CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

ANDRÉE EHRESMANN

CHARLES EHRESMANN

Multiple functors. IV. Monoidal closed structures on *Cat_n*

Cahiers de topologie et géométrie différentielle catégoriques, tome 20, nº 1 (1979), p. 59-104

<http://www.numdam.org/item?id=CTGDC_1979__20_1_59_0>

© Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MULTIPLE FUNCTORS IV. MONOIDAL CLOSED STRUCTURES ON Cat_n

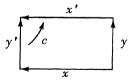
by Andrée and Charles EHRESMANN

INTRODUCTION.

This paper is Part IV of our work on multiple categories whose Parts J, II and III are published in [3, 4, 5]. Here we «laxify» the constructions of Part III (replacing equalities by cells) in order to describe monoidal closed structures on the category Cat_n of n-fold categories, for which the internal Hom functors associate to (A,B) an n-fold category of «lax hypertransformations» between n-fold functors from A to B.

As an application, we prove that all double categories are (canonically embedded as) double sub-categories of the double category of squares of a 2-category; by iteration this gives a complete characterization of multiple categories in terms of 2-categories. Hence the study of multiple categories reduces «for most purposes» to that of 2-categories and of their squares, and generalized limits of multiple functors [4, 5] are just lax limits (in the sense of Gray [7], Boum [2], Street [10],...), taking somewhat restricted values.

More precisely, if C is a category, the double category Q(C) of its (up-)squares



is a laxification of the double category of commutative squares of the category of 1-morphisms of C; a lax transformation Φ between two functors from a category A to $|C|^{I}$ «is» a double functor $\Phi: A \rightarrow Q(C)$:

$$\begin{array}{c} e' \\ a \\ e \end{array} \mapsto f'(a) \overbrace{c(a)}^{\Phi(e')} f(a) \\ \hline \phi(e) \end{array}$$

 $(\Phi \ \text{sis})$ a natural transformation iff c(a) is an identity for each a in A). Similarly, to an *n*-fold category A, we associate in Section A the (n+1)-fold category CubB (of cubes of B), which is a laxification of the (n+1)-fold category SqB (of squares of B) used in Part III to explicit the cartesian closure functor of Cat_n .

In Section B, the construction (given in Part III) of the left adjoint Link of the functor Square from Cat_n to Cat_{n+1} is laxified in order to get the left adjoint LaxLink of the functor Cube: $Cat_n \rightarrow Cat_{n+1}$. While Link A, for an (n+1)-fold category A, is generated by classes of strings of objects of the two last categories A^{n-1} and A^n , the *n*-fold category LaxLink A is generated by classes of strings of strings of objects of «alternately» A^{n-2} and A^{n-1} or A^n (so we introduce objects of A^{n-2} instead of equalities).

Lax Link is a left inverse (Section C) of the functor Cylinder from n-Cat to (n+1)-Cat associating to an n-category B the greatest (n+1)-category included in CubB.

The functor $Cub_{n,m}$ from Cat_n to Cat_m is defined by iteration as well as its left adjoint. They give rise to a closure functor $LaxHom_n$ on Cat_n mapping the couple (A, B) of *n*-fold categories onto the *n*-fold category $Hom(A, (Cub_{n,2n}B)^{\gamma})$, where :

- Hom is the internal Hom of the monoidal closed category (considered in Part II) ($\coprod Cat_n$, \blacksquare , Hom),

- $(Cub_{n,2n} B)^{\gamma}$ is the 2*n*-fold category deduced from $Cub_{n,2n} B$ by the permutation of the compositions γ :

 $(0, \ldots, 2n-1) \mapsto (0, 2, \ldots, 2n-2, 1, 3, \ldots, 2n-1).$

The corresponding tensor product on Cat_n admits as a unit the *n*-fold category on 1.

«Less laxified» monoidal closed structures on Cat_n are defined

MULTIPLE FUNCTORS IV

by replacing at some steps the functor *Cube* by the functor *Square*; the «most rigid» one is the cartesian closed structure (where only functors *Square* are considered [5]). For 2-categories, Gray's monoidal structure is also obtained.

Existence theorems for the «lax limits» corresponding to these closure functors are given in Section D. In fact, we prove that, if B is an *n*-fold category whose category $|B|^{n-1}$ of objects for the (n-1)-th first compositions admits (finite) usual limits, then the representability of B implies that of the (n+1)-fold categories K = Sq B, Cub B, Cyl B; therefore, according to the theorem of existence of generalized limits given in Part II, Proposition 11, all (finite) *n*-fold functors toward B admit K-wise limits. In particular, the existence theorem for lax limits of 2-functors given by Gray [7], Bourn [2], Street [10] is found anew, with a more structural (and shorter) proof (already sketched in Part I, Remark page 271, and exposed in our talk at the Amiens Colloquium in 1975) *.

The notations are those of Parts II and III. If B is an *n*-fold category, <u>B</u> is the set of its blocks and, for each sequence (i_0, \ldots, i_{p-1}) of distinct integers lesser than *n*, the *p*-fold category whose *j*-th category is B^{i_j} is denoted by $B^{i_0, \ldots, i_{p-1}}$.

* NOTE ADDEDIN PROOFS. We have just received a mimeographed text of J.W. Gray, *The existence and construction of lax limits*, in which a very similar proof is given for this particular theorem. The only difference is that *Cat* is considered as the inductive closure of $\{1,2,3\}$ (instead of $\{2\}$) and that the proof is not split in two parts:

1º existence of generalized limits (those limits are not used by Gray),

2° representability of Q(C) and CylC for a 2-category C (though this result is implicitely proved).

A. & C. EHRESMANN

BIBLIOGRAPHY.

- 1. J. BENABOU, Introduction to bicategories, Lecture Notes in Math. 47, Springer (1967).
- 2. D. BOURN, Natural anadeses and catadeses, Cahiers Topo. et Géo. Diff. XIV-4(1973), p. 371-380.
- 3. A. & C. EHRESMANN, Multiple functors I, Cahiers Topo. et Géo. Diff. XV-3 (1978), 215-292.
- 4. A. & C. EHRESMANN, Multiple functors II, Id. XIX 3 (1978), 295 333.
- 5. A. & C. EHRESMANN, Multiple functors III, Id. XIX-4 (1978), 387-443.
- 6. C. EHRESMANN, Structures quasi-quotients, Math. Ann. 171 (1967), 293-363.
- 7. J. W. GRAY, Formal category theory, Lecture Notes in Math. 391, Springer (1974).
- 8. J. P ENON, Catégories à sommes commutables, *Cahiers Topo. et Géo. Diff.* XIV-3 (1973).
- 9. C.B. SPENCER, An abstract setting for homotopy pushouts and pullbacks, Cahiers Topo. et Géo. Diff. XVIII-4 (1977),409-430.
- R. STREET, Limits indexed by category-valued 2-functors, J. Pure and App. Algebra 8-2 (1976), 149-181.

U.E.R. de Mathématiques 33 rue Saint-Leu 80039 AMIENS

A. The cubes of a multiple category.

The aim is to give to Cat_n a monoidal closed structure whose tensor product «laxifies» the (cartesian) product (by introducing non-degenerate blocks in place of some identities). The method is the same as that used in Part III to construct the cartesian closed structure of Cat_n .

The first step is the description of a functor Cube from Cat_n to Cat_{n+1} , admitting a left adjoint which maps an (n+1)-fold category A onto an *n*-fold category LaxLkA, obtained by «laxification» of the construction of LkA.

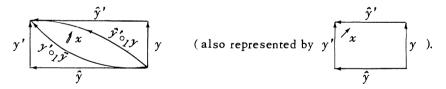
1° The «model» double category \boldsymbol{M} .

To define the Square functor, we used as a basic tool the double category of squares of a category C, whose blocks «are» the functors from 2×2 to C. The analogous tool will be here the triple category of cubes of a double category, obtained by replacing the category 2×2 by the «model» double category M described as follows:

Consider the 2-category Q with four vertices, six 1-morphisms

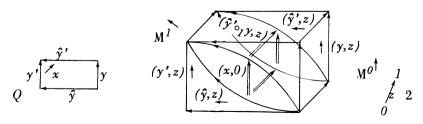
 $y, y', \hat{y}, \hat{y}', \hat{y}'\circ_{I}y, y'\circ_{I}\hat{y},$

and only one non-degenerate 2-cell $x: y' \circ_1 \hat{y} \to \hat{y}' \circ_1 y$ in Q^0 :



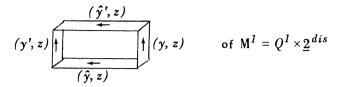
(Intuitively, Q consists of a square «only commutative up to a 2-cell».)

The model double category M is the double category $Q \times (2, \underline{2}^{dis})$, product of Q with the double category $(2, \underline{2}^{dis})$:

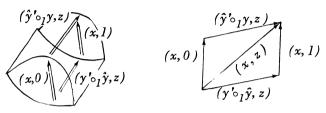


A.&C. EHRESMANN

It is generated by the blocks forming the non-commutative square



and those forming the commutative square («cylinder») of $M^0 = Q^0 \times 2$:

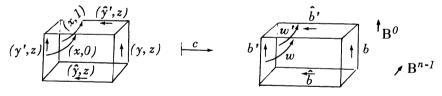


whose diagonal is (x, z).

2° The multiple category of cubes of an *n*-fold category.

Let *n* be an integer such that $n \ge 2$. We denote by B an *n*-fold category, by α^i and β^i the source and target maps of B^{*i*}, for i < n. DEFINITION. A double functor $c: M \rightarrow B^{n-1,0}$ from the model double cat-

egory M to the double category $B^{n-1,0}$ (whose compositions are the (n-1)th and 0-th compositions of B) is called a cube of B.



The cube c will be identified with the 6-uple $(b', \bar{b}', w', w, \bar{b}, b)$ where

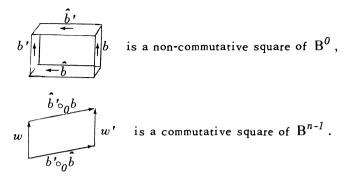
$$b = c(y, z), \quad b' = c(y', z), \quad \hat{b} = c(\hat{y}, z), \quad \hat{b}' = c(\hat{y}', z), \\ w = c(x, 0), \quad w' = c(x, 1)$$

(which determines the cube c uniquely).

In other words, a cube c of B may also be defined as a 6-uple

$$c = (b', \hat{b}', w', w, \hat{b}, b)$$

of blocks of B such that

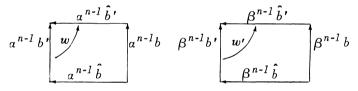


The diagonal of this last square:

$$(\hat{b'} \circ_0 b) \circ_{n-1} w = w' \circ_{n-1} (b' \circ_0 \hat{b})$$

is called the diagonal of the cube c, and denoted by ∂c .

Remark that w and w' are 2-cells of the greatest 2-category contained in $B^{n-1,0}$, and that in the cube c (represented by a «geometric» cube), the «front» and «back» faces are up-squares of this 2-category:



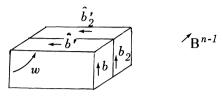
On the set CubB of cubes of B, we have the (n-2)-fold category $Hom(M, B^{n-1,0,1,\ldots,n-2})$, whose *i*-th composition is deduced pointwise from the (i+1)-th composition of B, for i < n-2. With the notations above (we add everywhere indices if necessary), the *i*-th composition is written: $c_1 \circ_i c = (b'_1 \circ_{i+1} b', \hat{b}'_1 \circ_{i+1} \hat{b}', w'_1 \circ_{i+1} w', w_1 \circ_{i+1} w, \hat{b}_1 \circ_{i+1} \hat{b}, b_1 \circ_{i+1} b)$, iff the six composites are defined.

Now, we define three other compositions on CubB so that, by adding these new compositions, we obtain an (n+1)-fold category CubB:

- We denote by $(CubB)^{n-2}$ the category whose composition is deduced «laterally pointwise» from that of B^{n-1} :

$$c_{2}\circ_{n-2}c = (b_{2}'\circ_{n-1}b', \hat{b}_{2}'\circ_{n-1}\hat{b}', w_{2}', w, \hat{b}_{2}\circ_{n-1}\hat{b}, b_{2}\circ_{n-1}b)$$

iff $w_{2} = w'$ and the four composites are defined.



The source and target of c are the degenerate cubes determined by the front and back faces of c.

