
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

TIMOTHY PORTER
Essential properties of pro-objects in
Grothendieck categories
Cahiers de topologie et géométrie différentielle catégoriques, tome
20, no 1 (1979), p. 3-57
<http://www.numdam.org/item?id=CTGDC_1979__20_1_3_0>

© Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1979__20_1_3_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


3

ESSENTIAL PROPERTIES OF PRO-OBJECTS IN

GROTHENDIECK CATEGORIES

by Timothy PORTER

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XX -1 ( 1979 )

There is a class of problems in Algebra, algebraic Topology and

category Theory which can be subsummed under the question : When does

a «structure &#x3E;&#x3E; on a category C extend to a similar « structure» on the cor-

responding procategory pro ( C ) ?
Thus one has the work of Edwards and Hastings [7] and the author

[27,28,29] on extending a «model category for homotopy theory » a la

Quillen [35] from a category C , usually the category of simplicial sets

or of chain complexes over some ring, to give a homotopy theory or homo-

topical algebra in pro(C) . ( It is worth noting that the two approaches
differ considerably, but they agree in the formation of the homotopy categ-

ory / category of fractions Hopro(C) which, in this case, is distinct from
the prohomotopy category&#x3E;&#x3E; proHo ( C ) . )

In some separate work, the author tried to use an extension of the

simple torsion theory on a category of modules to study the « stability »

problem of promodules ; that is, the problem of determining not only those

promodules isomorphic to constant promodules, but of using this informa-

tion to obtain other results on promodules, cf. [30- 3 . One of the pro-

blems there was that of finding an extension of a localisation to promo-
dules in such a way as to give useful» information ; this proved possible

only if the category was semi-artinian (cf. Popescu [26] ). Another result

to note from those papers was an attempt to use a stabilisedv Krull-Ga-

briel dimension in procategories to give restrictions on the vanishing of

the derived functors of lim [33 . Similar results have recently been ob-

tained, by very different methods, by Jensen and Gruson [14,15], who
have shown that, if A is a noetherian ring and C = Mod-A , the category
of finitely generated right modules over A , then any pro-object M in C
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which has the «lim sup» of the Krull dimensions of its constituent parts

less than n satisfies

where lim (i) is the i-th derived functor of the limit functor lim ; cf. Jen-
sen [20] for earlier results of this nature.

To return to the problem mentioned at the start, the solution is

known for various « structures » for instance :

if C is additive, so is pro ( C ) ; if C is abelian, so is pro ( C ),
and so on. However the following interesting special cases do not seem
to be known :

( i ) If I is a calculus of fractions in C , one can form a class of

morphisms in pro ( C ) which «locally belong to 3l : is this class always
a calculus of fractions ?

(ii) if T =  T,n, u&#x3E; is a monad (or triple ) on C , one can form a

monad p ro T on p ro ( C ) simply by extending T  pointw ise &#x3E;&#x3E; or «degree-

wise&#x3E;&#x3E;; suppose one forms the Filenberg-Moore category CT for T and

then one forms pro ( CT ) ; alternatively one could form pro ( C ) Pro T . Is

there any close relationship between pro ( CT ) and pro ( C ) Pro T ?
The reason why the form of I is suggested as such in ( i ) is that,

in the above mentioned homotopy theory, it was this «locally in E » idea

which worked, but the proof it did so required structure in addition to the

simple calculus of fractions. A similar result will be proved in this paper,

namely when I is the class of morphisms inverted in a localisation, here

again additional structure is used to simplify the problem.
As to ( ii) the localisation result just mentioned gives such a co-

nnection if T is a left exact idempotent monad and C is abelian ; in ge-
neral this problem seems to be quite hard since for example it would give
information on such things as :

Is a ring object in the category of pro-abelian groups naturally iso-

morphic to the underlying progroup of a proring?
The answer would seem to depend on whether or not the ring satis-
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fies some finiteness conditions, but again this is still vague. So in this

paper we are not going to crack these basic problems of procategory theo-

ry, but we hopefully will scratch the surface. The main purpose of this

note is to show that by an obvious adaptation of the «homotopy theory»

methods previously used one can obtain results on certain types of local-

isation in pro-Grothendieck categories and that one can use these results

to obtain a full picture of, categorically, why the result of Gruson and

Jensen works.

To start with, we will provide an introduction to the necessary

theory of pro-objects since the sources on procategories are reticent about

some of the results we will need, and the proofs do not always illustrate

the results in enough detail to be comparable with later developments ;
however this Section contains little new material.

I should like to thank Chris Jensen, Laurent Gruson and,Daniel
Simson for encouragement; Chris Jensen for providing me with a brief ac-

count of his joint work with Gruson ; and Anders Kock, Fred Linton and

Gavin Wraith for numerous discussions either in Amiens in the summer of

1975 or by letter.
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1. PRELIMINARIES ON PROCATEGORiES.

Let U be a (Grothendieck) universe. Ens will denote the categ-

ory of U-sets and functions and Ab the category of U-small abelian groups

and homomorphisms. C will denote a U-small category; initially there

will be no other restriction on C but soon we will need C to be abelian

and finally we will require it to be a Grothendieck category ( i. e., AB 5

plus a generator) satisfying AB 4* - products are exact.

A v-small category I will be called an index category provided :

( i ) for each pair of objects i , j in I , either Hom( i , j ) ==0 or it con-

tains precisely one element; in this later case, we write i--&#x3E; j or i  j .

(ii) for each pair a , j of objects of I , there is an object k in I and

maps

REMARK. In some of the sources on procategories, (i) is replaced by a

weaker property:

If a , B : i--&#x3E; j are two maps in I , then there is some k and a map

y: k --&#x3E;i with a y = (3 y .
Ike do not need this added pseudo-generality in this work.

A functor F : I - C will be called a projective system in C ind-

exed by I . If C’ is a subcategory of C and F factors through C’ , then

F will be said to be of type C’. 

If a : i --&#x3E; j is a map in I , and F : I - C is a projective system,
then the map F(a) will be called a transition or transition map of F .

If q5 : I --&#x3E; ,I is a functor of index categories, then we say that 95
is an initial functor if for each j in J there is an i in I and a map ( in

J

If F: I - C is a projective system in C , then for each object T

of C the composite
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defines a functor

If f : T , S is a morphism in C , then there is a natural transformation

HomC ( F, T ) --&#x3E; HomC ( F, S) of functors from lOp to Ens.

Since Ens is complete and cocomplete, we can form the colimit

of these functors; we define

and similarly for hF (S) . The natural transformation induced from f in

its turn induces a function hF ( T ) --&#x3E; hF (S) , so that hF is a functor - the

properties are easily verified.

If C is an additive category, then HomC (F( i ), T ) , and hence

hF ( T ) , have natural abelian group structures, so the functor hF : C - Ens
factors through a functor from C to A b . 

We next seek to identify these hF functors amongst the functors

from C to Ens ( or A b ).
A functor M : C , Ens is said to be prorepresentable provided it

is naturally isomorphic to a functor of the form hF for some projective

system F in C .

It is clear that a given functor M : C --&#x3E; Ens may be isomorphic to

many hF and yet the projective systems may not be isomorphic in the

usual classical sense. For instance, if q5 : 1 - J is initial and F : I - C is

such that M = hF , then als o M = hF 0 since, for each T , hF ( T ) is nat-

urally isomorphic to hFO, ( T ) and yet F and Fq5 are indexed by possibly
different categories. (A proof that hF - hF O can be obtained by dualis-

ing Theorem 1, page 213, of MacLane [24] ; it is also available in many

other sources on category theory. )

Since, if C is additive, each hF factors through the forgetful func-

tor Ab--&#x3E; Ens , we have that any prorepresentable functor M must also fac-

tor through Ab . (To simplify the characterisation of prorepresentable func-

tors we will assume that C is abelian from now on - some of the results

go through without this, for these see Duskin [6].)
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Each Hom-functor Home (X, ): C --&#x3E; Ab is left exact and U-small

colimits in Ab are exact; we have that hF is always left exact and hence

that any prorepresentable functor M: C - Ab is left exact. In fact, the

converse is true; every left exact functor from an abelian category C to

Ab is prorepresentable. The priority for this result is difficult to give ;
it is well-known &#x3E;&#x3E; in categorical circles, being of the status of «folklore.

