence, there is a morphism

hence xS: V YO - v A is a continuous map, so S = XS-1 (U) is open in
v Yo for every subset S of W Y0 , hence V Y0 is discrete - contradicting
our hypothesis ( ii ).

2.4. To (E3 )-( E6) one may apply 2.3. All these categories have a fac-

torization

( {epimorphisms}, I W-co-identifying mono-cones })
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as is readily deduced from the characterization of epimorphisms in these

categories (cf. [12] Section 3), hence by [12] 3.1- 3.4 we obtain the fol-

lowing interpretations of A" ( the embedding J: A 44 U and the forget-
ful functor Wu: Au -Ens are to be understood as the obvious functors ) :

(E3) Au = Top ;
(E4) Au = Unif ;
( E 5 ) Au = Prox (proximity spaces and uniformly continuous maps);
(E6 ) Au = qMet.

2.5. To (E8)-(E11) one can also apply 2.3. All these categories have

a factorization

(I morphisms f with W f surjective}, {W-co-identifying mono-cones}

The co-units of the adjunction are (pointwise) bijective, hence 1.3 (b)

( 2 ) is satisfied. The appropriate canonical J-extension coincides in these

cases with the construction in [6], 9.1, hence we have a description of
,4u from [9] 2.8:

Ri = Ri -spaces and continuous maps.

A space is Ri iff its To-quotient is Ti + l ( i - 0 , 1, 2 ) ( A . S. D avis [5]).

Rn-spaces are also known as symmetric spaces

or as weakly regular spaces of A. N. Shanin [20]. A space X is R 1 iff

whenever a filter F on X converges to both x, y c X then cl Ix J = cl {y} .
R2-spaces = regular spaces (without T0). (For similar definitions see

H . J . Kowalsky [18].)

(E9) Au = Unif.
(E 10) Au = Preord (preordered sets and isotone maps ) 5).
(E11) Au = qmet.

5) A pre-ordered set X becomes a space X with a basis consisting of all sets :

thus 2.3 applies to Poset.
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2.6. By considerations similar to those for To ( E 8 ) it follows for ( E 13 )

that Au is obtained by the construction of [6], 9.1. Then it follows by

[9] 3.14 (on bi-co-reflective subcategories of Top containing a non-dis-

crete space) that

Au = k-spaces, sequential spaces, resp. locally connected spaces
(and continuous maps).

The examples ( E 7 ) and (E12) are handled with by the following

analogue of 2.3.

2.7. L EMMA. Let W: qBanK, resp. Sep-qn-vecK - VecK denote the ob-
vious forgetful functor; then, for every W-co-identifying cone

(WA, {W(gi)}iEI) is joint-injective.

P ROOF. Suppose 

then consider the K-vector space C endowed with the quasi-norm

The inclusion j : ( C,ll . ll ’) - ( A ,ll - ll A) is expansive ( (A, 11 . llA) is
separated, hence

but gi j = 0.

In view of 2.7 one may apply to qBanK and Sep-qn-VecK the cons-

tructions 1.4 (a) (with J = {W-epimorphisms}) and, resp., [6] 9.1 in order
to obtain :

(E7) Au = qn-VeCK 
(E 12) Au = qn-vecK .

N. Bourbaki ([3] page 103) has mistakenly attributed a wrong

universal property to the Mac Neille completion of a poset. This error has

been observed by P. Ringleb [19]. Ph. Antoine, who has introduced the
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analogue of the MacNeille completion 
6) for Ens-valued faithful functors,

has made (independently) an analogous false claim for a universal pro-

perty of his construction [1, 2]. A counterexample showing that this is

not true was given by H . Herrlich [8] (3.1 a). Maybe it is surprising to

observe that even in a non-artificial application, namely for the forgetful
functor W: Comp-T2 - Ens, the MacNeille completion is different from

the universal topological completion.

2.8. LEMMA. Let W: A - Comp-T2 , Ens, then the Mac Neille - Antoine

completion MN(Comp-T2) of W is properly embedded in Au = Prox ( com-
patibly with the embeddings and forgetful functors).

PROOF. According to a result of [13], MN(Comp-T2) may be interpreted
as the full subcategory of Top consisting of those completely regular

spaces which are complete regularization of their associated k-spaces,
i, e. X = c k X ( c, k designating completely regular reflection and, resp.,

k-space co-reflection; completely regular does not include To ; k-space
means having the final topology with regard to continuous maps from com-

pact T2-spaces). An embedding MN(Comp-T2)- Prox is obtained by

assigning to X its Stone-Cech-compactification. Since, of course, not

every compactification is equivalent to a Stone-Cech-compactification, the
result is established.

It will be shown elsewhere (Mac Neille completion of the categ-

ory Ban1 of Banach spaces») that in cases (E7), (E 12 ) the MacNeille

completion coincides with the universal topological completion, in other

words that it has the natural universal property.

After having finished this manuscript, I received a preprint of H.

Herrlich and G. E. Strecker ( Semi-universal maps and universal initial

completions ») in part overlapping, in part complementing, with this paper.

6) This analogy was observed by H. Herrlich [8] and by myself [13] independ-
ently.
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