- Let $(CubB)^{n-1}$ be the category whose composition is the «vertical» composition of cubes (also denoted by \exists):

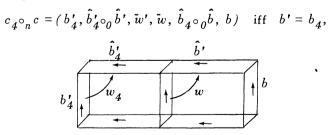
$$c_{3}\circ_{n-1}c = (b_{3}'\circ_{0}b', \hat{b}_{3}', \hat{w}', \hat{w}, \hat{b}, b_{3}\circ_{0}b)$$
 iff $\hat{b}' = b_{3}$,

where \hat{w} and \hat{w}' are the 2-cells of the vertical composites of the front and back up-squares:

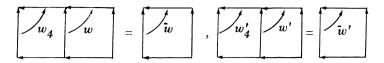
(hence:

 $\hat{w} = (w_{3} \circ_{0} \alpha^{n-1} b) \circ_{n-1} \alpha^{n-1} b'_{3} \circ_{0} w), \quad \hat{w}' = (w'_{3} \circ_{0} \beta^{n-1} b') \circ_{n-1} \beta^{n-1} b'_{3} \circ_{0} w') \quad).$

- Finally, $(CubB)^n$ is the category whose composition is the «horizontal» composition of cubes (also denoted by \square):



where \bar{w} and \bar{w}' are the 2-cells of the horizontal composites of the front and back up-squares:



REMARK. $(CubB)^{n-1,n}$ is the double category of up-squares of the 2-category of cylinders $(CylB)^{n,n-1}$, which is the greatest 2-category contained in the double category $(Sq(B^{n-1,0}))^{2,0}$ (with the notations of Section C).

From the permutability axiom satisfied by B it follows that we have an (n+1)-fold category on the set of cubes of B, denoted by Cub B, such that:

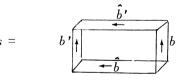
- $(CubB)^{0,\ldots,n-2} = Hom(M, B^{n-1,0,1,\ldots,n-2}),$

- the (n-2)-th, (n-1)-th and n-th compositions are those defined above. DEFINITION. This (n+1)-fold category CubB is called the (n+1)-fold category of cubes of **B**.

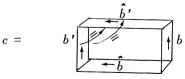
Summing up, the *i*-th category $(CubB)^i$ is deduced pointwise from B^{i+1} for i < n-2 and «laterally pointwise» from B^{n-1} for i = n-2, while $(CubB)^{n-1}$ and $(CubB)^n$ are the «vertical» and «horizontal» categories of cubes.

EXAMPLE. If B is a double category, CubB is a triple category whose 0-th composition is deduced laterally pointwise from B^{I} .

If a square s of B^0 ,



is identified with the cube



(with the same «lateral» faces) in which w and w' are the degenerate 2-cells $a^{n-1}(b' \circ_0 \hat{b})$ and $\beta^{n-1}(\hat{b}' \circ_0 b)$, then the (n+1)-fold category SqB

A.&C. EHRESMANN

of squares of B (see Part III [5]) becomes an (n+1)-fold subcategory of CubB, which has the same objects than CubB for the (n-1)-th and n-th categories. It follows that we may still consider the isomorphisms

$$\begin{array}{l} -^{\boxplus}: \mathbf{B}^{1}, \dots, n^{-1}, 0 \stackrel{\scriptstyle{\stackrel{\scriptstyle{\rightarrow}}{\scriptstyle{\rightarrow}}}}{\rightarrow} \mid (Cub \, \mathbf{B})^{n-1} \mid {}^{0}, \dots, n^{-2}, n : b \longmapsto b^{\boxplus}, \\ -^{\boxplus}: \mathbf{B}^{1}, \dots, n^{-1}, 0 \stackrel{\scriptstyle{\stackrel{\scriptstyle{\rightarrow}}{\scriptstyle{\rightarrow}}}}{\rightarrow} \mid (Cub \, \mathbf{B})^{n} \mid {}^{0}, \dots, n^{-1}: b \longmapsto b^{\boxplus} \end{array}$$

from $B^{1,...,n-1,0}$ onto the *n*-fold categories defined from CubB by taking the objects of $(CubB)^{n-1}$ and $(CubB)^n$ respectively.

B. The adjoint functors Cube and Lax Link.

If $f: B \rightarrow B'$ is an *n*-fold functor, the (n-2)-fold functor

 $Hom(M, f): Hom(M, B) \rightarrow Hom(M, B'): c \vdash fc$

underlies an (n+1)-fold functor $Cubf: CubB \rightarrow CubB'$ defined by:

$$c = (b', \hat{b}', w', w, \hat{b}, b) \mapsto fc = (fb', f\hat{b}', fw', fw, f\hat{b}, fb).$$

$$c = b' \stackrel{fc}{\longleftarrow} b' \mapsto fc = fb' \stackrel{f\hat{b}'}{\longleftarrow} fb \mapsto fc = fb' \stackrel{f\hat{b}'}{\longleftarrow} fb$$

This determines the functor $Cub_{n,n+1}$: $Cat_n \rightarrow Cat_{n+1}$:

 $(f: \mathbf{B} \rightarrow \mathbf{B'}) \mapsto (Cubf: Cub\mathbf{B} \rightarrow Cub\mathbf{B'}),$

called the functor Cube from Cat_n to Cat_{n+1} .

PROPOSITION 1. The functor $Cub_{n,n+1}$: $Cat_n \rightarrow Cat_{n+1}$ admits a left adjoint $LaxLk_{n+1,n}$: $Cat_{n+1} \rightarrow Cat_n$.

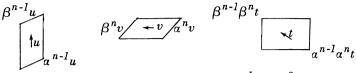
PROOF. Let A be an (n+1)-fold category, α^i and β^i the maps source and target of the *i*-th category A^i .

1° We define an n-fold category \overline{A} , which will be the free object generated by A, as follows:

a) Let G be the graph whose vertices are those blocks e of A which are objects for both A^{n-1} and A^n , the arrows ν from e to e' being the objects of either A^n , A^{n-1} or A^{n-2} such that

$$a^n a^{n-1} \nu = e$$
 and $\beta^n \beta^{n-1} \nu = e'$.

Hence the arrows of G are of one of the three forms:



where u, v, t will always denote objects of A^n , A^{n-1} , A^{n-2} , respectively.

b) If K is an n-fold category, we say that $f: G \to K$ is an admissible morphism if $f: G \to \underline{K}$ is a map satisfying the 8 following conditions:

(i) If $\nu: e \to e'$ in G, then $f(\nu): f(e) \to f(e')$ in \mathbb{K}^0 .

(ii) $|A^{n}|^{n-1} \subseteq G \xrightarrow{f} K^{0}$ and $|A^{n-1}|^{n} \subseteq G \xrightarrow{f} K^{0}$ are functors (where $|A^{i}|^{j}$ is the subcategory of A^{j} formed by the objects of A^{i}).

(iii) $|\mathbf{A}^{j}|^{i} \subset G \stackrel{f}{\longrightarrow} \mathbf{K}^{i+1}$ is a functor, for

i < n-2 and j = n, n-1 or n-2.

(iv) For each arrow ν of G,

$$f(\nu): f(\beta^n \alpha^{n-2}\nu) \circ_0 f(\alpha^{n-1} \alpha^{n-2}\nu) \to f(\beta^{n-1} \beta^{n-2}\nu) \circ_0 f(\alpha^n \beta^{n-2}\nu)$$
the concerns K^{n-1}

in the category K^{n-1} .

$$f(a^{n-2}u) \underbrace{\begin{array}{c}f(u)\\ f(\beta^{n-2}u)\end{array}}_{f(\alpha^{n-2}v)} f(\beta^{n-2}u) \underbrace{\begin{array}{c}f(\beta^{n-2}v)\\ f(v)\\ f(\alpha^{n-2}v)\end{array}}_{f(\alpha^{n-2}v)} \underbrace{\begin{array}{c}f(\beta^{n-1}t)\\ f(t)\\ f(\alpha^{n-1}t)\end{array}}_{f(\alpha^{n-1}t)} f(\alpha^{n}t)$$

(v) $|A^n|^{n-2} \subset G \xrightarrow{f} K^{n-1}$ and $|A^{n-1}|^{n-2} \subset G \xrightarrow{f} K^{n-1}$ are functors. (vi) For each block a of A,

 $f(\beta^{n-2} a)_{\circ_{n-l}}(f(\beta^{n} a)_{\circ_{0}}f(a^{n-1} a)) = (f(\beta^{n-1} a)_{\circ_{0}}f(a^{n} a))_{\circ_{n-l}}f(a^{n-2} a)$

(these composites are well-defined, due to conditions (i - iv - v) and to the fact that K is an *n*-fold category). This condition (vi) is equivalent to:

(vi')
$$c_f a = (f\beta^n a, f\beta^{n-1}a, f\beta^{n-2}a, fa^{n-2}a, fa^{n-1}a, fa^n a)$$

 $f(\beta^n a) = f(\beta^{n-2}a) = f(\beta^{n-1}a)$

is a cube of K for each block a of A.

(vii) If $t' \circ_{n-1} t$ is defined in $|A^{n-2}|^{n-1}$, then

 $f(t'\circ_{n-l}t)=(f(t')\circ_0f(a^nt))\circ_{n-l}(f(\beta^nt')\circ_0f(t)).$

With (iv) this means that $f(t' \circ_{n-1} t)$ is the 2-cell of the vertical composite up-square of $K^{n-1,0}$:

$$f(\beta^{n}t') \overbrace{f(t')}^{f(\beta^{n-1}t')} f(\alpha^{n}t') = \overbrace{f(t'\circ_{n-1}t)}^{f(\beta^{n}t')} f(\alpha^{n-1}t)$$

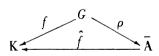
(viii) If $t'' \circ_n t$ is defined, then

$$f(t''\circ_n t) = (f(\beta^{n-1}t'')\circ_0 f(t))\circ_{n-1}(f(t'')\circ_0 f(\alpha^{n-1}t)).$$

Hence, with (iv), in the horizontal category of up-squares of $K^{n-1,0}$:

$$\begin{array}{ccc}
f(\beta^{n-1}t^{n}) \\
f(t^{n}) \\
f(\alpha^{n-1}t)
\end{array} =
\begin{array}{c}
f(t^{n}\circ_{n}t) \\
f(t^{n}\circ_{n}t)
\end{array}$$

c) By the general existence theorem of «universal solutions» [6], there exist: an *n*-fold category \overline{A} and an admissible morphism $\rho: G \to \overline{A}$ such that any admissible morphism $f: G \to K$ factors uniquely through ρ into an *n*-fold functor $\hat{f}: \overline{A} \to K$.



Indeed, if we take the set of all admissible morphisms $\phi: G \to K_{\phi}$ with K_{ϕ} a small *n*-fold category, there exists an *n*-fold category $\prod_{\phi} K_{\phi}$ product in the category of *n*-fold categories associated to a universe to which belongs the universe of small sets. The factor

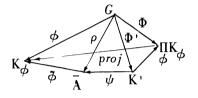
$$\Phi \colon G \to \prod_{\phi} \mathsf{K}_{\phi} : \nu \vdash (\phi(\nu))_{\phi}$$

of the family of maps ϕ is an admissible morphism, as well as its restriction $\Phi': G \to K'$ to the *n*-fold subcategory K' of $\prod_{\phi} K_{\phi}$ generated by the image

 $\Phi(G)$. As $\Phi(G)$ and K' are equipotent (by Proposition 2 [4]) and $\Phi(G)$ is of lesser cardinality than the small set G, it follows that there exists an isomorphism $\psi: K' \to \overline{A}$ onto a small *n*-fold category \overline{A} . Then

$$\rho = (G \xrightarrow{\Phi'} K' \xrightarrow{\psi} \bar{A})$$

is a «universal» admissible morphism, since each admissible morphism



 $\phi: G \rightarrow K_{\phi}$ factors uniquely into

$$\phi = (G \stackrel{\rho}{\longrightarrow} \overline{A} \stackrel{\overline{\phi}}{\longrightarrow} K_{\phi}) ,$$

where

$$\phi = (\bar{\mathbf{A}} \stackrel{\psi^{-1}}{\longrightarrow} \mathbf{K}' \stackrel{\mathsf{c}}{\hookrightarrow} \prod_{\phi} \mathbf{K}_{\phi} \stackrel{\text{projection}}{\longrightarrow} \mathbf{K}_{\phi}) .$$

Remark that the blocks $\rho(\nu)$, for any arrow ν of G, generate \overline{A} .

d) An explicit construction of the universal admissible morphism $\rho: G \to \overline{A}$ is sketched now (it will not be used later on).

(i) Let $P(G)^0$ be the free quasi-category of paths $(\nu_k, ..., \nu_0)$ of the graph G; an arrow ν is identified to the path (ν) . On the same set $\underline{P}(G)$ of paths, there is a category $P(G)^{i+1}$, whose composition is deduced pointwise from that of A^i , for each i < n-2. If r is the relation on $\underline{P}(G)$ defined by:

$$(u', u) \sim u' \circ_{n-1} u$$
 if u and u' are objects of A^n ,
 $(v', v) \sim v' \circ_n v$ if v and v' are objects of A^{n-1}

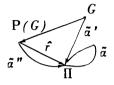
there exists an (n-1)-fold category Π quasi-quotient (Proposition 3 [4]) of $P(G) = (P(G)^0, \dots, P(G)^{n-2})$ by r; the canonical morphism is denoted by $\hat{r}: P(G) \to \Pi$.