Duskin [6] gives a version which he assigns to Deligne [3] and Lazard,
which characterises prorepresentable functors from a general category C

to Ens in terms of left exactness and an additional smallness condition,

but the only explicit proof that I have been able to find is in Stauffer [37]
which seems unusually late as I am certain the result was well-known be-

fore 1970 when that paper was written. However the proof that Stauffer

gives is easy to follow so I won’t try to better it and will merely comment

that he uses C°P instead of C . Adapting his result to allow for that, we

quote his Theorem 3.5 page 379 of [37] :

Let C be a U-small abelian category; then a functor M : C - A b is

left exact iff M is a direct limit o f representable functors over a directed

index category, i. e., M = lim Hom c (F(i),-).
I

 REM ARKS. a) If one relaxes the condition that C be U-small to C being

merely a U-category, then I may not be U-small.

b) It should be noted that in a later paper, Stauffer [38], it is shown

that the dual of the construction of pro (C ) produces another category,

ind( C) ; and moreover ind( C) is a right completion of C whilst pro ( C )
is a left completion of C . In this later paper Stauffer proves the duals of

many of the results we will be discussing here. In fact many of these re-

sults are well-known as he says.

Of particular interest to us here is a result of Stauffer [37], page

375, Proposition 2.1, where he shows that one can always replace an ar-

bitrary indexing category by a p.f.p. indexing category - «p.f.p.» stands

for «pointwise finitely preceded » and I is p, f. p. iff for each io in I ,
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is finite. This result seems to have been discovered independently by
M ardesic about the same time as [37] was written, but, in its use of shape

theory, some writers have not seemed fully aware of the statement of this

result since there are often references to the fact that the procategories

being used by them are not exactly the same as those used by Artin and

Mazur in [l]. The two definitions are, in fact, equivalent even though

they are not equally easy to check in different situations.

It has become usual to denote the category of left exact functors

from an abelian category C to the category Ab by Sex( C, Ab ) - for the

reason, see Gabriel [8], Page 348. The additive Yoneda embedding :
Y : CoP --&#x3E; AbC , where AbC denotes the category of additive functors from
C to A b factors through

Since it is inconvenient to embed C°P , it has become customary to take

the opposite of both categories and hence to obtain a natural embedding

The category (Sex(C, Ab))oP is then taken as the category pro(C) of

pro-objects in C .

We next develop an intrinsic definition of pro ( C) . For our objects
we will take all projective systems F: I , C and for our morphisms bet-

ween F and G : J --&#x3E; C we take

To justify this we note that
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The last stage of this string of equalities follows from the Yoneda Lemma

and the fact that Sex( C, Ab) is a full subcategory of AbC .

Clearly the category constructed above is equivalent to pro ( C )
and in fact some authors have defined pro ( C ) in this way - notably Artin

and Mazur [ 1] , Appendix. It has the advantage that it works for non-abel-

ian categories but the definition of composition of morphisms is, it must

be admitted, rather strained in this context. The definition can be made in

terms of pro-representable functors but, as mentioned before, the character-

isation of prorepresentables in non-abelian categories is less elegant and

is more messy than even the composition of morphisms for this intrinsic

definition. 

Our view is that it is convenient to have both definitions especial-

ly when one has some of the reindexing results which will be proved soon.

The intrinsic definition is more useful in our context, but the definition

as (Sex(c,Ab))OP or as the completion of C provides a far better al-

gebraic motivation for study ing pro ( C ) than the intrinsic definition.

To use the intrinsic definition to the full, we need to examine the

morphisms in it more closely. we have the set of morphisms between F

and G defined to be

An element of lim HomC(F(i), G(j)) consists of an index i plus a mor-
1

phism fi : F(i )--&#x3E; G ( j ) modulo the equivalence relation that

are equivalent if there is an i " with

(whose existence is provided for by the axioms of an indexing category)
such that the following diagram commutes. Thus it is possible to repre-
sent a map in 
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as a pair ( O , { fj} . jEJ ) where O : 0bJ --&#x3E; 0b 1 is a function and where each

fj: F(O( j ) )--&#x3E; G(j) is a morphism in C . If j’ - j in J , then there is a

diagram

and since (O , { fj}) is to represent a map, these two morphisms with com-

mon codomain G ( j ) must be equivalent, i, e., there is some i in I and

such that

(all unlabelled maps are the transitions relevant to that position). In or-

der to obtain exactly

by such a representation we put an equivalence relation on the set of all

(cp , { f. ] J) by stating that

(cp, { fj J) R ( cp {fj’,  fj}) if and only if for each j in J there is an

i in I with
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such that the following diagram commutes :

The set of equivalence classes is fairly easily seen to be exactly

This description of the morphisms in (intrinsic) pro( C) makes

the composition of such morphisms easier to define, i, e., if

and we have f : F -+ G represented by a pair ( cp, { f} ) and g : G --&#x3E; Hre-

presented by (v, gk ) , then g o f: F , H is the morphism represented by

cp{ gk fv (k)}) .
When we have obtained the reindexing results later on, the des-

cription of composition of morphisms will simplify even further. It is worth

noting that Hilton and Deleanu [2] have obtained a result which suggests

that, by adapting this representation of maps to non-filtered index categ-

ories, one obtains a weaker form of procategory which may be very useful

in the study of comma categories. I do not know to what extent the results

of this paper might extend to this weaker version of pro(C).

At several places in the preceding pages, we have stated that

pro( C) has ( projective ) limits ; we can now prove this using the above

description of maps in pro ( C ).

Suppose F : J - pro( C ) is a projective system in pro ( C ) and for

each i in J suppose F( j ) is the projective system F( j ):1J --&#x3E; C . We
form a fresh indexing category L with
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notes disjoint union of sets) and, by the usual method of forming disjoint

unions, we will indicate an object of L by a pair (i, j) where i E Ob I j .
With this notation we say:

iff and, if (cp 1 fi I ) represents the
map F( j1--&#x3E; F(j2), then i1 O (i2).

With this new category L as indexing category, we form a new

pro-object F by letting 

and if is a map in L ,

(here the first map in the composite is a transition in F ( j1) and the sec-
ond is fi2 , where (cp, { fi} ) is the transition promap F(j, ) -+ F(j2 )’

2 

We claim F is the ( projective ) limit of F . Clearly F is a pro-

object (in the intrinsic definition) and the limiting cone is given by the

promaps 

where in: Oblj --&#x3E; ObL is the inclusion, and the maps F (in(j))--&#x3E; F(j)
are the relevant identities; note that F(in(j)) is the same as F ( j ) un-

der the obvious identification. If

gives another cone on F : J -+pro( C ) , then each kj is represented by

say, (vj,{lj} ) where Vjj: Oblj --&#x3E;ObK and 

is a morphism in C . Since L is a disjoint union, the vj’s together form

and then the 11’s give morphisms

which represent the unique map A; G --&#x3E; F in pro ( C ) . Thus F is a li-

mit of F .
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The above demonstration sheds some more light on the relation-

ship between the two definitions of pro ( C ) . Suppose F : I - C is a pro-

jective system in C , then we can use the Yoneda embedding h: C --&#x3E; pro(C)
to consider F as the projective system

since pro(C) has projective limits, we can find a limit F for h F . In

this case we have the same indexing category for each h F (i ) and so L

is essentially the same as I .

Using the description in terms of (Sex(C, Ab))op we find that

the functor corresponding to h T is exactly the same as hF . O Thus even
when F has no limit within C , within pro (C ) one can find a limit, name-

ly another interpretation of F itself. Although this process of «double

think» may seem like cheating, it, in fact, provides a very useful insight

into, and method for, the study of pro-objects. We illustrate this in the

ideas which lead up to the reindexing results.