(ii) We define a graph on $\underline{\Pi}$: Consider the morphism

$$\tilde{a}':\nu \vdash \hat{r}(\beta^n a^{n-2}\nu, a^{n-1}a^{n-2}\nu)$$

from the graph G to the graph (Π, α^0, β^0) underlying the category Π^0 .

By the universal property of P(G), \tilde{a}' extends into a quasi-functor \tilde{a}'' from $P(G)^0$ to Π^0 , and $\tilde{a}'': P(G) \to \Pi$ is also a morphism, due to the pointwise definition of $P(G)^{i+1}$. Moreover, \tilde{a}'' is seen to be compatible with r. Hence it factors uniquely into an (n-1)-fold functor $\tilde{a}: \Pi \to \Pi$. The



equality $\tilde{a} \, \tilde{a} \, \tilde{r} = \tilde{a} \, \tilde{r}$ implies $\tilde{a} \, \tilde{a} = \tilde{a}$. Similarly, there is an *(n-1)*-fold functor $\tilde{\beta} : \Pi \to \Pi$ such that

$$\tilde{\beta}\tilde{r}(\nu) = \hat{r}(\beta^{n-1}\beta^{n-2}\nu, \alpha^n\beta^{n-2}\nu)$$

for each arrow ν of G , and we have

$$\tilde{\beta}\tilde{\beta}=\tilde{\beta}, \quad \tilde{\beta}\tilde{a}=\tilde{a}, \quad \tilde{a}\tilde{\beta}=\tilde{\beta}.$$

These equalities mean that $(\Pi, \tilde{\alpha}, \tilde{\beta})$ is a graph, in which a block π of Π is an arrow $\pi: \tilde{\alpha}(\pi) \to \tilde{\beta}(\pi)$.

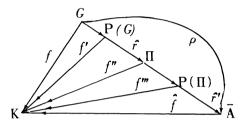
(iii) Let $P(\Pi)^{n-1}$ be the free quasi-category of all paths $\langle \pi_k, \ldots, \pi_0 \rangle$ of the graph $(\Pi, \tilde{\alpha}, \tilde{\beta})$ (equipped with the concatenation). A block π of Π is identified to the path $\langle \pi \rangle$. On the set $P(\Pi)$ of these paths, we consider the relation r' defined by:

$$\langle \hat{r}(u'), \hat{r}(u) \rangle - \hat{r}(u'\circ_{n-2}u), \quad \text{if } u \text{ and } u' \text{ are objects of } \mathbf{A}^{n}, \\ \langle \hat{r}(v'), \hat{r}(v) \rangle - \hat{r}(v'\circ_{n-2}v), \text{ if } v \text{ and } v' \text{ are objects of } \mathbf{A}^{n-1}, \\ \langle \hat{r}(\beta^{n-2}a), \hat{r}(\beta^{n}a)\circ_{0}\hat{r}(a^{n-1}a) \rangle - \langle \hat{r}(\beta^{n-1}a)\circ_{0}\hat{r}(a^{n}a), \hat{r}(a^{n-2}a) \rangle \\ \text{for each block } a \text{ of } \mathbf{A}, \\ \hat{r}(t'\circ_{n-1}t) - \langle \hat{r}(t')\circ_{0}\hat{r}(a^{n}t), \hat{r}(\beta^{n}t')\circ_{0}\hat{r}(t) \rangle, \\ \text{if } t'\circ_{n-1}t \text{ is defined in } |\mathbf{A}^{n-2}|^{n-1}, \\ \hat{r}(t''\circ_{n}t) - \langle \hat{r}(\beta^{n-1}t'')\circ_{0}\hat{r}(t), \hat{r}(t'')\circ_{0}\hat{r}(a^{n-1}t) \rangle, \\ \text{if } t''\circ_{n}t \text{ is defined in } |\mathbf{A}^{n-2}|^{n}. \end{cases}$$

(iv) For i < n-2, there is also a category $P(\Pi)^i$ on $P(\Pi)$ whose composition is deduced pointwise from that of Π^i . There exists an *n*-fold category \overline{A} quasi-quotient of $P(\Pi) = (P(\Pi)^0, \dots, P(\Pi)^{n-2}, P(\Pi)^{n-1})$ by r', the canonical morphism being $\hat{r}': P(\Pi) \to \overline{A}$. The composite map $\rho: G \subseteq P(G) \xrightarrow{\hat{r}} \Pi \subseteq P(\Pi) \xrightarrow{\hat{r}'} \overline{A}$

gives an admissible morphism $\rho: G \to \overline{A}$ due to the construction of \hat{r} and $\hat{r'}$.

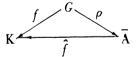
(v) $\rho: G \to \overline{A}$ is a universal admissible morphism. Indeed, let $f: G \to K$ be an admissible morphism. As f satisfies (i), it extends into a (quasi-) functor $f': P(G)^0 \to K^0$; by (iii), $f': P(G) \to K^{0,...,n-2}$ is a morphism which is compatible with r (according to (ii)). By the universal property of Π , there exists a factor $f'': \Pi \to K^{0,...,n-2}$ of f' through \hat{r} . The con-



dition (iv) implies that f'' is a morphism of graphs

 $f'': (\Pi, \tilde{\alpha}, \tilde{\beta}) \rightarrow (\mathbb{K}^{n-1}, \alpha^{n-1}, \beta^{n-1})$

so that it extends into a (quasi-)functor $f'': P(\Pi)^{n-1} \to K^{n-1}$, defining a morphism $f''': P(\Pi) \to K$ (the composition of $P(\Pi)^i$ being deduced pointwise from that of Π^i). The conditions (v, vi, vii, viii) mean that f''' is compatible with r'. Hence f''' factors through \hat{r}' into an n-fold functor $\hat{f}: \overline{A} \to K$; and \hat{f} is the unique n-fold functor rendering commutative the diagram



2° There exists an (n+1)-fold functor $l: A \rightarrow Cub\overline{A}:$ $a \mapsto l(a) = (\rho \beta^n a, \rho \beta^{n-1} a, \rho \beta^{n-2} a, \rho a^{n-2} a, \rho a^{n-1} a, \rho a^n a)$ $\rho \beta^{n-1} a$ $\rho \beta^{n-1} a$ $\rho a^n a$

where $\rho: G \to \overline{A}$ is a fixed universal admissible morphism.

a) As ρ satisfies (vi') and as l(a) is the cube $c_{\rho}(a)$ considered in this condition, the map l is well-defined.

b) Suppose i < n-2. The composition of $(Cub\overline{A})^i$ being deduced pointwise from that of \overline{A}^{i+1} , for $l: A^i \rightarrow (Cub\overline{A})^i$ to be a functor, it suffices that the maps

$$\rho \alpha^{n}$$
, $\rho \beta^{n}$, $\rho \alpha^{n-1}$, $\rho \beta^{n-1}$, $\rho \alpha^{n-2}$, $\rho \beta^{n-2}$

sending a onto each of the six factors of the cube l(a) define functors $A^i \rightarrow \overline{A}^{i+1}$. Since $a^n: A^i \rightarrow |A^n|^i$ is a functor and axiom (iii) is satisfied, ρa^n defines the composite functor:

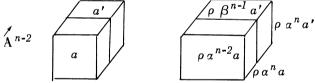
,

$$\mathbf{A}^{i} \underbrace{\alpha^{n}}_{G} | \mathbf{A}^{n} | \overset{i}{\longleftarrow}_{G} \underbrace{\overline{\rho}}_{\rho} \widetilde{\mathbf{A}}^{i+1}$$

and similarly for the five other maps.

c) $l: A^{n-2} \rightarrow (Cub\overline{A})^{n-2}$ is a functor. Indeed, suppose $a' \circ_{n-2} a$ defined in A^{n-2} . The composition of $(Cub\overline{A})^{n-2}$ being deduced «laterally pointwise» from that of \overline{A}^{n-1} , there exists $l(a') \circ_{n-2} l(a) =$

 $(\rho\beta^{n}a'\circ_{n-1}\rho\beta^{n}a,\rho\beta^{n-1}a'\circ_{n-1}\rho\beta^{n-1}a,\rho\beta^{n-2}a',\rhoa^{n-2}a,\rhoa^{n-1}a'\circ_{n-1}\rhoa^{n-1}a,\rhoa^{n-1}a,\rhoa^{n}a'\circ_{n-1}\rhoa^{n}a).$



Now, by (v),

 $\rho \alpha^n a' \circ_{n-1} \rho \alpha^n a = \rho (\alpha^n a' \circ_{n-2} \alpha^n a) = \rho \alpha^n (a' \circ_{n-2} a),$

which is also the right lateral face of the cube $l(a' \circ_{n-2} a)$. Same proof for the other lateral faces. Finally,

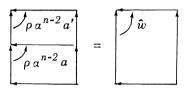
$$\rho a^{n-2} a = \rho a^{n-2} (a' \circ_{n-2} a)$$

is the front face of both $l(a') \circ_{n-2} l(a)$ and $l(a' \circ_{n-2} a)$, whose back face is $\rho \beta^{n-2} a'$. Hence, $l(a' \circ_{n-2} a) = l(a') \circ_{n-2} l(a)$.

d) $l: A^{n-1} \rightarrow (Cub\overline{A})^{n-1}$ is a functor. Indeed, suppose $a' \circ_{n-1} a$ defined. The composition of $(Cub\overline{A})^{n-1}$ being the «vertical» composition, the composite

MULTIPLE FUNCTORS IV

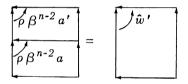
is defined; \hat{w} is the 2-cell of the vertical composite up-square



which, by (vii), is equal to

$$\rho(a^{n-2}a'_{n-1}a^{n-2}a) = \rho a^{n-2}(a'_{n-1}a),$$

and this is the 2-cell of the front face of $l(a' \circ_{n-1} a)$. Similarly, \hat{w}' is the 2-cell of the back face of $l(a' \circ_{n-1} a)$.



Using (ii), we get

$$\rho a^{n} a' \circ_{0} \rho a^{n} a = \rho (a^{n} a' \circ_{n-1} a^{n} a) = \rho a^{n} (a' \circ_{n-1} a)$$

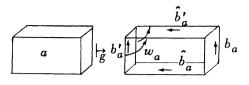
and idem with β instead of a. Hence $l(a') = l(a' \circ_{n-1} a)$.

e) The same proof (using (viii) instead of (vii)) shows that l defines the functor $l: A^n \rightarrow (Cub\overline{A})^n$: if $a' \circ_n a$ is defined,

$$l(a') \square l(a) = \left[\begin{array}{c} \rho \beta^{n-1}a' & \rho \beta^{n-1}a \\ \rho \alpha^{n-2}a' & \rho \alpha^{n-2}a \\ \end{array} \right] = \left[\begin{array}{c} \rho \alpha^{n-2}(a' \circ_n a) \\ \rho \alpha^{n-2}(a' \circ_n a) \\ \end{array} \right] = l(a' \circ_n a).$$

3° $l: A \rightarrow Cub\overline{A}$ is the liberty momphism defining \overline{A} as a free object generated by A : Let B be an *n*-fold category and g: A $\rightarrow CubB$ an (n+1)-fold functor. The cube g(a) of B, for any block a of A, is written

$$g(a) = (b'_a, \hat{b}'_a, w'_a, w_a, \hat{b}_a, b_a).$$



In particular,

$$g(a^n a) = b_a^{\square}, \ g(a^{n-1}a) = \tilde{b}_a^{\boxminus}, \ g(\beta^n a) = b_a^{\prime\square}, \ g(\beta^{n-1}a) = \tilde{b}_a^{\prime\square},$$

 $g(a^{n-2}a) \text{ and } g(\beta^{n-2}a) \text{ are the degenerate cubes determined by}$

$$a^{n-1}b'_{a} \overbrace{\begin{matrix} w_{a} \\ a^{n-1}\hat{b}_{a} \end{matrix}}^{a^{n-1}\hat{b}'_{a}} a^{n-1}b_{a} \text{ and } \beta^{n-1}b'_{a} \overbrace{\begin{matrix} w_{a} \\ \beta^{n-1}\hat{b}_{a} \end{matrix}}^{\beta^{n-1}\hat{b}'_{a}} \beta^{n-1}b_{a}.$$

a) There is an admissible morphism $f: G \to B$ mapping ν onto the diagonal $\partial g(\nu)$ of the cube $g(\nu)$.

(i) As
$$\partial g(a) = (\hat{b}'_{a \circ_0} b_a)_{\circ_{n-1}} w_a$$
, we have
 $f(a^n a) = \partial g(a^n a) = b_a$, $f(a^{n-1}a) = \hat{b}_a$, $f(a^{n-2}a) = w_a$,
 $f(\beta^n a) = b'_a$, $f(\beta^{n-1}a) = \hat{b}'_a$, $f(\beta^{n-2}a) = w'_a$,

so that

$$\begin{split} c_f(a) &= (f\beta^n a, f\beta^{n-l}a, f\beta^{n-2}a, fa^{n-2}a, fa^{n-1}a, fa^n a) = \\ &= (b_a', \hat{b}_a', w_a', w_a, \hat{b}_a, b_a) = g(a) \end{split}$$

is a cube, and f satisfies (vi). It also satisfies (i) and (iv), because it is more precisely defined by

$$f(u) = b_u, \quad f(v) = \hat{b}_v, \quad f(t) = w_t,$$

where u, v, t always denote objects of A^n , A^{n-1} , A^{n-2} respectively.

(ii) $|A^n|^{n-1} \hookrightarrow G \xrightarrow{f} B^0$ is a functor. Indeed, if $u' \circ_{n-1} u$ is defined,

$$g(u' \circ_{n-1} u) = g(u') \boxminus g(u) = b_u^{\square}, \boxminus b_u^{\square} = (b_u \circ_0 b_u)^{\square}$$

so that

$$f(u'\circ_{n-1}u) = \partial g(u'\circ_{n-1}u) = b_u \circ_0 b_u = f(u')\circ_0 f(u).$$

Similarly, $|A^{n-1}|^n \subseteq G \xrightarrow{f} B^0$ is a functor, since

$$\begin{split} g(v'\circ_n v) &= g(v') \boxplus g(v) = (\hat{b}_v \circ_0 b_v)^{\boxminus} ,\\ f(v'\circ_n v) &= \hat{b}_v \circ_0 \hat{b}_v = f(v') \circ_0 f(v) . \end{split}$$

so

That $|A^n|^{n-2} \subseteq G \xrightarrow{f} B^{n-1}$ and $|A^{n-1}|^{n-2} \subseteq G \xrightarrow{f} B^{n-1}$ are functors is deduced from the equalities

$$g(u'' \circ_{n-2} u) = g(u'') \circ_{n-2} g(u) = b_{u''} \circ_{n-2} b_{u}^{\square} = (b_{u''} \circ_{n-1} b_{u})^{\square},$$

$$g(v'' \circ_{n-2} v) = g(v'') \circ_{n-2} g(v) = \hat{b}_{v''} \circ_{n-2} \hat{b}_{v}^{\square} = (\hat{b}_{v''} \circ_{n-1} \hat{b}_{v})^{\square}.$$

giving

$$f(u" \circ_{n-2} u) = b_{u"} \circ_{n-1} b_{u} = f(u") \circ_{n-1} f(u)$$

and $f(v'' \circ_{n-2} v) = f(v'') \circ_{n-1} f(v)$. Hence, f verifies (ii) and (v).

(iii) For i < n-2, there is a functor $\partial : (CubB)^i \to B^{i+1}$, since the pointwise deduction of the composition of $(CubB)^i$ from that of B^{i+1} , and the permutability axiom in B imply:

$$\begin{aligned} \partial(c_1 \circ_i c) &= ((\hat{b}'_1 \circ_{i+1} \hat{b}') \circ_0 (b_1 \circ_{i+1} b)) \circ_{n-1} (w_1 \circ_{i+1} w) = \\ &= ((\hat{b}'_1 \circ_0 b_1) \circ_{n-1} w_1) \circ_{i+1} ((\hat{b}' \circ_0 b) \circ_{n-1} w) = \partial c_1 \circ_{i+1} \partial c, \end{aligned}$$

if $c_1 \circ_i c$ is defined in $(CubB)^i$, with $c = (b', \hat{b}', w', w, \hat{b}, b)$ and idem for c_1 with indices. The composite functor

$$|\mathbf{A}^{j}|^{i} \xrightarrow{g} (Cub\mathbf{B})^{i} \xrightarrow{\partial} \mathbf{B}^{i+1}$$

is defined by a restriction of f, for j = n, n-1 or n-2. So f satisfies (iii).

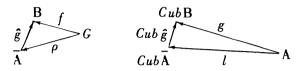
(iv) If $t'_{n-1}t$ is defined in $|A^{n-2}|^{n-1}$, then $g(t'_{n-1}t) = g(t') \boxminus g(t)$ is the degenerate cube determined by the vertical composite up-square

$$b'_{t}, \overbrace{f(t)}^{b'_{t}, \cdots} b_{t}, = \overbrace{w}^{\hat{w}}$$

so that its diagonal $f(t' \circ_{n-1} t)$ is the 2-cell \hat{w} of this composite. Therefore f satisfies (vii) and (by a similar proof) (viii).

$$f(t'') f(t) = f(t'' \circ_n t)$$

b) This proves that $f: G \to B$ is an admissible morphism; so it factors uniquely through the universal admissible morphism $\rho: G \to \overline{A}$ into an *n*-fold functor $\hat{g}: \overline{A} \to B$.

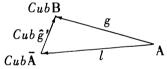


(i) For each block a of A, the cube

is identical to $c_f(a) = g(a)$ (see a), since $f = \hat{g}\rho$; so

 $(g: A \rightarrow CubB) = (A \xrightarrow{l} Cub\overline{A} \xrightarrow{Cub\widehat{g}} CubB).$

(ii) Let $\hat{g}': \overline{A} \to B$ be an *n*-fold functor, rendering commutative the diagram



We are going to prove that $\hat{g}'\rho = f$; the unicity of the factor of f through ρ then implies $\hat{g}' = \hat{g}$. Indeed, for an object u of A^n , from the equalities

$$l(u) = \rho(u)^{\square}$$
 and $g(u) = \hat{g}'l(u) = (\hat{g}'\rho(u))^{\square}$

we deduce $f(u) = \partial g(u) = \hat{g}' \rho(u)$. If v is an object of A^{n-1} , then

$$l(v) = \rho(v)^{\boxminus}, g(v) = (\hat{g}'\rho(v))^{\boxminus} \text{ and } f(v) = \hat{g}'\rho(v).$$

If t is an object of A^{n-2} , the degenerate cubes l(t) and $g(t) = \hat{g}' l(t)$ are determined by the up-squares

$$\rho \beta^{n_t} \overbrace{\rho a^{n-1}t}^{\rho \beta^{n-1}t} \rho a^{n_t} \text{ and } \overbrace{g' \rho a^{n_t}}^{\hat{g'} \rho(t)} \hat{g'} \rho a^{n_t}$$

so that $f(t) = \partial g(t) = \hat{g}'\rho(t)$. Hence, $\hat{g}'\rho = f$, and $\hat{g}' = \hat{g}$. REMARK. To prove that $\hat{g}'\rho = f$, we could have used the relations

 $\partial Cub\hat{g}' = \hat{g}'\overline{\partial}$ and $\overline{\partial} l(\nu) = \rho(\nu)$ for each ν in G, where $\overline{\partial}$ is the diagonal map from $Cub\overline{A}$ to \overline{A} .

4° For each (n+1)-fold small category A, we choose a universal admissible morphism $\rho_A: G_A \to \overline{A}$ (where G_A is the graph G above), for example the canonical one constructed in 1-c; by the preceding proof, \overline{A} is a free object generated by A with respect to the *Cube* functor. \overline{A} will be called the *multiple category of lax links of* A, denoted by LaxLkA. The corresponding left adjoint

$$LaxLk_{n+1,n}: Cat_{n+1} \rightarrow Cat_n \text{ of } Cub_{n,n+1}: Cat_n \rightarrow Cat_{n+1}$$

maps $h: A \rightarrow A'$ onto the unique *n*-fold functor

 $LaxLkh: LaxLkA \rightarrow LaxLkA'$

satisfying

$$Lax Lkh(\rho_A \nu) = \rho_A, h(\nu)$$

for each object ν of A^n , A^{n-1} or A^{n-2} . ∇

By iteration, for each integer m > n, we define the functors

 $\begin{aligned} Cub_{n,m} &= (Cat_n \frac{Cub_{n,n+1}}{LaxLk_{m,m-1}} Cat_{n+1} \rightarrow \dots \rightarrow Cat_{m-1} \frac{Cub_{m-1,m}}{LaxLk_{m+1,m}} Cat_m), \\ LaxLk_{m,n} &= (Cat_m \frac{LaxLk_{m,m-1}}{LaxLk_{m-1}} Cat_{m-1} \rightarrow \dots \rightarrow Cat_{n+1} \frac{LaxLk_{n+1,m}}{LaxLk_{m+1,m}} Cat_n). \\ \text{DEFINITION. } Cub_{n,m} \text{ is called the } Cube \text{ functor from } Cat_n \text{ to } Cat_m \text{ and } \\ LaxLk_{m,n} \text{ the } LaxLink \text{ functor from } Cat_m \text{ to } Cat_n. \end{aligned}$

COROLLARY. The Cube functor from Cat_n to Cat_m admits as a left adjoint the LaxLink functor from Cat_m to Cat_n for any integer m > n > 1.

This results from Proposition 1, since a composite of left adjoint functors is a left adjoint functor of the composite. ∇

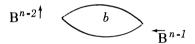
REMARK. If B is an *n*-fold category, in the 2n-fold category $Cub_{n,2n}$ B the 2i-th and (2i+1)-th compositions are deduced respectively «verticaly» and «horizontaly» from the composition of Bⁱ.

C. Cylinders of a multiple category.

We recall that an *n*-category is an *n*-fold category K whose objects for the last category K^{n-1} are also objects for K^{n-2} .

The full subcategory of Cat_n whose objects are the (small) *n*-categories is denoted by *n*-Cat. It is reflective and coreflective in Cat_n . More precisely, the insertion functor *n*-Cat \subset Cat_n admits:

- A right adjoint $\mu_n: Cat_n \to n-Cat$ mapping the n-fold category B onto the greatest n-category included in B, which is the n-fold subcategory of B formed by those blocks b of B such that $a^{n-1}b$ and $\beta^{n-1}b$ are also objects of B^{n-2} (those blocks are called *n*-cells of B).



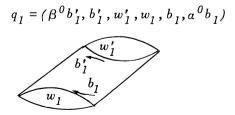
- A left adjoint $\lambda_n: Cat_n \to n$ -Cat, whose existence follows from the general existence Theorem of free objects [6] (its hypotheses are satisfied, *n*-Cat being complete and each infinite subcategory of an *n*-category K generating an equipotent sub-*n*-category of K). In fact, $\lambda_n(B)$ is the *n*-category quasi-quotient of B by the relation:

 $u - a^{n-2}u$ for each object u of B^{n-1} .

1° The multiple category $Cyl\mathbf{B}$.

Let n be an integer, $n \ge 2$, and B be an n-fold category. DEFINITION. The greatest (n+1)-category included in the (n+1)-fold category CubB of cubes of B is called the (n+1)-category of cylinders of B, denoted by Cyl B.

So a cylinder of B is a cube of the form



its front and back faces «reduce» to the 2-cells w_1 and w_1' of the double

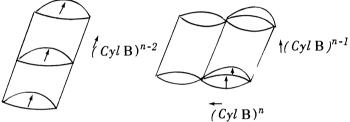
category $B^{n-1,0}$. We will write more briefly

$$q_1 = [b'_1, w'_1, w_1, b_1].$$

The composition of $(Cyl B)^i$, for i < n-2, is deduced pointwise from that of B^{i+1} . The (n-2)-th composition of Cyl B is:

$$q_{2^{\circ}n-2}q_{1} = [b'_{2^{\circ}n-1}b_{1}, w'_{2}, w_{1}, b_{2^{\circ}n-1}b_{1}]$$
 iff $w'_{1} = w_{2}$,

so that the objects of $(Cyl B)^{n-2}$ are the degenerate cylinders «reduced to their front face» $[\beta^{n-1}w, w, w, \alpha^{n-1}w]$, denoted by w° , for any 2-cell w of $B^{n-1,0}$.



The (n-1)-th composition of Cyl B is the vertical one:

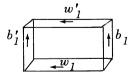
$$q_3 \equiv q_1 = [b'_3, w'_{3^{\circ} n-1} w'_1, w_{3^{\circ} n-1} w_1, b_1] \quad \text{iff} \quad b'_1 = b_3,$$

and its objects are the degenerate squares b^{\boxminus} , for any block b of B. The *n*-th composition of Cyl B is the horizontal one:

 $q_4 \equiv q_1 = [b'_4 \circ_0 b'_1, w'_4 \circ_0 w'_1, w_4 \circ_0 w_1, b_4 \circ_0 b_1]$ iff $\beta^0 b'_1 = \alpha^0 b_4$

(which is deduced pointwise from the composition of B^0); its objects are the degenerate squares e^{\boxminus} , for any object e of B^0 .