Suppose we are given a functor F : In C as usual; then F is a

pro-object. If we denote the constant functor from pro ( C ) to pro ( C )1 by
c: pro(C) -- pro(C)1 given by

then the fact that F is itself the limit of the functor h F : 1 --&#x3E; pro ( C ) is

expressed by the adjunction equation

for all pro-objects G and so the adjunction equations ( or limiting cone

according to your interpretation) gives a map IL: c (F ) - h F in pro ( C )1 ,
or equivalently a set

of promaps such that for i--&#x3E; j the diagram
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commutes, the vertical maps being transitions. Omitting the «double think»

this is merely a set of promaps {ui : F --&#x3E; F ( i) } where F (i) is consider-

ed as a pro-object indexed by the category with one morphism, and the

diagram is then merely

We now will drop once and for all the «double think » used above and will

consider c , h etc ... as inclusions rather than embeddings whenever this

is feasible. Thus, for example, the object M of C and the pro-object

FM : 1--&#x3E; C (where FM (*) = M and 7 is the one-morphism category ) will

be identified. By doing this we will effectively ignore the distinction bet-

ween the two interpretations ( or definitions ) of pro (C) . This will not

give rise to any confusion.

We now will prove the following reindexing result:

Given pro-objects F : I - C , G : J--&#x3E; C and a map f: F - G in pro (C ),
there is an indexing category M f with «initiality. functors OI: Mf--&#x3E; I ,

: M f--&#x3E; J and a map f: FO1 --&#x3E; G O J in CMf such that the diagram
- f 

commutes, the vertical maps being initiality isomorphisms.

P ROOF. First notice that any functor category CI where I is an index-

ing category can be considered as part of pro ( C) possibly with the iden-

tification of some morphisms, thus the fact that f is in C M f means that
it can be considered also as a promap. The category M f is constructed

as follows :

- The objects of Mf are the morphisms in C which «represent » f in
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the sense that ) represents f if the diagram

in pro(C) commutes.

- We say ) if the diagram

commutes. (The vertical maps are the obvious transitions ).

It is easily checked that Mf is an indexing category and that the

projections

are initial. It remains to define f : FO1--&#x3E; Gqs j to be the map given by
f( fi) = rj . Checking that this works is simple.

There are more sophisticated versions of this result available,

proved in a similar fashion. For example :

(i ) Given F.--&#x3E; G --&#x3E;gH in pro ( C), where

there is an indexing category Mf,g’ initial functors O1 , OJ cp K and
a pair o f maps 

in CMf’g such that the « obvious » dia g ram commutes.
(lake M f g to be the category of maps «representing» the pair ( f , g) . )

(ii) Given a finite diagram scheme D with no loops and a diagram
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X : D - pro(C) in pro ( C ) o f typ e D , there is an indexing category MX ,
initial functors

and a pro-object X ; MX --&#x3E; CD in CD such that, using the obvious forget-
ful functor pro(CD) , pro(C)D, the natural map X --&#x3E; X is an isomorphism.
( T ake MX to be the category of maps in CD «representing» the diagram
of promaps X . )

[ For a complete proof of (ii ) see Artin and Mazur [1] , Appendix.]

These reindexing results allow one to think of pro ( C) as being
made up of various copies of functor categories CI for varying indexing

categories I, linked or glued» together by initiality relations. This view

enables one to suggest methods of lifting «structures» from C to pro ( C )
- first lift to CI and then see how to «glue» these structures together,
much as in the manner of the construction of « structures» on differentiable

manifolds.

To illustrate this idea we show that pro ( C) is abelian (if C is

abelian ). That pro(C) is additive follows from the equation

since each HomC(F(i), G(j)) is an abelian group and any zero object

in C furnishes a zero for pro ( C) .
To show the existence of a direct sum of pro-objects F : I , C,

G : J --&#x3E; C , we merely have to take

where the projection maps of I X J towards I and J furnish the index maps

underlying the inclusions

To find the kernel of a morphism f : F--&#x3E; G , we first represent it, by re-

indexing, by a promap

so that
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commutes and as usual the vertical maps are initiality isomorphisms ; next

we take the kernel of f in the category CM , i, e., for each m in M,

This pro-object together with the monomorphism Kerf --&#x3E; F--&#x3E; F gives the

kernel of f . To see this, suppose the composite

is the zero morphism; by ( i ) above we can represent this as a composi-
tion of promaps in some CN :

N consists of all map pairs

such that the diagram

commutes and N contains an initial subcategory N, consisting of those

pairs (x, y) such that yx = 0 . There is an initial functor

and so we can obtain a diagram in CN, :

where : No ---&#x3E;K sends (x, y) to k , the index of the domain of x. Clear-
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ly g’ factors through the kernel of fO as required.
A similar dual discussion describes the cokernel of f .
In the above discussion we have made use of the fact that a mor-

phism f : F - G is the zero morphism iff for any index j of G and i of

F such that f I l : F ( i ) --&#x3E; G ( j ) represents f , there is some i0 --&#x3E; i so that

the composite map

is zero. This is immediate from the definition of maps in pro(C) as it

is merely the statement that the elements

have the same image in l!2Homc ( F( i), G( j)).
I

As a consequence of this applied to the identity map on F , we

find that F = 0 iff, for any index i of F , there is an index i0 --&#x3E; i such
i

that pi = 0.

As was mentioned before, none of this material is new. It has been

collected here together for the convenience of the reader since the me-

thods of proof and the results are scattered around in the literature. For

further information on procategories, we refer the reader to the following
sources :

Artin and Mazur [1], Appendix; Deligne in Hartshome [3 , Appen-

dix ; Duskin [6] ; and Grothendieck [13 .

From now on we will assume that C is a Grothendieck category.

2. ESSENTIAL EQUIVALENCE OF PROJECTIVE SYSTEMS.

At the start of Section 1, we introduced the terminology « of type
C’ &#x3E;&#x3E; where C’ was a full subcategory of C . -We also saw in Section 1 that

if C’ = 10 } was the full subcategory consisting of the zero object, then

a pro-object F could be isomorphic to 0 without having any of its «ob-

jects &#x3E;&#x3E; zero: For example let I be any index category and X any object
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of C , define a pro-object Xo : I - C by :

X could be chosen to be non-zero, but Xo = 0 . Thus in this case Xo is

isomorphic to something in pro ( C’) without being in fact in pro ( C’) it-

self. To enable a sensible classification of pro-objects to be carried out,
one has to allow for this. This is handled in the following definition :

Suppose C1 is a full subcategory of C , then X in pro ( C) is

said to be essentially of type C1 if it is isomorphic to some object of

pro(C1).
This idea of «essential» properties of pro-objects has been stud-

ied by Verdier [40] and Laudal [23] (for a fuller account of [40], see

Duskin’s Strasbourg Notes [6] ). The internal description of when X= 0

in p ro ( C ) is mirrored by internal descriptions of when X is essentially
of type Cl . Such an internal description was given by Laudal [23] ( cf.

Duskin’s Notes [6] ). Although we will not make very extensive use of

this result, it is useful as a means to check whether or not a given pro-

object is essentially of a certain type, we therefore include it and will

prove it, as proofs are difficult to come by.

PROPOSITION 2.1. In order that a pro-object be essentially of type C1,
it is necessary and sufficient that its defining system F : I - C , say, have

the property:

(*) for each i in I there is a j and j - i such that the transition

PF,t L factors through an object Mi 1 of C1 . 
PROOF. Let F have the property mentioned above. Ike form a new index-

ing category C (I ) as follows :

the ordered pair ( j, i ) is in C (1) if i , j are in I and there is a

factorisation

with Mi in C, . (We will write
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- There is a single morphism in C (I ) between ( j’, i’) and ( j , i ) pre-

cisely when there are morphisms j’ , j and I ’ - I in I .