REMARKS. 1° The cylinder q_1 of B may be identified with the square



of B^{n-1} , in which w_1 and w_1' are 2-cells of $B^{n-1,0}$; in this way, Cyl B is identified with the greatest (n+1)-category included in

$$Sq(B^{n-1,1,\ldots,n-2,0})^{0,\ldots,n-3,n-1,n,n-2}$$

2° $(CubB)^{n-1,n}$ is identified with the double category of up-squares

of the 2-category $(Cyl B)^{n-1,n}$ by identifying the cube

$$c = (b', \hat{b}', w', w, \hat{b}, b)$$
 of B

with the up-square

$$b'^{\square}$$

 b'^{\square}
 b^{\square}
 b^{\square} where $q = [b'_{\circ_0}\hat{b}, w', w, \hat{b}'_{\circ_0}b].$

2° The functor Cylinder.

If $f: B \rightarrow B'$ is an *n*-fold functor, there is an (n+1)-fold functor $Cylf: CylB \rightarrow CylB': [b'_1, w'_1, w_1, b_1] \mapsto [fb'_1, fw'_1, fw_1, fb_1]$

restriction of Cub f. This determines a functor

 $Cyl_{n,n+1}: Cat_n \to Cat_{n+1}: f \vdash Cyl f$,

called the Cylinder functor from Cat_n to Cat_{n+1} . Remark that this functor is equal to the composite

$$Cat_{n} \xrightarrow{Cub_{n,n+1}} Cat_{n+1} \xrightarrow{\mu_{n+1}} (n+1) - Cat \subset Cat_{n+1}$$

where μ_{n+1} is the right adjoint of the insertion.

PROPOSITION 2. The functor $Lax Lk_{n+1,n}$: $Cat_{n+1} \rightarrow Cat_n$ is equivalent to a left inverse of $Cyl_{n,n+1}$: $Cat_n \rightarrow Cat_{n+1}$.

PROOF. We are going to prove that, for each n-fold category B, the nfold category LaxLk(Cyl B) is canonically isomorphic with B. It follows that, in the construction of the LaxLink functor (Proof, Proposition 1), we may choose B as the free object generated by CylB, for each n-fold category B (remark that Cyl B determines uniquely B); in this way, we obtain the identity as the composite

$$Cat_n \xrightarrow{Cyl_{n,n+1}} Cat_{n+1} \xrightarrow{Lax Lk_{n+1,n}} Cat_n$$

To prove the assertion, we take up the notations of Proposition 1, Proof, with A = Cyl B, $\overline{A} = LaxLk A$ and $\rho: G \rightarrow \overline{A}$ the universal admissible morphism.

1° \overline{A} is generated by the blocks $\rho(b^{\boxminus})$, for any block b of B. Indeed, the arrows of the graph G are the objects b^{\boxminus} of the vertical category of cylinders A^{n-1} and the objects w° of the category A^{n-2} (each object of A^n being also an object of A^{n-1}); the *n*-fold category \overline{A} is generated by the blocks

 $\rho(b^{\boxminus})$ for any block b of B and

 $\rho(w^{\circ})$ for any 2-cell w of the double category $B^{n-1,0}$.

$$b^{\exists}$$
 b w° w q e' $=x'$ e'

Now, given the 2-cell w, there is a cylinder q = [x', x', w, w] of B, where $x' = \beta^{n-1} w : e \to e'$ in B⁰. Applying to q (considered as a cube) the axiom (vi) satisfied by the admissible morphism ρ , we get

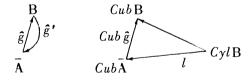
$$(\rho(x'^{\boxminus})\circ_{0}\rho(e^{\boxminus}))\circ_{n-1}\rho(w\circ) = (\rho(e'^{\boxminus})\circ_{0}\rho(w^{\boxminus}))\circ_{n-1}\rho(x'\circ);$$

as $\rho(x'^{\boxminus})$ is an object of \overline{A}^{n-1} and $\rho(e^{\boxminus})$ an object of \overline{A}^0 (axioms(i) and (iv)), this equality gives $\rho(w^{\circ}) = \rho(w^{\boxminus})$. Hence \overline{A} is generated by the sole blocks $\rho(b^{\boxminus})$.

2° a) To the insertion $Cyl B \subset Cub B$ is associated (by the adjunction between the *Cube* and *LaxLink* functors, Proposition 1) the *n*-fold functor $\hat{g}: \overline{A} \to B$ such that

$$\hat{g}
ho$$
 ($b^{\,\boxminus}$) = $\partial \, b^{\,\boxminus}$ = b for each block b of ${
m B}$

(this determines uniquely \hat{g} by 1).



b) There is also an n-fold functor

$$\hat{g}': \mathbf{B} \to \mathbf{A}: b \mapsto \rho(b^{\boxminus}).$$

Indeed, \hat{g}' is the composite functor

$$\mathbf{B} \xrightarrow{-\mathbf{E}} |(Cyl \mathbf{B})^{n-1}|^{n,0,\dots,n-2} \xrightarrow{\rho'} \overline{\mathbf{A}}$$

where $-^{\boxminus}$ is the canonical isomorphism $b \mapsto b^{\boxminus}$ onto the *n*-fold category

of objects of $(CubB)^{n-1}$ (Section A-3) and where ρ' is a functor according to the axioms (ii, iii, v) satisfied by ρ .

c) \hat{g}' is the inverse of \hat{g} . Indeed, for each block b of B we have

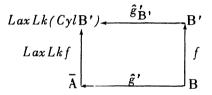
$$\hat{g}\hat{g}'(b) = \hat{g}
ho(b^{\boxminus}) = b$$
 and $\hat{g}'\hat{g}(\rho(b^{\boxminus})) = \hat{g}'(b) = \rho(b^{\boxminus})$

These equalities mean that $\hat{g}\hat{g}'$ is an identity, as well as $\hat{g}'\hat{g}$, since the blocks $\rho(b^{\boxminus})$ generate \overline{A} by 1. So $\hat{g}' = \hat{g}^{-1}$.

3° Let $f: B \rightarrow B'$ be an *n*-fold functor, and

$$\hat{g}'_{\mathbf{B}'}: \mathbf{B}' \to Lax Lk(Cyl\mathbf{B}'): b' \vdash \rho_{\mathbf{B}'}(b'^{\boxminus})$$

the isomorphism similar to \hat{g}' . The square



is commutative, since, for each block b of B,

$$LaxLkf(\hat{g}'(b)) = LaxLkf(\rho(b^{\boxminus})) = \rho_{\mathbf{B}'}(f(b)^{\boxminus}) = \hat{g}'_{\mathbf{B}'}f(b)$$

(by the construction of LaxLink, Proposition 1). This proves that the functor

$$Cat_n \xrightarrow{Cyl_{n,n+1}} Cat_{n+1} \xrightarrow{Lax Lk_{n+1,n}} Cat_n$$

is equivalent to an identity. ∇

COROLLARY 1. If $h: CylB \rightarrow CylB'$ is an (n+1)-fold functor, there exists a unique n-fold functor $f: B \rightarrow B'$ such that h = Cylf.

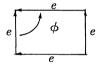
Indeed, this expresses the fact that B is a free object generated by CylB (Proof above) with respect to the LaxLink functor. ∇

COROLLARY 2. For each integer m > n > 1, the LaxLink functor from Cat_n to Cat_m is equivalent to a left inverse of the functor $Cyl_{n,m} =$

$$(Cat_n \xrightarrow{Cyl_{n,n+1}} Cat_{n+1} \rightarrow \dots \rightarrow Cat_{m-1} \xrightarrow{Cyl_{m-1,m}} Cat_m). \nabla$$

REMARK. Proposition 1 may be compared with the fact that the Link functor is equivalent to a left inverse of the Square functor (Proposition 5 [5]). However the LaxLink functor is not equivalent to a left inverse of the Cube functor. Indeed, B and LaxLk(CubB) are isomorphic iff each (n+1)-fold functor $h: CubB \rightarrow CubB'$ is of the form Cubf. A counter example is obtained as follows. Let B be the double category $(2, 2^{dis})$ so that CubB = $(\Box 2, \Box 2, \Box 2^{dis})$, where $2 = 1 + \frac{z}{2} = 0$,

Let B' be the 2-category (Z_2, Z_2) , where Z_2 is the group $\{e, \phi\}$ of unit e. The unique triple functor $h: CubB \rightarrow CubB'$ mapping s and s'onto the degenerate cube



is not of the form $Cubf: CubB \rightarrow CubB'$ for any double functor $f: B \rightarrow B'$.

3° The functor n-Cyl.

The Cylinder functor from Cat_n to Cat_{n+1} taking its values in (n+1)-Cat, it admits as a restriction a functor

$$n-Cyl: n-Cat \rightarrow (n+1)-Cat$$
.

PROPOSITION 3. The functor $n-Cyl: n-Cat \rightarrow (n+1)-Cat$ admits a left adjoint which is equivalent to a left inverse of n-Cyl.

PROOF. By definition of the Cylinder functor, n-Cyl is equal to the composite functor

$$n-Cat \subset Cat_n \xrightarrow{Cub_{n,n+1}} Cat_{n+1} \xrightarrow{\mu_{n+1}} (n+1)-Cat,$$

where μ_{n+1} is the right adjoint of the insertion. So this functor admits as a left adjoint the composite functor

$$(n+1)$$
-Cat \subset Cat_{n+1} $\xrightarrow{Lax Lk_{n+1,n}}$ Cat_n $\xrightarrow{\lambda_n}$ n-Cat

where λ_n is a left adjoint of the insertion (which exists, as seen above). The free object \overline{K} generated by an (n+1)-category K with respect to n-Cyl is the *n*-category reflection of the *n*-fold category LaxLkK. In particular, if K = CylB for some *n*-category B, then LaxLkK is isomorphic with B (by Proposition 2), hence is an *n*-category, and \overline{K} is also isomorphic with B. ∇

COROLLARY. The composite functor (n, m)-Cyl =

 $(n-Cat \xrightarrow{n-C\gamma l} (n+1)-Cat \rightarrow \dots \rightarrow (m-1)-Cat \xrightarrow{(m-1)-C\gamma l} m-Cat)$ admits a left adjoint equivalent to a left inverse of $(n,m)-C\gamma l$. ∇

D. Some applications.

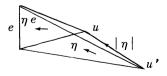
1° Existence of generalized limits.

An (n+1)-fold category H is representable (Section C-2 [4]) if the insertion functor $H^{i,n} \to H^n$ admits a right adjoint, where $H^{i,n}$ is the subcategory of H^n formed by those blocks of H which are objects for the *n* first categories H^i ; in this case, the greatest (n+1)-category included in H is also representable.

Remark that the order of the *n* first compositions of H does not intervene: H is representable iff so is $H^{\gamma(0)}, \ldots, \gamma(n-1), n$ for any permutation γ of $\{0, \ldots, n-1\}$. More generally:

DEFINITION. For each i < n, we denote by $H^{\dots,i}$ the (n+1)-fold category $H^{0,\dots,i-1,i+1,\dots,n,i}$ obtained by «putting the *i*-th composition at the last place», by $|\mathbf{H}|^{i}$ the subcategory of \mathbf{H}^{i} formed by the blocks of \mathbf{H} which are objects for each \mathbf{H}^{j} , $i \neq j \leq n$. We say that \mathbf{H} is representable for the *i*-th composition if the insertion functor $|\mathbf{H}|^{i} \subset \mathbf{H}^{i}$ admits a right adjoint (i.e., if $\mathbf{H}^{\dots,i}$ is representable).

So, H is representable for the *i*-th composition iff, for each object e of H^{*i*}, there exists a morphism $\eta e: u \rightarrow e$ in H^{*i*} with u a vertex



of H , through which factors uniquely any morphism $\eta: u' \rightarrow e$ of Hⁱ with

u' a vertex of H , so that

$$\eta = \eta \ e \circ_i / \eta /$$
, where $/ \eta / : u' \rightarrow u$ in $|\mathbf{H}|^{i}$.

 ηe is called an *i*-representing block for e.

From Proposition 11 [4], we deduce that, if H is representable for the *i*-th composition and if $|H|^i$ is (finitely) complete, then the *n*fold category $|H^i|^{0},...,i-1,i+1,...,n$ formed by the objects of H^i is $H^{...,i}$ wise (finitely) complete.

Let B be an n-fold category, for an integer n > 1. The three following propositions are concerned with the representability of SqB, CylBand CubB for the three last compositions. From the isomorphism

$$\mathbf{B}^{\dots,0} \xrightarrow{\neg \exists} |(Cub\mathbf{B})^{n-1}|^0, \dots, n-2, n = |(Sq\mathbf{B})^{n-1}|^0, \dots, n-2, n; b \vdash b^{\neg \exists}$$

it follows that:

- $|CubB|^n = |SqB|^n$ is isomorphic with $|B|^0$,

- $|CubB|^{n-2}$ and $|SqB|^{n-2}$ are isomorphic with $|B|^{n-1}$,

- the vertices of CubB, SqB and CylB are the degenerate cubes u^{\equiv} , where u is a vertex of B.

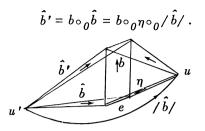
PROPOSITION 4. 1º If B is representable for the 0-th composition, then SqB is representable for the n-th and (n-1)-th compositions.

 2° If B is representable, then CylB is representable for the (n-2)-th composition.

PROOF. 1º As the categories

$$(SqB)^n = \oplus B^0$$
 and $(SqB)^{n-1} = \oplus B^0$

are isomorphic as well as $|SqB|^n$ and $|SqB|^{n-1}$ (isomorphic with $|B|^0$), the (n+1)-fold categories SqB and $(SqB)^{\dots,n-1}$ are simultaneously representable. Suppose that $B^{\dots,0}$ is representable and that $b^{(II)}$ is an object of $(SqB)^n$; let $\eta: u \to e$ be the 0-representing block for $e = a^0b$. Then $sb = (b, b \circ_0 \eta, \eta, u)$ is a square and $a^{(II)}(sb) = u^{(II)} = u^{(II)}$ is a vertex of SqB. If $s = (b, \hat{b}', \hat{b}, u')$ is a square of B with u' a vertex of B, and if $/\hat{b}/$ is the unique factor of \hat{b} through η , then $/\hat{b}/^{(II)} : u'^{(II)} \to u^{(II)}$ is the unique morphism of $|SqB|^n$ such that $sb \oplus /\hat{b}/^{(II)} = s$, since

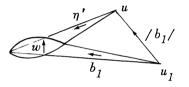


Hence sb is an *n*-representing square for b^{\square} .

2° Suppose that B is representable and that w° is an object of the category $(CylB)^{n-2}$ (so that w is a 2-cell of $B^{n-1,0}$). The same method proves that there exists an (n-2)-representing cylinder for w° , which is

$$qw = [w \circ_0 \eta', w, u, \eta'],$$

where $\eta': u \to e$ is the *n*-representing block for $e = a^{n-1} w$. (This can



also be deduced from 1 using Remark 1-C, by a proof similar to that which will be used in Proposition 6.) ∇

COROLLARY. 1º If $B^{\dots,0}$ is representable and if $|B|^0$ admits (finite) limits, then $B^{\dots,0}$ admits SqB-wise (finite) limits.

2° If B is representable and if $|B|^{n-1}$ admits (finite) limits, then the greatest n-category included in $B^{\dots,0}$ is $(CylB)^{\dots,n-2}$ -wise (finitely) complete.

PROOF. The first assertion comes from Proposition 4, and the remarks preceding it. The second one uses the fact that $|CylB|^{n-2}$ is isomorphic with $|B|^{n-1}$ and that $|(CylB)^{n-2}|^{0,\ldots,n-3,n-1,n}$ is isomorphic with the greatest *n*-category included in $B^{\ldots,0}$. ∇

REMARKS. 1º CylB is not representable for the (n-1)-th composition.

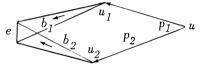
2° If C is a representable 2-category, the double category Q(C) of its up-squares is also representable [3] and Part 2 of the preceding co-

rollary applied to B = Q(C) gives Bourn's Proposition 7 [2], since a $(CylB)\cdots,^{n-2}$ -wise limit is an analimit in the sense of Bourn, $|B|^{I}$ «is» the category of 1-morphisms of C and C «is» the greatest 2-category included in $Q(C)^{\square, \boxminus}$.

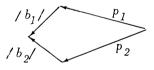
PROPOSITION 5. If **B** is representable and if $|\mathbf{B}|^{n-1}$ admits pullbacks, then CubB and SqB are representable for the (n-2)-th composition.

PROOF. For each object e of B^{n-1} , we denote by $\eta e: re \rightarrow e$ an (n-1)-representing block for e.

1° If $b_1: u_1 \rightarrow e$ and $b_2: u_2 \rightarrow e$ are morphisms of B^{n-1} with u_1, u_2 vertices of B, there exists a «universal» square



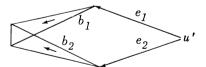
of \mathbf{B}^{n-1} with p_1 and p_2 in $|\mathbf{B}|^{n-1}$ (called a $|\mathbf{B}|^{n-1}$ -pullback). Indeed, by hypothesis, there exists in $|\mathbf{B}|^{n-1}$ a pullback



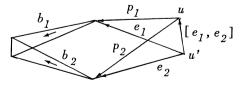
of the factors $/ b_i /$ of b_i through ηe , and

$$b_{2^{\circ}n-1}p_{2} = \eta e_{n-1} / b_{2} / \circ_{n-1}p_{2} = b_{1^{\circ}n-1}p_{1}.$$

If



is a square of B^{n-1} with e_1 and e_2 in $|B|^{n-1}$, then $/b_1/\circ_{n-1}e_1$ and $/b_2/\circ_{n-1}e_2$ are both equal to the factor of $b_1\circ_{n-1}e_1 = b_2\circ_{n-1}e_2$ through ηe , so that there exists a unique

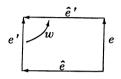


$$[e_1, e_2]: u' \rightarrow u \quad \text{in } |\mathbf{B}|^{n-1}$$

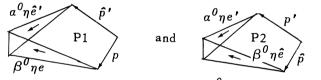
factorizing (e_1, e_2) through the pullback, i.e. satisfying

 $p_1 \circ_{n-1} [e_1, e_2] = e_1$ and $p_2 \circ_{n-1} [e_1, e_2] = e_2$.

2° Let κ be an object of $(CubB)^{n-2}$, which is a degenerate cube «reduced to its front face»



a) Construction of the (n-2)-representing cube for κ . By 1, there exist $|\mathbf{B}|^{n-1}$ -pullbacks



As p, p', \hat{p} , \hat{p}' are in particular objects of \mathbf{B}^0 , the composites ϕ and ϕ' are defined and admit a $|\mathbf{B}|^{n-1}$ -pullback

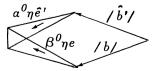
The construction has been done so that $c \kappa =$

 $(\eta e'_{n-1}p'_{n-1}\bar{p}, \eta \hat{e}'_{n-1}\bar{p}', w, u, \eta \hat{e}_{n-1}\bar{p}_{n-1}\bar{p}, \eta e_{n-1}p_{n-1}\bar{p}')$ be a cube of B.

b) Universal property of $c\kappa$. Let $c = (b', \hat{b}', w, u', \hat{b}, b)$ be a cube with u' a vertex of B and $\beta^{n-2}c = \kappa$ (this means:

$$e = \beta^{n-1}b$$
, $e' = \beta^{n-1}b'$, $\hat{e} = \beta^{n-1}\hat{b}$, $\hat{e}' = \beta^{n-1}\hat{b}'$).

If /b/ and $/\hat{b}'/$ are the factors of b and \hat{b}' through ηe and $\eta \hat{e}'$ there is a square



whose diagonal is

$$a^{0}\eta \hat{e}' \circ_{n-1}/\hat{b}'/ = a^{0}(\eta \hat{e}' \circ_{n-1}/\hat{b}'/) = a^{0}\hat{b}' = \beta^{0}b = \beta^{0}\eta e \circ_{n-1}/b/.$$

By the universal property of the $|B|^{n-1}$ -pullback P1, there is a unique

$$[\hat{b}', b]: u' \rightarrow a^{n-1}p$$
 in $|\mathbf{B}|^{n-1}$

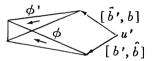
such that

$$\hat{p}' \circ_{n-I} [\hat{b}', b] = /\hat{b}' / \text{ and } p \circ_{n-I} [\hat{b}', b] = /b / .$$

In the same way, using the equality $a^0 b' = \beta^0 \hat{b}$, the factors /b'/ of b' through $\eta e'$ and $/\hat{b}/$ of \hat{b} through $\eta \hat{e}$ factorize through the $|\mathbf{B}|^{n-1}$ -pullback P2 into a unique

$$[b', \hat{b}]: u' \rightarrow a^0 \hat{p} \text{ in } |\mathbf{B}|^{n-1}$$

Using the permutability axiom in B and the fact that p' and \hat{p} are objects of B^0 , we find the square



since

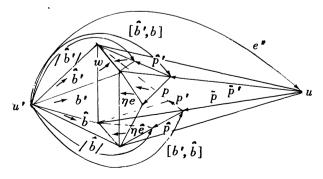
$$\begin{split} \phi' \circ_{n-1} [\hat{b}', b] &= ((\eta \hat{e}' \circ_{n-1} \hat{p}') \circ_0 (\eta e \circ_{n-1} p)) \circ_{n-1} [\hat{b}', b] = \\ &= (\eta \hat{e}' \circ_{n-1} \hat{p}' \circ_{n-1} [\hat{b}', b]) \circ_0 ((\eta e \circ_{n-1} p) \circ_{n-1} [\hat{b}', b]) = \\ &= (\eta \hat{e}' \circ_{n-1} / \hat{b}' /) \circ_0 (\eta e \circ_{n-1} / b /) = \hat{b}' \circ_0 b \,, \end{split}$$

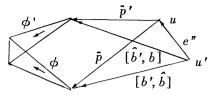
and similarly

$$\phi \circ_{n-1} [b', \hat{b}] = w \circ_{n-1} (b' \circ_0 \hat{b}) = \partial c = \hat{b}' \circ_0 b$$

This square factorizes through the $|B|^{n-1}$ -pullback P3 into a unique

 $e'': u' \to u \text{ in } |B|^{n-1}$.





We have $c \kappa \circ_{n-2} e^{n H} = c$, since

$$\eta e_{n-1} p_{n-1} \bar{p}_{n-1} \bar{p}_{n-1} e'' = \eta e_{n-1} p_{n-1} [\hat{b}', b] = \eta e_{n-1} / b / = b_{n-1} / b / b = b_{n-1} / b = b_{n-1}$$

and idem for the other lateral faces. The unicity of the different factors implies that $e^{n\Xi}$ is the unique cube $/c/: u'^{\Xi} \to u^{\Xi}$ in $|CubB|^{n-2}$ (isomorphic with $|B|^{n-1}$) such that $c \kappa \circ_{n-2}/c/=c$. This proves that $c \kappa$ is an (n-2)-representing cube for κ .

3° Let κ be an object of $(SqB)^{n-2}$. Then κ is of the form considered in 2 except that now

$$w = \hat{e}' \circ_{\rho} e = e' \circ_{\rho} \hat{e}.$$

The (n-2)-representing cube $c\kappa$ «reduces» to a square (w being an object of B^{n-1}), and it is also the (n-2)-representing square for κ . ∇

COROLLARY. If B is representable and if $|B|^{n-1}$ admits (finite) limits, then $|(CubB)^{n-2}|^{0,\ldots,n-3,n-1,n}$ and $Sq(|B^{n-1}|^{0,\ldots,n-2})$ admit respectively (CubB)...,ⁿ⁻²-wise and (SqB)...,ⁿ⁻²-wise (finite) limits.

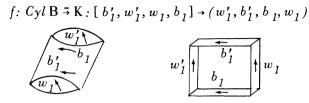
PROOF. This results from Proposition 5 and the remarks preceding Proposition 4. In fact, $|(CubB)^{n-2}|^{0,\ldots,n-3,n-1,n}$ «is formed» by the upsquares of the greatest 2-category included in $B^{n-1,0}$, its two last compositions are the vertical and horizontal compositions of up-squares, and its *i*-th composition, for i < n-2, is deduced pointwise from that of B^{i+1} .

PROPOSITION 6. If **B** is representable for the 0-th composition and if $|\mathbf{B}|^0$ admits pullbacks, then Cyl B, Cub B and (Cub B)^{...,n-1} are representable.

PROOF. 1º Let B' denote the *n*-fold category $B^{n-1,1,\ldots,n-2,0}$ deduced from $B^{\ldots,0}$ by the permutation

$$(1, \ldots, n-1, 0) \mapsto (n-1, 1, \ldots, n-2, 0)$$

on the order of compositions. There is a canonical isomorphism



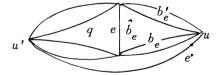
(Remark 1-1-C) onto the greatest (n+1)-category K included in the (n+1)fold category $(SqB')^{\dots,n-2}$. As $B^{\dots,0}$ is representable, so is B', and $|B'|^{n-1} = |B|^0$ admits pullbacks. By Proposition 5, SqB' is representable for the (n-2)-th composition, as well as its greatest (n+1)-category K, and also the isomorphic (n+1)-category Cyl B. More precisely, let e^{\square} be an object of $(Cyl B)^n$ (so that e is an object of B^0); then $e^{\square} = f(e^{\square})$ is an object of $(SqB')^{n-2}$ which admits an (n-2)-representing square

$$c e^{\boxminus} = (b'_e, \hat{b}'_e, \hat{b}_e, b_e): u^{\boxminus} \rightarrow e^{\boxminus} \text{ in } \mathbb{K}^{n-2};$$

the cylinder of B :

$$f^{-1}(ce^{\boxminus}) = [\hat{b}'_e, b'_e, b_e, \hat{b}_e]$$

is the *n*-representing cylinder qe for e^{\square} . If $q: u'^{\square} \rightarrow e^{\square}$ in $(Cyl B)^n$ with u' a vertex of B, its unique factor e''^{\square} through qe is such that e''^{\square} be the factor of f(q) through ce^{\square} .