There are two pro je ctions :

and the property (*) ensures that both are initial, so the pro-objects F ,

F p l and Fp 2 are isomorphic. We refine C(I) by looking at an initial

subcategory D(1) of C(I ) with the same objects but with a single mor-

phism from (j’,i’) to (j,i) precisely when a map i’ --&#x3E; j exists. Thus

are both isomorphic to F , where a: D(I)--&#x3E; C(1) is the inclusion.

aL’e now define M by:

and

Since t1 :sr = pj F , i ’ , it is easily checked that this does in fact define a

pro-object in C ; of course it is of type C 1 since each M ( j, i ) is in C1 . 
If (j’, i ’ ) - ( j , i ) in D (1 ) , there are diagrams

and

both commuting, where

modulo the identifications of F1 ( j, i ) with Fp1 a( j, i ) = F( j ) and of
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F2( j, i) with Fp2 a(j, i) = F(i ). These diagrams express the fact that
the lsil } and {tij} give morphisms

Thus it is obvious that the composed maps

are precisely the transitions of F and hence that t s is the natural iso-

morphism x : F1 --&#x3E; F2 given by the initiality condition. Now if we write

p - s x-1 t we have that p is an idempotent and we can form a projective

system

within pro ( C ) . Since pro ( C ) is left complete, we can use this system
to define a limit of itself as in Section 1, we call this « interlaced» limit-

ing system M ; since M is in pro (C1 ) , so is M . We have now merely to
show that F is isomorphic to M. The above projective system in pro ( C )
is clearly isomorphic to the system

obtained by splitting up each p = s x-1 t into its constituent parts. This

is, in turn, isomorphic to
,

which collapses to give the constant system on FI or F2 depending on

the collapse used. Hence M and F, must be isomorphic, i. e., F is iso-

morphic to a pro-object of type C1 as required.

The converse is easier. Suppose given an isomorphism f : F - M

with inverse g: M --&#x3E; F , with M in pro (C 1) ; we must check condition
(*), so we are given some i in the index category of F . By our previous

w ork, if M : K --&#x3E; C , there is a setmap 95:I,K and a map

repre senting g . Similarly there is a set map x : K - I and for each k in

K , a map
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representing f . Taking k = O (i)* we get a map

representing the composite f g = idF . Since these two maps are equal,
there is some j in I such that j --&#x3E;V cp (i) and

i.e., the transition pi factors through an object in C, , so F satisfies
condition (*).

The next theorem is of central importance in what follows. It is

stated incorrectly in both Verdier [40] and Duskin [6], but the mistake

is not that serious. 

THEOREM 2.2. Suppose C1 is closed under extensions, i. e., if Az, A3
are in CI and there is a short exact sequence

in C, then A2 is also in C 1. O I f

is an exact sequence in pro(C) and F 1 ’ F3 are essentially of type C 1 ’ 
then F2 is essentially of type C 1 . 
PROOF. First we reindex so as to be able to replace (2.2.1) by an iso-

morphic exact sequence indexed by a single indexing category, i. e., so

as to represent ( 2.2.1 ) by a pro-object in the category of exact sequences

in C . To this end, we consider the category of all pairs (u 1, v1 ) :

such that v1 u1 - 0 and v1 represents v and u1 represents u in the

sense introduced in Section 1. For each such pair (u1, v 1 ) we associate
the short exact sequence
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and if a : (u1, v1) --&#x3E; (u2, v2) is a morphism in this category ( i. e., a

diagram

representing a map of pairs), then we associate to a the corresponding
map of exact sequences

This assignment gives therefore a «pro-exact sequence» in C and there

are, in the limit, isomorphisms

induced by the natural morphisms

We thus will assume that ( 2.2.1 ) is indexed by some category I . We next

assume that F1 and F3 satisfy condition (*) of 2.1 , and we will check

that F2 also satisfies this condition.

Given in the indexing category I we can find some j in I and

a factorisation of 1pji : F1 ( j ) --&#x3E; F1 (i) as

Also by refining j further if necessary, we can assume that, for this j ,
the morphism 3pij : F3 ( j )--&#x3E; F3 ( i) also factorises as

where of course Ml 1 and 3Mi are in C 1 
"We repeat the procedure starting with j to find a k sufficiently
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«fine" so that 1P; and 3pkj factor through 1Mkj and 3M; respectively.
Thus we have a large commutative diagram

where all the maps are the obvious ones.

Working with the bottom rectangle first we take the pushout of

and form the induced exact sequence

(as in the Yoneda description of the extension group). By the universal

property of pushouts, 2pk factors through o-Kj as, say, 2Pj k = Tj k o-kj k We
have thus replaced ( 2.2.2 ) by the following diagram :
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We next take the induced exact sequence given by the diagram

where the right hand square is a pullback. we thus can replace (2.2.3)

finally by ( 2.2.4) ( by using the universal property of pullbacks ) :

where the vertical centre maps factorise 2pi .
Since C1 is closed under extensions, it follows that 2Mki is in

C, , so condition ( ) is satisfied by F2 .

If we combine this proof with that of Proposition 2.1 applied to

the subcategory of the category of exact sequences in C consisting of

exact sequences in Cl , we obtain the following useful result.

PROPOSITION 2.3. I f

is an exact sequence in pro (C), C1 is a full subcategory o f C which

is closed under extensions and F1 and F3 are essentially of type C1 , 
then there is a short exact sequence in pro ( C 1) isomorphic to the given
sequence, i. e., there is

moreover the first and last isomorphisms can be specified to start with.
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One of the most important consequences of the proof of 2.2 is the

following :

PROPOSITION 2.4. Given any short exact sequence

in pro( C), there is an index category I and a short exact sequence

in CI ( considered as a part of pro ( C ) ) suclt that

commutes, where the vertical isomorphisms are from the various initiality
relations; i. e., any short exact sequence in pro( C) is isomorphic to a

« pro-short exact sequence in C&#x3E;&#x3E;.

COROLLARY 2.5. Suppose F 1 is a subobject of F 2’ i. e., there is a mo-

nomorphism 0.... F1--&#x3E;fF2 ; then f can be represented up to isomorphism

by a pro-monomorphism, i. e., a promap all of whose components are mo-

nomorphisms.

PROOF. Form

and use 2.4.

COROLL ARY 2.6. I f F3 is a quotient object of F2 then the quotient epi-
morphism F2--&#x3E;F3--&#x3E; , 0 can be represented up to isomorphism by a pro-
epimorphism..

PROOF. Form

and use 2.4.

COROLLARY 2.7. If C1 is closed under subobjects and F2 is essential-

ly of type Cl , then any subobject of F2 is also essentially of type CI . O
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PROOF. Take 0 --&#x3E; F1 --&#x3E; F2 ; replacing F2 by M2 in pro(C1) we still get
0--&#x3E; Fl -+ M2 ; now use 2.5 to find a pro-monomorphism 0--&#x3E; E1--&#x3E; E2 . The

method outlined in the proof of 2.2 shows that this can be done in such

a way that E2 is in pro( C1 ) and hence El must also be in pro ( C1 ) ,
i. e., F1 is essentially of type C1 . 

Similarly and dually one obtains :

COROLLARY 2.8. I f C1 is closed under quotients, then any quotient of
a pro-object F2 which is essentially of type C1 is also essentially of
type C1 . 

In order to sum up these results in a way relevant to the use which

will be made of them later, we will introduce some notation and a well-

known definition.

If C1 is a full subcategory of C , then we will denote by E ( C1 )
the full subcategory of pro(C) consisting of the pro-objects which are

essentially of type C 1 . O
A subcategory Cy of C is called thick ( epaisse ) if, for each

short exact sequence in C :

B is in Cl iff both A and D are in C1 . (The translation of 6paisse

varies according to the author. Demers who translated Gabriel and Zisman

[9] uses «thick». Popescu [26] uses «dense». We will use «thick» since

it seems to be nearer the original. The terminology «Serre subcategory» is

also sometimes used but seems somewhat clumsy even though it assigns
the origin of the idea correctly. )

PROPOSITION 2.9. I f Cl is a thick subcategory of C, then E(C1) is

a thick subcategory of pro( C).

The converse is also true but we will not need it and hence will

not prove it. It is non-trivial.

Following Gabriel [8] we could in this situation form the quotient

category pro(C)/ E( C1 ) and the obvious thing to expect would be some



29

natural connection with pro(C/C1). In fact there is such a natural con-
nection and, although we will not be studying it in detail here, it is worth

noting how it arises.

There are canonical functors

such that the usual universality properties hold. For instance, if X is

an object of C1 , T( X) = 0 and, for any additive functor S : C--&#x3E; D such

that S ( X ) = 0 for all X in 0 bel, there is a unique functor S’ : C / C1--&#x3E; D
so that S = S’ T ; similarly for T.