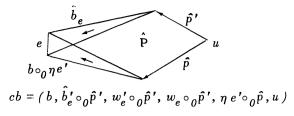


2° Let b^{\square} be an object of $(CubB)^n$, $b \in B$. We are going to construct an *n*-representing cube for b^{\square} . Suppose $b: e' \to e$ in B^0 .

a) By 1, there exists an *n*-representing cylinder

$$qe = [\hat{b}'_e, w'_e, w_e, \hat{b}_e] \text{ for } e^{\square}.$$

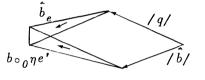
Applying Part 1 of the proof of Proposition 5 to $B^{\dots,0}$ instead of B (we interchange the 0-th and (n-1)-th compositions), there exists a $|B|^0$ -pullback \hat{P} of the following form, where $\eta e'$ denotes the 0-representing block for e':



is a cube, since its diagonal ∂cb is:

$$(\hat{b}'_{e^{\circ}0}\hat{p}')_{\circ_{n-1}}(w_{e^{\circ}0}\hat{p}') = (\hat{b}'_{e^{\circ}n-1}w_{e})_{\circ_{0}}\hat{p}' = \partial qe \circ \hat{p}' = = (w'_{e^{\circ}n-1}\hat{b}_{e})_{\circ_{0}}\hat{p}' = (w'_{e^{\circ}0}\hat{p}')_{\circ_{n-1}}(b_{\circ_{0}}\eta e'_{\circ_{0}}\hat{p}).$$

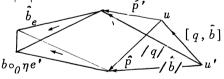
b) Let $c = (b, \hat{b}', w', w, \hat{b}, u')$ be a cube with u' a vertex of B. Then the factor /q/ of the cylinder $q = [\hat{b}', w', w, b \circ_0 \hat{b}]$ through qe and the factor $/\hat{b}/$ of \hat{b} through $\eta e'$ determine the square



because

$$b \circ_0 \eta e' \circ_0 / \hat{b} / = b \circ_0 \hat{b} = \hat{b}_e \circ_0 / q / .$$

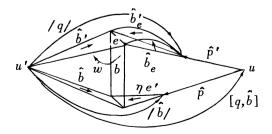
This square factors uniquely through the $|\mathbf{B}|^{0}$ -pullback $\hat{\mathbf{P}}$ into a morphism $[q, \hat{b}]: u' \rightarrow u$ in $|\mathbf{B}|^{0}:$



It follows from the construction that $cb \equiv [q, \hat{b}]^{\boxminus} = c$, since

$$\eta e' \circ_0 \hat{p} \circ_0 [q, \hat{b}] = \eta e' \circ_0 / \hat{b} / = \hat{b}, \ w_e \circ_0 \hat{p}' \circ_0 [q, \hat{b}] = w_e \circ_0 / q / = w,$$

and idem for the other terms of c. Moreover, the unicity of the successive factors implies that $[q, \hat{b}]^{\boxplus}$ is the unique morphism /c/ of $|CubB|^n$ sa-



tisfying $cb \square / c / = c$. Hence cb is a representing cube for b^{\square} .

c) $(CubB)^{\dots,n-1}$ is representable. Indeed, let B_{n-1}^{op} be the *n*-fold category obtained from B by replacing the (n-1)-th category B^{n-1} by its opposite. B_{n-1}^{op} and B being simultaneously representable for the 0-th composition $(B^{n-1} \text{ and } (B^{n-1})^{op}$ have the same objects), $Cub(B_{n-1}^{op})$ is representable by Part 2. There is a canonical isomorphism «reversing the cubes» $F: (CubB)^{n-1} \to (CubB_{n-1}^{op})^n$:

$$B^{n-1} \xrightarrow{b'} b' \xrightarrow{$$

which maps $|CubB|^{n-1}$ onto $|CubB_{n-1}^{op}|^n$. Hence $(CubB)^{\dots,n-1}$ is also representable. ∇

REMARK. F defines an isomorphism $(CubB)^{\dots,n-1} \rightarrow (CubB_{n-1}^{op})_{n-2}^{op}$. The (n+1)-fold category $Cub(B_{n-1}^{op})$ might be called the multiple category of down-cubes of B (by analogy with the notion of a down-square of a 2-category), denoted by $Cub^{\dagger}B$.

COROLLARY. If B is representable for the 0-th composition and if $|B|^0$ admits (finite) limits, then B...,⁰ admits CubB-wise (finite) limits.

This results from Proposition 6, since $|(CubB)^n|^{0,...,n-1}$ is isomorphic with $B^{...,0}$. ∇

2° A laxified internal Hom on Cat_n .

Imitating the construction of the cartesian closed structure on Cat_n given in Section C [5], we define a «closure» functor on Cat_n by replacing the Square functor and the Link functor respectively by the Cube functor and by the LaxLink functor.

Let
$$LaxHom_n: Cat_n^{op} \times Cat_n \to Cat_n$$
 be the composite functor
 $Cat_n^{op} \times Cat_n \xrightarrow{id \times Cub_{n,2n}} Cat_n^{op} \times Cat_{2n} \xrightarrow{id \times \tilde{y}} Cat_n^{op} \times Cat_{2n}$
 $Cat_n^{op} \to Cat_n^{op} \times Cat_{2n}$

where :

- $\tilde{\gamma}: Cat_{2n} \rightarrow Cat_{2n}$ is the isomorphism «permutation of the compositions» associated to the permutation

$$y: (0, \ldots, 2n-1) \mapsto (0, 2, \ldots, 2n-2, 1, 3, \ldots, 2n-1),$$

which associates to the 2n-fold category H the 2n-fold category H^Y in which the *i*-th category is H²ⁱ and the (i+n)-th category is H²ⁱ⁺¹, for each i < n.

- Hom(-,-) is the restriction of the internal Hom functor of the monoidal closed category $(\prod_n Cat_n, \bullet, Hom)$ (defined in [4]); it maps the couple (A, H) of an *n*-fold category A and a 2*n*-fold category H onto the *n*-fold category Hom(A, H) formed by the *n*-fold functors $f: A \to H^{0,...,n-1}$, the *i*-th composition being deduced pointwise from that of H^{n+i} , for i < n. DEFINITION. The functor $LaxHom_n: Cat_n^{op} \times Cat_n \to Cat_n$ is called the laxified internal Hom on Cat_n .

If A and B are n-fold categories, then

$$LaxHom_n(\mathbf{A}, \mathbf{B}) = Hom(\mathbf{A}, (Cub\mathbf{B})^{\gamma})$$

is formed by the *n*-fold functors

$$h: \mathbf{A} \rightarrow (Cub_{n-2n}\mathbf{B})^{0,2,\ldots,2n-2}$$
,

the *i*-th composition being deduced pointwise from the (2i+1)-th composition of $Cub_{n,2n}B$ (itself deduced «horizontaly» from the composition of B^i , as remarked at the end of Section B).

PROPOSITION 7. For each n-fold category A, the partial functor

 $LaxHom_n(A, -): Cat_n \rightarrow Cat_n$

admits a left adjoint $-\otimes A: Cat_n \to Cat_n$. The corresponding tensor product functor $\otimes: Cat_n \times Cat_n \to Cat_n$ admits as a unit the n-fold category l_n on the set $1 = \{0\}$.

PROOF. 1° a) Since $LaxHom_n(A, -)$ is equal to the composite

$$Cat_n \xrightarrow{Cub_{n,2n}} Cat_{2n} \xrightarrow{\tilde{\gamma}} Cat_{2n} \xrightarrow{Hom(A, -)} Cat_n$$
,

it admits as a left adjoint, denoted by $-\Theta A : Cat_n \to Cat_n$, the composite functor

$$Cat_n \xrightarrow{- \bullet A} Cat_{2n} \xrightarrow{\tilde{y}^{-1}} Cat_{2n} \xrightarrow{Lax \ Lk_{2n,n}} Cat_n$$

where $-\blacksquare A$ is the partial square product functor, left adjoint of Hom(A, -)(see [4]) and $LaxLk_{2n,n}$ is the left adjoint of $Cub_{n,2n}$ (Proposition 1, Corollary 1). So, if B is an *n*-fold category, we have

$$\mathbf{B} \otimes \mathbf{A} = Lax Lk_{2n,n} (\mathbf{B} \bullet \mathbf{A}) \gamma^{-1}$$

where $(B = A)\gamma^{-1}$ is the 2*n*-fold category in which

- the 2i-th category is $\underline{B}^{dis} \times A^i$,
- the (2i+1)-th category is $\mathbf{B}^i \times \underline{\mathbf{A}}^{dis}$, for i < n. b) There exists a functor

$$\Theta: Cat_n \times Cat_n \rightarrow Cat_n$$

extending the functors $-\otimes A$, for any *n*-fold category A. This comes from the fact that the right adjoints $LaxHom_n(A, -)$ of $-\otimes A$ are all restrictions of the functor $LaxHom_n$. The functor \otimes maps the couple

$$(f: \mathbf{A} \rightarrow \mathbf{A'}, g: \mathbf{B} \rightarrow \mathbf{B'})$$

of *n*-fold functors onto the *n*-fold functor $g \otimes f \colon B \otimes A \to B' \otimes A'$ corresponding by adjunction to the composite *n*-fold functor:

$$\mathbf{B} \xrightarrow{\mathcal{B}} \mathbf{B}' \xrightarrow{l} Hom(\mathbf{A}', \mathbf{B}' \otimes \mathbf{A}') \xrightarrow{Hom(f, \mathbf{B}' \otimes \mathbf{A}')} Hom(\mathbf{A}, \mathbf{B}' \otimes \mathbf{A}')$$

where l is the liberty morphism defining $B' \otimes A'$ as a free object generated by B' with respect to Hom(A', -).

2° \otimes admits l_n as a unit (up to isomorphisms): We have to construct, for each *n*-fold category A, canonical isomorphisms

$$l_n \otimes \mathbf{A} \stackrel{\mathfrak{l}}{\twoheadrightarrow} \mathbf{A} \stackrel{\mathfrak{l}}{\twoheadrightarrow} \mathbf{A} \otimes l_n ,$$

where

$$l_n \otimes \mathbf{A} = Lax Lk_{2n,n} (l_n \bullet \mathbf{A})^{\gamma^{-1}}$$
 and $\mathbf{A} \otimes l_n = Lax Lk_{2n,n} (\mathbf{A} \bullet l_n)^{\gamma^{-1}}$.

Now, there are isomorphisms:

-
$$(0, a) \mapsto a$$
 from $(l_n = A)^{\gamma^{-1}}$ onto the 2*n*-fold category
 $\tilde{A} = (A^0, \underline{A}^{dis}, \dots, A^{n-1}, \underline{A}^{dis})$

such that $\tilde{A}^{2i} = A^i$ and $\tilde{A}^{2i+1} = \underline{A}^{dis}$, for i < n, - $(a, 0) \mapsto a$ from $(A \equiv I_n)^{\gamma^{-1}}$ onto the 2n-fold category

 $\tilde{\tilde{\mathbf{A}}} = (\underline{\mathbf{A}}^{dis}, \mathbf{A}^{0}, \dots, \underline{\mathbf{A}}^{dis}, \mathbf{A}^{n-l})$

such that $\tilde{\tilde{A}}^{2i} = \underline{A}^{dis}$ and $\tilde{\tilde{A}}^{2i+1} = A^i$, for i < n.

Hence, it suffices to construct isomorphisms

$$\mathbf{A} \stackrel{\sim}{\rightarrow} LaxLk_{2n,n} \tilde{\mathbf{A}}$$
 and $\mathbf{A} \stackrel{\sim}{\rightarrow} LaxLk_{2n,n} \tilde{\mathbf{A}}$.

For this, we first prove the assertions a and b:

a) If H is an (m+1)-fold category such that H^m is the discrete category on \underline{H} , then $Lax LkH \approx H^{m-1,0,\ldots,m-2}$.

Indeed, an (m+1)-fold functor $g: H \rightarrow CubK$, where K is an m-fold category, takes its values into the objects of $(CubK)^m$ (we use that H^m is discrete), so that it admits a restriction

$$g': \mathrm{H}^{0,\ldots,m-1} \rightarrow |(Cub\mathrm{K})^{m}|^{0,\ldots,m-1}$$

Then,

$$\hat{g} = (H^0, \dots, M^{-1}, \underline{g'}) (CubK)^m | ^0, \dots, M^{-1}, \underline{(-^T)^{-1}}, K^1, \dots, M^{-1}, 0)$$

is an *m*-fold functor, as well as

$$\hat{g}: \mathbf{H}^{m-1,0,\ldots,m-2} \to \mathbf{K}: \eta \vdash k \text{ if } g(\eta) = k^{\square}.$$

This determines a 1-1 correspondence $g \mapsto \hat{g}$ from the set of (m+1)-fold functors $g: H \to CubK$ onto the set of m-fold functors $H^{m-1,0,\ldots,m-2} \to K$. It follows that $H^{m-1,0,\ldots,m-2}$ is a free object generated by H with respect to the functor $Cub_{m,m+1}: Cat_m \to Cat_{m+1}$, and we can choose it as LaxLkH (Proposition 1).

b) If H is an (m+1)-fold category such that H^{m-1} is discrete, then $LaxLkH \approx H^{m,0}, \dots, m^{-2}$. The proof is similar, using the isomorphism

$$|(CubK)^{m-1}|^{0,\ldots,m-2,m} \xrightarrow{(-\Box)} K^{1,\ldots,m-1,0}$$

c) Applying a to the 2n-fold category \tilde{A} whose last composition is the discrete one, we find an isomorphism

$$Lax Lk\tilde{A} \approx (A^{n-1}, A^0, \underline{A}^{dis}, \dots, A^{n-2}, \underline{A}^{dis}),$$

and by iteration, $l_n \otimes A \approx Lax Lk_{2n,n} \tilde{A}$ may be identified with A. Simi-

larly, we deduce from b that

$$Lax Lk \tilde{\tilde{\mathbf{A}}} \approx (\mathbf{A}^{n-1}, \underline{\mathbf{A}}^{dis}, \mathbf{A}^{0}, \dots, \underline{\mathbf{A}}^{dis}, \mathbf{A}^{n-2})$$

and by iteration $\mathbf{A} \otimes I_n \approx Lax Lk_{2n,n} \mathbf{\tilde{A}}$ may be identified with \mathbf{A} . ∇

COROLLARY. The vertices of $LaxHom_n(A, B)$ are identified with the *n*-fold functors from A to B.

PROOF. These vertices are identified [4] with the *n*-fold functors

 $f: l_n \rightarrow LaxHom_n(\mathbf{A}, \mathbf{B}),$

which by adjunction (Proposition 7) are in 1-1 correspondence with the *n*-fold functors $\mathbf{A} \stackrel{\sim}{\rightarrow} I_n \otimes \mathbf{A} \rightarrow \mathbf{B}$. ∇

EXAMPLES.

1° Let A and B be *n*-fold categories. Then $L = Lax Lk((B = A)\gamma^{-1})$ is generated by the blocks

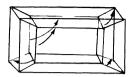
$$\rho(u,a), \rho(b,v), \rho(t,a),$$

where a and b are blocks of A and B, where u, v, t are objects of B^{n-1} , A^{n-1} and B^{n-2} respectively, and where ρ is the universal admissible morphism used in the construction of LaxLink (Proof, Proposition 1). In particular, for any couple (b, a), there exist blocks of L

So L may be seen as an «enrichment» of $B \times A$ by the blocks $\rho(t, a)$, for each object t of B^{n-2} . By iteration, $B \otimes A$ is an «enrichment», or a «laxification» of $B \times A$.

2° For n = 2, the 4-fold category $(Cub_{2,4} \mathbf{A})^{\gamma}$ is defined in a similar way as the 4-fold category of frames $(Sq_{2,4} \mathbf{A})^{\gamma}$ (Example, Section C [5]), by replacing the frames, which are «squares of squares» by «full frames», which are «cubes of cubes». Then $LaxHom_2(\mathbf{A}, \mathbf{B})$ has

a description analogous to that given for $Hom_2(A,B)$, except that frames

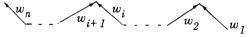


are replaced by full frames; the vertices remain the double functors $A \rightarrow B$ (Corollary, Proposition 7). In particular, if A and B are 2-categories, the greatest 2-category included in $LaxHom_2(A,B)$ is the 2-category Fun(A,B) introduced by Gray [7], and the tensor product B@A admits as a reflection the 2-category tensor product constructed by Gray [8]. COMPLEMENTS. Other closure functors.

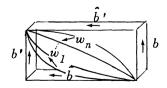
1° A closure functor on the category n-Cat of n-categories is defined by the same method as above, replacing the Cube functor $Cub_{n,2n}$ by the Cylinder functor (n, 2n)-Cyl (Section C), and there is also associated a tensor product on n-Cat.

2° In the last Remark of 1-D, we have defined the (n+1)-fold category of down-cubes of B; it gives rise to a functor «Down-cube» $Cub_{n,2n}^{\dagger}$ from Cat_n to Cat_{2n} , and as above to a «laxified» internal Hom functor on Cat_n , denoted by $Lax Hom_n^{\dagger}$, for which Proposition 7 is also valid, with a tensor product functor Θ^{\dagger} having l_n as unit.

3° The tensor product functors \otimes and \otimes^{\downarrow} on Cat_n are not symmetric, one being in some sense the symmetric of the other. More generally, we may replace the cubes by «laxified cubes» in which the 2-cells w' and w of $B^{n-1,0}$ would be replaced by «strings of 2-cells of $B^{n-1,0}$ »



(with respect to the category B^{n-1}).



This gives rise to an (n+1)-fold category Lax CubB, containing both

CubB and Cub $\overset{\downarrow}{B}$ as (n+1)-fold subcategories. The constructions of this paper may be generalized in this setting.

4° «Less-laxified» internal Hom functors on Cat_n are defined by replacing in Proposition 7 the composite $Cub_{n,2n}$ of Cube functors by a composite in which at some steps $Cub_{m,m+1}$ is replaced by $Sq_{m,m+1}$. Then Proposition 7 remains valid, so that we obtain different tensor products of the couple (B, A) of n-fold categories, the «smallest» one being the cartesian product $B \times A$ (corresponding to the internal Hom functor constructed in [5], where only Square functors are taken), the «greatest» one being B @ A (where only Cube functors are used); all admit 1_n as a unit up to isomorphisms. In Part III, we have constructed an (n+1)-category Nat_n «gluing together» the n-fold categories $Hom_n(A, B)$, for any n-fold categories A and B. If \hat{H} is an internal Hom functor other than the «cartesian closure functor» Hom_n , there is no (n+1)-fold category on the n-fold category coproduct of the multiple categories $\hat{H}(A, B)$, the canonical composition functor

$$\hat{\kappa}: \hat{H}(\mathbf{A}, \mathbf{B}) \otimes \hat{H}(\mathbf{B}, \mathbf{K}) \rightarrow \hat{H}(\mathbf{A}, \mathbf{K})$$

admitting as its domain a tensor product and not a cartesian product.

5° The constructions of Square, Link, Cube, LaxLink, and so the results given in Parts III and IV may be «internalized» (without essential changes) for multiple categories in(ternal to) a category V with commuting coproducts (see Penon [8] and Part III, Appendix) and cokernels. Indeed there exist then free categories in V generated by a graph in V and quasi-quotient categories in V.

3° Characterization of multiple categories in terms of 2-categories.

The construction of LaxLink will be used now to prove that each double category «is» a double sub-category of a double category of squares of a 2-category.

PROPOSITION 8. Let $Q: 2\text{-}Cat \rightarrow Cat_2$ be the functor mapping a 2-category C onto the double category Q(C) of its (up-)squares. Then Q admits a left adjoint String: $Cat_2 \rightarrow 2\text{-}Cat$. PROOF. Q may be seen as the composite of the four functors

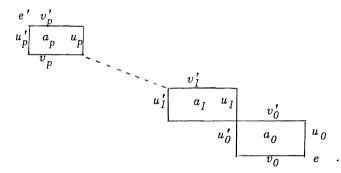
2-Cat
$$\subset$$
 Cat₂ $\xrightarrow{\tilde{\gamma}^{1,0}}$ Cat₂ \xrightarrow{Cub} Cat₃ $|-|^{1,2}$ Cat₂,

where $\tilde{\gamma}^{1,0}$ is the isomorphism «interchanging the two compositions» and where $|-|^{1,2}$ is the functor mapping a triple category T onto the double category formed by the objects of the 0-th category T⁰. These four functors admitting left adjoints, their composite Q admits a left adjoint, constructed as follows:

Let A be a double category and \overline{A} be the triple category with the same blocks ($\underline{A}^{dis}, A^0, A^1$) whose 0-th category is the discrete category on \underline{A} (it is the free object generated by A with respect to $|-|^{1,2}$, by Proposition 9, Part II). The free object $(Lax Lk\overline{A})^{1,0}$ generated by \overline{A} with respect to

$$Cat_2 \xrightarrow{\tilde{\gamma}^{1,0}} Cat_2 \xrightarrow{Cub} Cat_3$$

is a 2-category whose 1-morphisms are equivalence classes of strings of objects of alternately A^0 and A^1 , and whose 2-cells from e to e' are classes of strings of blocks of A:

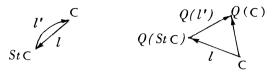


This 2-category is the free object generated by A with respect to Q. It will be called the 2-category of strings of A, denoted by St A. ∇

COROLLARY. The functor String: $Cat_2 \rightarrow 2$ -Cat is equivalent to a left inverse of the inclusion: 2-Cat \subseteq Cat₂.

PROOF. It suffices to prove that, if C is a 2-category, StC is isomorphic to C. Indeed, let $l: C \rightarrow Q(StC)$ be the liberty double functor. As C is

a 2-category, l takes its values into the greatest sub-2-category $St \subset$ of $Q(St \subset)$, and its restriction $l: C \rightarrow St \subset$ admits as an inverse the 2-func-



tor $l': St C \to C$ associated by adjunction to the inclusion $C \subseteq Q(C)$. ∇ REMARK. If A is the double category Q(C) of squares of a 2-category C then C is not isomorphic to St A; counter example: C is the 2-category $(\underline{2}^{dis}, 2)$.

PROPOSITION 9. If A is a double category, then it is canonically isomorphic to a double sub-category of the double category Q(StA) of squares of the 2-category StA.

PROOF. The liberty double functor $l: A \rightarrow Q(StA)$ is injective. Indeed, let a and a' be blocks of A such that l(a) = l(a'). By definition of the equivalence relation used to define $LaxLk\overline{A}$ (and therefore StA), there exists a family (b_i) of «smaller» blocks of A admitting both a and a' as double composites. More precisely, let Λ be the free double nonassociative category generated by the double graph underlying A, and $\lambda: \Lambda \rightarrow A$ be the canonical non-associative double functor (for its existence, see [6]); then there exist blocks η and η ' of Λ constructed on the family (b_i) and such that

$$a = \lambda(\eta) = \lambda(\eta') = a'.$$

(Example:

 $a = (b_5 \circ_0 b_4) \circ_1 (b_3 \circ_0 b_2 \circ_0 b_1) = (b_5 \circ_1 b_3) \circ_0 (b_4 \circ_1 (b_2 \circ_0 b_1)) = a'.)$ So l is injective, and its image l(A) is isomorphic to A. ∇

Hence all double categories «are» double sub-categories of double

categories of squares of a 2-category. This explains why it was difficult to find natural examples of double categories other than 2-categories and their squares! (Spencer [9] has characterized double categories of squares of a 2-category as those double categories admitting a special connection in the sense of Brown.)

It follows that, if A is a double category and $f: K \rightarrow |A^0|^1$ a functor, an A-wise limit of f is simply a lax-limit (in the sense of Gray-Bourn-Street) of f considered as a 2-functor from (\underline{K}^{dis}, K) into the greatest 2-category included in A, such that the 2-cells projections of the laxlimit take their values in A; this is a restrictive condition, since A is only a double sub-category of Q(StA). Hence generalized limits (defined in Part II) are just lax-limits «relativized to a double sub-category».

From Proposition 9, we deduce :

PROPOSITION 10. Let A be an n-fold category, with n > 2. Then there exists a canonical embedding from A into an n-fold category of the form $Cub_{2,n}Q(C)$, where C is a 2-category.

PROOF. The functor

2-Cat
$$\xrightarrow{Q}$$
 Cat₂ $\xrightarrow{Cub_{2,n}}$ Cat_n

admits a left adjoint which associates to A the 2-category

$$C = St(Lax Lk_{n-2}A).$$

Remark that the corresponding liberty morphism $L: A \rightarrow Cub_{2,n}Q(C)$ is generally not injective, since it factors through the liberty morphism lfrom A to Cub(LaxLkA) which identifies (Proof, Proposition 1) two blocks of A having the same sources and targets for the last three compositions. ∇

COMPLEMENT. Proposition 10 does not give a complete characterization of *n*-fold categories, for n > 2, in terms of 2-categories, since the embedding *L* is generally not injective. However there is such a characterization (which will be given elsewhere), obtained by laxifying at each step the construction of the functor *Cube*, in a way similar to that used to proceed from the functor *Square* to the functor *Cube*.