If we extend T « pointwise» to a functor

we find that, for any pro-object X which is of type Cj, pro T (X ) = 0 .
Of course this is also true for any X which is essentially of type C1 (to

see this, note that X is isomorphic to something in pro (C 1) or that, by

2.l , the transitions of pro T (X ) will eventually factor through D , and

hence pro T(X) = 0 ). Thus for each X in E (C1 ), pro T (X) = 0 , which

implies that there is a unique functor

One might expect T’ to be an equivalence, but at present it is not known

in general it is or it is not. The only information available is that, if C1
is a localising subcategory, then T’ is an equivalence, but in the analog-
ous non-additive homotopy theory problem, T’ is most certainly not an

equivalence.

3. EXTENDING TORSION THEORIES AND LOCAL ISATIONS.

At this point in the development of the ideas of this paper there

are two directions in which we may go. The one which we will not yet take

is to consider what happens if C1 is a localising subcategory, and hence

the significance of the existence of a section functor S , which would

be a right adjoint to T . This route leads speedily to a useful conclusion,

but omits much of the structure of this localisation situation. It seems
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better to proceed at a more leisurely pace and to look at the algebraic
details of the various structures involved in the main result instead of

smashing the problem to pieces with an instant categorical sledgehammer.

We therefore will need the details of how to attack localisation

from as many different directions as possible, and for this we refer the

reader to Gabriel [8], Popescu [26] or Hacque [ 16 , 7 .

We first assume as before that Cl is a thick subcategory of C

and recall the following result (cf. Hacque [16], page 25, or Popescu

[26] , page 174, 4.4, Lemma 4.1 ).
For any object M in C the following conditions are equivalent :
a) F or each morphism u: P - Q with Keru and Coker u in C1

is a bijection.
b) Each subobject of M appearing in C1 is null and any short exact

sequence

w ith P in C 1 splits.

c) For any P in C,

1

is a bijection.
As usual we say that M is C J-closed if it satisfies these equivalent con-

ditions.

We need to know the connection, if any, between the E (C 1 )-closed
pro-objects in pro (C) and the essentially C1-closed pro-objects in pro (C ).

P ROPOSITION 3.1. I f M: I - C is essentially C1-closed, then it is also

E( C1 )-closed.
P ROO F. Examination of the three equivalent conditions cited above should

convince the reader that conditions b and c will be difficult to verify.
For b, one can easily show that the sequence is «locally» split, but to

show that the various « splittings» fit together to make a promap will be
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difficult; and for c we do not know enough about pro ( C )/ E (C 1) to be
able to describe Hom in that category. (In fact, it is precisely condition

c which provides a description of Hom in pro(C)/E(C1) and enables

us to describe pro(C )/E(C1).) Thus we are left with condition a.
We break the proof in two parts by splitting u as a monomorphism

composed with an epimorphism. Firstly the epimorphism P --&#x3E; Im u . This

we will relabel to be u itself as this will cause no confusion ; so we con-

sider an epimorphism u : P - Q with Ker u in E ( Cl ) . We need to replace
u by an isomorphic promap by reindexing in such a way that u is still

epimorphic and Keru is of type C1 ; this we do as follows. By the proof
of 2.2 we can replace the short exact sequence

by a pro-short exact sequence - we assume this has been done. Now Keru

is in E(C1), so by 2.1 given any index i there is a j with j - i and a

factorisation of this transition

with Mji in C1 (writing (Keru)(j) as K(j) for simplioity ). We thus ob-

tain the diagram

As in similar situations before, we take the pushout of

to obtain a new diagram



32

where two vertical maps in the middle column compose to give the appro-

priate transition. We thus get a new pro-short exact sequence, indexed

by D (l ) ( cf. Proof of 2.1 )

where

It is fairly easily seen that u : P--&#x3E; Q is isomorphic to u : P - Q , since
both are initial subsystems of the promap represented by the two right
hand columns of the above diagram and the maps between columns. Clear-

ly M is Ker4 so we can replace u by a map in which Keru is actually
of type C1 and not just essentially of type Cl . Now we assume this done
and can thus consider an epimorphism u: P - Q which is a promap, index-

ed by I , say, such that Keru(i) is in C1 for each i in I .

We are given some M in pro ( C) which is essentially C -closed,
since we have to examine the natural function

we can replace M by an isomorphic pro-object actually of «type C l-c los-
ed, just as we could replace u by an isomorphic promap with special

properties. Thus we assume: M : J - C satisfies M ( j ) is C1-closed for
each j in J . Thus for each i in I, j in J we have u(i); P(i)--&#x3E; Q(i)
has Keru (i) in C, and M ( j ) is C 1 -closed, so that the induced natural

map

is a bijection. Moreover given i’ -i and j’--&#x3E; j the obvious diagrams com-

mute and all the horizontal maps are bijections, thus

must be a bijection, as required.

The proof for u a monomorphism follows obviously a similar, if

partially dual, path and hence will be omitted.
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We next turn our attention to torsion theories. R ecall from Dickson

[5] ( cf. Popescu [261, Section 4.8 ) that a torsion theory for the category
C consists of a pair ( T, F) of full subcategories of C satisfying the

following axioms :

(i) T nF = 0 

( ii ) T is closed under quotients,

(iii) F is closed under subobjects,

( iv ) for each X in C , there is a short exact sequence

w ith X ’ in T and X " in F .

An alternative but equivalent set of properties involves ( iv ) above and

in addition the two axioms :

(v) T and F contain complete isomorphism classes,

( vi ) if X is in T and Y in F , then HomC ( X , Y) = 0 .

Suppose now that ( T, F) is a torsion theory in the Grothendieck

category C . By 2.7 and 2.8, F ( T ) is closed under quotients and E ( F )
under subobjects. Moreover ( vi ) is clearly satisfied for X in E ( T ) and

Y in E ( F) as is ( v ). Thus an obvious question to ask is :

Is ( E ( T ) , E ( F ) ) a torsion theory in pro ( C) ?
We have to verify ( iv ). We first check ( i ) as this is quite simple.

LEMMA 3.2. E(T)nE(F) = 0.

P ROO F . Suppose X is in both E(T) and E(F). We w ill if necessary

replace X by an isomorphic pro-object of type T , but only essentially
of type F . Thus given any index i there is a j with j --&#x3E; i such that the

relevant transition factors as

where ML is in F and of course X ( j ) is in T . By ( vi ) for ( T , F ) , we

have sji= 0 , so the transition pji is zero, i. e., X= 0 .

As is well-known (Popescu [26], Section 8, page 200, Stenstr6m

[39] or Lambek [22] ), any hereditary torsion theory ( T, F) (that is one
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in which T is closed under subobjects ) is completely determined by a

«subfunctor of the identity» t satisfying :
(i) t2=t,
( ii ) t(X/t(X )) = 0 for all X in C .

t is the torsion radical associated with ( T, F) . t(X ) is the maximal

subobject of X which is in T and the exact sequence of axiom (iv) can

in this case be written

If ( E ( T ) , E ( F ) ) is a hereditary torsion theory, the obvious can-

didate for the torsion radical I will be the extension to pro ( C) of the

of the torsion radical of (T, F ). (Note (T, F) is bound, in this case,

to be hereditary.) Now E ( T ) is closed under subobjects if T is, by 2.7,

so we wish to examine it to see if I is a torsion radical, or alternatively
use it to show that ( E ( T ) , E ( F ) ) is a hereditary torsion theory. So,

suppose X is any pro-object in C

LEMMA 3.3. t(X) is the maximal subobject o f X appearing in E( T).

PROOF. If X : I --&#x3E; C , then t( X )(i) = t (X (i)) . Now suppose Y is in

E( T ) and Y is a subobject of X . By 2.5 we may assume Y is indexed

by I and the monomorphism u : Y - X satisfies : u (i) is a monomorphism
for each i . Applying t to u gives an inclusion

By assumption Y is essentially of type T , so by 2.1 there is, for each

such i , a j with j--&#x3E; i such that the transition ypji factors :

Applying t gives

the vertical maps being natural inclusions from property ( ii ) of t . Thus

the inclusion map t( Y ) --&#x3E; Y has cokemel a pro-object such that the tran-
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sition corresponding to j --i factors through 0 , i, e., this inclusion is

an isomorphism in pro ( C ) , so F( Y) = Y and the diagram

shows that u factors through t(X ) , so !*(X) is the maximal subobject
of X which appears in E(T).

P ROPO SIT IO N 3.4. I f ( T , F ) is a hereditary torsion theory on C , then

(E(T), E(F)) is a hereditary torsion theory in pro(C).

P ROOF. It remains only to check ( iv ), so suppose X is in pro ( C ) . There
is a short exact sequence

t(X) is in E ( T ) and X/ t( X ) is represented by the pro-object with

so X/ t (X ) is of type F and hence is in E( F ).

COROLLARY 3.5. The associated torsion radical of (E(T), E( F)) is

the extension to pro ( C ) o f the torsion radical o f ( T , F ).

We now can look at the case when C’ is a localising subcategory.
C’ is localising if it is thick and the projection functor T : C - C/ C’ has
a right adjoint S . The characterisations of localising subcategories are

many (see for instance Hacque [16 17] ) but the most useful, for our pur-

poses, shows that any localising subcategory C’ must form the torsion

class of a hereditary torsion theory on C and moreover, if t is the asso-

ciated torsion radical, each X/t(X ) is embeddable in a C’-closed object

(cf. Popescu [26], 4.4-5, page 177, or Hacque [l6], 4.2.8, page 30).

This condition is both necessary and sufficient.

P ROPO SIT IO N 3.6. I f C’ is a localising subcategory of C , then E ( C’ )
is a localising subcategory of pro (C ).
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PROOF. Since C’ is a hereditary torsion class, we can deduce from 3.4

that E ( C’ ) is so as well. C’ being localising implies that for any X in

C, X/t(X ) can be embedded in a C’-closed object of C . In fact writing
L - S T , there is a natural 1 transformation x : 1--&#x3E; L , L (X/ t (X ) ) is C’-

closed for each X and V (X/ t( X )) is a monomorphism (seeHacque[16
or 17] ). Thus if we use the extension L of L to pro ( C ) and invoke 3.1

and 3.5, we find that L(X/t (X)) is E(C’)-closed for each X in pro(C)
and that

is the desired embedding in a E ( C’)-closed pro-object. Thus E( C’) is

localising.

In our investigation of this localisation, we have now the follow-

ing information: we know the quotient functor T and the associated sub-

category KerT = E( C’) ; we know that T has a section S, but we as yet
-

have no description of S other than as being right adjoint to T ; we also

know that the image of S , that is the E ( C’)-closed objects, contains the

essentially C’-closed objects, however we do not know if these form all

the E( C’)-closed objects. In order to increase our knowledge in these

directions, we adopt an approach and some terminology from Hacque [17].

Let A be any category ; a localising system in A is a pair (L , Vr)
where L : A --&#x3E; A is a functor which commutes with finite projective limits

and x : I dA --&#x3E; L is a natural transformation for which the associated nat-

ural transform ations

are equal isomorphisms.
An object of A is an invariant of (L,V) if the morphism:

V (M): M ,--&#x3E; L (M) is an isomorphism.

Two localising systems ( L ,V ) and (L’, t/f’) are equivalent if

there is a natural isomorphism E : L - L’ such that t/f’ = E O V .

With these definitions, a local system in A is an « equivalence

class » [ L , t/J] of localising systems (L, t/f) in A .
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Hacque [ 17] shows there is a one-one correspondence between

local systems in A and «local subcategories » of A . By a local subcat-

egory, he means a subcategory L of A for which the inclusion S’: L - A

has a left adjoint T’ which commutes with finite projective limits. In

fact, if A is abelian, then L is also abelian, T ’ is exact and commutes

with inductive limits whilst S’ commutes with all projective limits ( Lem- ’

me 1.2 of [17] ). Later in that paper Hacque shows ( 1.6 ) any localisation

in A can be determined uniquely by any one of the following:

a) a localising subcategory C of A ,

b) a local subcategory L of A ,

c) a local system [ L , t/f] in A .

The method of passage between these is simple :

b) L = full subcategory of C-closed objects = full subcategory of

invariants of ( L , t/J ) ,
c) [ L , t/j ] is given by L = S T or L S’T’ , with, in either case :

Vi IdA --&#x3E; L the unit of the adjunction.

In our position we know the localising subcategory E(C’) of

pro(C) ; we need to know L and [L,Vil . In order to find these we com-

pare the given localisation with another.

We have in C the following data: a localising subcategory C’ , a

quotient functor T with section functor S , a localising system [ L , Vf ]
with L = S T and a local subcategory L consisting of the C’-closed ob-

jects. Extending all this structure «pointwise» to pro(C) we have a lo-

calising subcategory E ( C’) , a functor

with a right adjoint

(thus (pro L ,pro t/J ) is a localising system in pro ( C ) ). The subcategory
E ( L ) is a local subcategory of pro ( C) since it is the full completion
of pro ( L ) and there is a left adjoint
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to the inclusion

it thus remains to check that pro T’ preserves finite projective limits

but this is clear from the reindexing results, since we can calculate limits

pointwise in some LI and then use T’I: LI --&#x3E; CI before passing back

into pro(C).

so by Hacque’s characterizations we get the following result:

THEOREM 3.7. I f C’ is a localising subcategory of C determining a loc-
al subcategory L of C and a local system [ L , t/J] in C, then E( C’)
is a localising subcategory of pro ( C ) whose associated local subcateg-
ory of E(C’)-closed objects is precisely E (L ) and whose associated

local system is precisely [ pro L, prot/J] .

Thus to all intents and purposes one can extend localisations from

C to pro ( C ) merely by using the extended localising functors and an

adequate use of the word «essentially».

REMARKS. (i) This result compares favorably with those obtained on the

localisation in [31] ; there the localisation existed only if C was semi-

artinian and even then the description of the localisation was beyond the

tools available. The questions raised at the end of that paper are trivial

in this case as the answers form an integral part of our result above.

(ii) It is worth noting that the change-of-rings situation considered

in [30] corresponds exactly to a localisation extended from Mod-A to

pro (Mod-A).

(iii) A comparison between the above situation and the situation in

the non-abelian case as considered in pro-homotopy theory [27] suggests
that the reason for the simple solution here is the existence of a right ad-

joint for T . This cannot exist in the homotopy situation since one cannot

«realise» homotopy theory within any of the usual categories used in ho-

m otopy.
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4. TRIPLES AND LOCALISATION IN pro(C).

This section is essentially an aside and is not necessary for the

main flow of the work. However it answers, in particular cases, one of

problems asked in the Introduction.

The connection between triples and localisation is fairly well-

known. When the base category C is abelian, Heinicke [18] shows the

following results :

Let T =  G , n ,u &#x3E; be a triple on C ; thus G : C --&#x3E; C is a functor,

are natural transformations for which the diagrams

commute.

Let C T denote the Eilenberg-Moore category of T ; thus an ob-

ject in CT is a pair (X, cp ) where X is an object of C and cp : G (X ) --&#x3E; X
is a morphism in C for which

commute.

A morphism f: ( X ,cp ) - (X ’,cp* ’ ) in CT is a morphism f: X - X ’
in C for which

commutes.

Heinicke [18] uses the term «localising triple» for a triple in which

G is left exact and p is an equivalence. He proves, amongst other things,
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that in this case (G, TJ) is a localising system in the sense (due to Hac-

que [17] ) introduced above.
However of most interest to us here is his proof of the identifica-

tion of C T (when T =  G, n ,u &#x3E; is localising) with the full subcategory
of C determined by those objects X for which n(X ) is an isomorphism.

(Note his results are stated only for a category of modules, but they do

not depend on this fact. )

Linking up Heinicke [18] and H acque [17] shows that, for a lo-

calising triple T , CT is the same as the local subcategory determined

by ( G,n ) . We can now use this to reinterpret Theorem 3.7 above in terms
of localising triples.

THEOREM 4.1. Let T be a localising triple on a (locally small) abelian

category C and let T be its extension to pro( C), i. e.,

then there is an isomorphism of categories between pro ( C )T and E (CT) .
The strength - isomorphism of categories rather than mere equi-

valence - of this result is due mainly to the power of the results of Hein-

icke [18] and thus to the particular hypothesis that T is localising. With-

out this hypothesis one might conjecture that pro ( C )T and E ( CT ) would
be equivalent, but «isomorphic » would seem at first sight to be too strong.

Another reason for 4.1 is that we had at our disposal the power-

ful characterisations of localisations in (locally small) abelian categ-
ories. Removal of «abelian» raises more problems. First and foremost is

that of determining what one means by localisation in this context. It is

hoped to make an examination of this the subject of another paper.

5. KRULL -GABRIEL DIMENSION.

(From now on C will denote a Grothendieck category. )

In this section we recall the essentials of Gabriel’s generalisa-
tion of Krull dimension. ’W1e will also have to introduce some new defini-

tions for later use. The principal references will be :
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Gabriel [8], Popescu [26], Gordon and Robson [12].

Recall that an object M in C is a finite length if there is a fil-

tration

of M by subobjects M i such that each quotient ML /Mi-1 is simple.
We define the Krull-Gabriel filtration o f C to be the ordinal index-

ed collection {Ca } of localising subcategories of C defined as follows:

C-1 = {0}  , the zero category,

C0 is the smallest localising subcategory of C containing all ob-

jects of finite length. Let T0: C--&#x3E; C/ C0 be the quotient functor and SD
the associated section functor.

Assuming that a = B + 1 , that CB is defined and is a localising sub-

c ate gory of C , we denote by TB : C , Cl Co the quotient functor and by

So the corresponding section functor. An object M is in Ca iff Tp (lid)
is in ( C / CB)0 .

If a is a limit ordinal, then Ca is the smallest localising subcateg-

ory of C containing 
t

aGe will be interested only in the Ca for a finite and we will write

KG-dim M - n if M is in Cn but not in Cn-1 

REMARK. A few words need to be said as to why we have chosen to use

this, the earlier version of Gabriel rather than his later version introduced

on his joint work with Rentschler [10]. This latter seems to have attracted

more attention amongst algebraists than his original version; see for ins-

tance the memoir of Gordon and Robson and the bibliography there [11].
However our methods depend heavily on the use of localising subcateg-
ories, whilst the Gabriel-Rentschler version only uses thick subcateg-
ories (for this see Gordon and Robson [12] ). This alone would mitigate

against use of the later version here, however the connection between the

two versions, as indicated in [12] is such that those objects of C with

a given Krull-Gabriel dimension form a larger class than those with the
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later version of that dimension. In fact, if M has a Krull-Gabriel dim-

ension, then it has a Krull dimension ( a la Gabriel-Rentschler) iff each

homomorphic image of M has finite uniform dimension ( i. e., each homo-

morphic image of M contains no infinite direct sum of non-zero subob-

jects ). Thus in proving results related to KG-dimension, we combine

ease of method with the benefits of considering a larger class at any one
time.

Returning to the localising subcategories cn of the Krull-Gabriel

filtration, each is determined by an idempotent torsion radical rn defined

by: Tn (M ) is the maximal subobject of M which is in Cn . It will be ne-

cessary to consider how we may construct rn in each case.

For n = 0 , it is relatively straightforward and is, of course, well

known. We start by defining a left exact subfunctor of the identity as fol-

lows :

Using this and transfinite recursion one defines an ordinal sequence of

subfunctors of the identity :
If a = 8 + 1 and ro is defined, then Ta is given by

If a is a limit ordinal,

F inally one checks that

Thus M is in C0 iff r0 (M ) = M . In this case ra0 (M ) = M for some or-

dinal a , and the minimal such a is called the 0-length ( or length ) of M.
Note that « M is of finite length » has an unambiguous meaning although
the «value» of the length will in general be different in the two cases.

To define Tn intrinsically for n &#x3E; 0 is harder, "We first assume

that Tn -1 has been defined and say that M is n-simple if

( i ) rn-1 (M) = 0, and
(ii) T n -1 ( M) is simple.
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Thus if M is n-simple and N C M, N cannot be in Cn-1 and the quotient

M/N is in Cn-1 O The simplest example of this is, of course, the case:

Z is torsion free ( i. e ., r0 ( Z ) = 0 ) and if N C Z , then N = n Z for some

n so Z/N is torsion, hence in C0 . 
We shall assume for simplicity that T n-1(M) = 0 to start with -

the adjustment to the general case will follow. Let

In general, this sum is not direct, since for example

is certainly not direct! However it is always an essential extension of

a direct sum of n-simples, since n-simples are coirreducible ( i. e., are

essential extensions of all subobjects ) and hence there is a KRSG-de-

composition by n-simples (see Popescu [26], Chapter 5 j. (We will use

S for « sum » and @ for «direct sum ». )

The relationship between Tn1 and y is :

This relation will be fundamental in the sequel.

Defining rn(M) as before by recursion, we obtain rn and the

concept of n-length (cf. Porter [34] ). Ike can easily lift the restriction

rn-1(M) = 0 by defining, for a general M, tn(M) by:

thus Ta (M) will be the maximal subobject of M satisfyinga

We next need a generalisation of the notion of finitely generated.
The usual concept is not the right one for use in this context - it would,
for instance, impose finite n-length on all objects being considered. "We

therefore introduce a weaker form which, for want of a better term, will
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be called «pseudo-finitely generated» ( or «p.f.g.» for short ). we define

the term solely on objects with finite Krull-Gabriel dimension as it will

be defined recursively.

If n = -1 , all objects in C-1 are p.f.g.
Now assume the term is defined as far as Cn-1 is concerned and sup-

pose M is a sum of n-simple objects ; then M is p.f.g. if it satisfies the

two conditions :

(i) Tn-1 (M) is a direct sum of finitely many simple objects of

C/ Cn -1 and

(ii) If N C M is such that M/N is in Cn-1 , then M/N is p.f.g.
In general M in Cn is p.f.g. if

(iii) tn-1 (M ) is p.f.g. and

(iv) for each a , writing M = M/ n-1 (M), one has r1n (M/ t a n (M )) is
p.f.g. in the above sense.

PROPOSITION 5.1. I f M is a Noetherian object of finite Krull-Gabriel

dimension, then M is p. f.g.

P ROO F . If KG-dim M = - 1 , the result is trivial, so suppose the result

holds for all Noetherian objects with KG-dimension less than n .

First we consider the case that M is a sum of n-simples. By Po-

pescu ([26], page 372), Tn-1 (M) is Noetherian and so has only finitely

many simple direct summands ; hence ( i ) is satisfied. If N C M is such

that M/N is in Cn-1 then M/N is Noetherian and hence by the induction

hypothesis is p.f.g. ; hence ( ii ) is satisfied.

In general if M is in Cn and is Noetherian, then Tn-1 (M) is in

Cn-1 and is Noetherian and hence is p.f.g., whilst

is a factor object of M , hence Noetherian. Since it is a sum of n-simples,
it is p.f.g. by the first case considered above.

COROLLARY 5.2. For a right Noetherian ring A and any finitely generated
right A-module M of finite Krull- Gabriel dimension, M is p. f. g.

This Corollary will be crucial in showing that the result of Gruson



45

and Jensen mentioned in the Introduction is in fact a special case of the

main result of the next section.

6. KRULL-GABRIEL DIMENSION AND THE VANISHING OF lim(i).

In [36] Roos proved the following result:

Let A be a regular ring and M a projective system of A-modules

of f in ite type, then

Another result of the same type is due to Jensen [20] :
Let M be a projective system of Artinian modules over a commu-

tative ring A , then

if either A is Noetherian or each M(i) is Noetherian.

Further developments of the same theme include Jensen’s removal

of «commutative» and «Noetherian» from the above result and also his ex-

tensions of the result of Roos to quotients of finite dimensional Gorens-

tein rings. Finally he proved:
If A is a local Noetherian ring of Krull dimension 7 , then

for all projective systems of A-modules of finite type.

(These latter results are all in Jensen’s Note [21] : the first in

Chapter 7 and the last two in Chapter 9. )

Jensen also conjectured ([21], page 82 ) that a result similar to

these was true for arbitrary Noetherian rings and recently he and Gruson

(details unpublished as yet, cf. [14] ) have proved this to be true. Specifi-

cally they have proved :
Let A be a right Noetherian ring and M a projective system of

finitely generated right A -m odule s . If

( Krull dimension of M (a ))  n

for all a , then lim(i)M = 0 for i &#x3E; n .
--
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The fact that for Artinian modules, no condition on the ring is ne-

cessary suggests .that all these results should follow as special cases of

some result such as the following:
If M is a projective system of Noetherian modules and

then Lim (i) M = 0 for i &#x3E; n .

In this Section we will prove this theorem by the obvious method

of recursion on n . In fact, we will prove a more general result and then

use 5.1 to deduce this result.

As in previous work, we introduce the classes L(k),

and we recall various of the properties of L (k) - for convenience we re-

peat the proofs.

L EMM A 6.1. For each k , L (k) is closed under extensions.

P ROO F . Given

in pro ( C ) with M’, N (L(k), then the long exact sequence for the lim(i)
immediately gives (L(k). 

--

From now on, we shall assume C has exact products. Usually
direct limits are not exact in pro ( C ) , however given an object X : I, C

and a family of subobjects I Xa I of X in such a way as the resulting

diagram can be considered as belonging to CI , the direct limit of the X a
in pro ( C ) can be taken within CI to give a subobject of X ( in pro ( C ) ).
Of course this sort of limit is exact since CI is AB 5. "We will call such

limits special direct limits . ( I would like to thank L. Gruson and S. Zdra-

wkovska for pointing out the necessity of working with special direct li-

mits in the following theory. )

LEMMA 6.2. For each k, L(k) is closed under ( filtered) special direct

limits.

P ROO F. Suppose {Ma} is a special direct system in D and, for each a,
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Ihere is a double complex defined as follows :

Firstly for any pro-object N in C , let II (N) be the cochain com-

plex defined by:

where is given by:

Note that (cf. Roos [3G] or Jensen [21] , Chap-
ter 4). Dually, if N : 1°P - C is an inductive or direct system in C , we set

where and the differential ak is given by

where is the natural monomorphism from into

as the summand. A gain we get

and since lim is exact,

Since we have a special direct system I Ma } of projective sys-

tems, we can form up the double complex E(IIM) , and study its spec-

tral sequences. Adopting the indexing system suggested by Hilton and

Stammbach [19] rather than the classical one, we obtain

and

and which, if they converge, will converge to the same limit.
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Now generally 4-th quadrant spectral sequences cannot be expect-
ed to converge, but since C is an AB 5 category, lim is exact and by

assumption

many of the terms are zero. In fact, we get

and

Putting the 2E-sequence clearly gives

otherwise.

Feeding this back into 1 E gives

Thus limMa is in L(k) as promised.

LEMMA 6.3. I f f : M --&#x3E; N is a morphism in pro ( C ) such that Kerf and

Coker f are in L(k), then the induced limiting morphisms

are isomorphisms for i &#x3E; k + 1.

P ROO F . Look at the long exact sequence corre sponding to

it gives

and since

is an isomorphism for q &#x3E; k .
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Similarly consider the long exact sequence corresponding to

clearly is an isomorphism for i &#x3E; 1 .

Thus putting these two isomorphisms together to get the induced

morphism lim (q) f for q &#x3E; k+7 completes the proof.

We next need a result on projective systems of semi-simple ob-

jects. ( This result appears in a slightly different form in [30,32] .)

L EMM A 6.4. Suppose M is such that each M ( i ) is a direct sum o f at
most n simple objects o f C, then M is essentially constant and the can-
onical morphism h ( lim M ) --&#x3E; M is an isomorphism in pro ( C ), in particular

Moreover limm is a finite direct sum o f simple o bjects o f C .

PROOF. Since, if S and S’ are two non-isomorphic simple objects,

we can apply the S-socle functor, i. e., the functor ro where S is a simple

object of C and

and split M into a possibly infinite direct sum M= OtS (M ) , indexed by

isomorphism types of simple objects, where tS (M( i )) consists of finite

direct sums of copies of S . In fact, since each M(i) involves only finite-

ly many simples, this sum must in fact be finite and hence we can restrict

attention to the case where all the summands in M(i ) are isomorphic to

one single S , i. e., TS (M) = M .
We first suppose the index i is fixed; then the family { pi(M(j)) } 

is a family of subobjects of the Artinian object M( i ) . Hence there is some

index f ( i ) such that p{ (i) (M ( f (i))) is a minimal element of this family,
and so

Now we form the category E( I ) with objects ordered pairs (j, i ) with
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j &#x3E; i in I , and a map

Let ME : E (I ) - C be defined by

with maps ME (j’, i’) --&#x3E; ME ( j, i) given by pii’ restricted to pji M ( j ’ ) .
The diagonal functor

is initial and M = ME A , so ME = M ; similarly the functor

is cofinal and

is a projective system for which all transitions are epimorphic. Thus M

is isomorphic to a projective system for which all the transitions are epi-

morphic ; moreover by the method shown above this new system also sat-

isfies the hypothesis of the theorem. We may thus replace M , if necessary,

by this new pro-object.
Now consider, for fixed i , the number of summands k ( j, i ) in the

kemel of pi for each j &#x3E; i . Since each pjK is onto, k( j, i) is increasing

with j and, since it is bounded, it must achieve a maximum, i. e., there

is some jo such that

However, so

Again using the fact that transitions are onto, we obtain that pjj0, is a mo-

nomorphism and hence is an isomorphism for all j&#x3E; /o , i. e., M is a pro-

object for which the transitions are cofinally isomorphisms. The result

follows.

COROLLARY 6.5. Suppose M is such that M(i) is a finite direct sum of
simple objects of C ; then M is in L(0) i. e., lim (i)M = 0 for i &#x3E; 0.
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P ROOF. M is the special direct limit of subobjects of the type satisfy

ing the conditions of 6.4, thus the result follows from 6.2 and G.4. - ,

COROLLARY 6.6. I f M is p, f.g, and KG-dimM(i)  0 for all indices i,

then lim (j)M = 0 for all j &#x3E; 0, i. e. M E L(0) .

PROOF. Since M is p.f.g., each t10 (M/ t0a (M )) satisfies the conditions

of 6.5. Using 6’.1 for non-limit ordinals and 6.2 for limit ordinals shows

that each ra0 (M) is in L (0 ) and hence t0(M) = t0 (M) Uat0a(M) is in L(0) . Since
a

M is in pro (C0 ), t0 (M ) = M , so we are finished with the proof.

If we denote the subcategory of Cn consisting of p.f.g. objects

by en ,p.f. g.’ we obtain the first (or rather zero-th) case of the general
theorem :

COROLLARY 6.7. I f M is in E(C0,P, f.g. ), then M is in £(0).
Clearly any Artinian object in C is in C0, p. f. g. , so we reobtain

Jensen’s result [21], page 57, 7.2 (cf. also the discrete case of Oberst

[25], page 512, 5.20 and Demazure and Gabriel [4], V, 2.2, page 563

COROLLARY 6.8. I f M is essentially Artinian, then M is in L(o).

Although the proof of the main theorem would have produced these

corollaries by itself, the proof of these results indicates the general plan
of attack to be taken in the proof of the theorem. It is important to note

that although the only part of 6.4 used in these corollaries is the conclu-

sion that

in fact the more important conclusions from the point of view of the main

theorem are that the natural map h (lim M ) --&#x3E; M is an isomorphism and the

description of limm.

THEOREM 6.9. Let M be in E (Cn ,p. f. g. ) ; then M E L(n) .

P ROO F. The case n = -I is more or less trivial as E ( C-1 ) contains only
the essentially zero objects and, by the functionality of lim on pro ( C ),
these have zero limits and zero derived limits.
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The case n = 0 has already been dealt with but would anyway
have been given as an especially easy special case of the general induc-

tive step.

We will make the assumption that all objects in E ( C n-1,P. f. g. )n-1 P. f.g.

are also in L(n-1 ) and we will consider first an object M in E(C r )n,p..g.

satisfying:

( ii ) T n-1 ( M ) satisfies the conditions of Lemma 6.4 as an object of

Thus T n -1 (M) is isomorphic in pro( C/ Cn-1) to a finite direct sum of

simples Each simple Si is equal to Tn-1(Ni) for some p.f.g.

rL-simple Ni and since T n-l is exact and the sum is finite,

and by the construction of Tn_1 , this is the same as ’ ’.

Collecting up these isomorphisms, we obtain an isomorphism

Vle w ill write N = (9 Ni for short and note that rn-1 (N) = 0 . Now from
i=1

localisation theory one obtains the following result (cf. Popescu [26] ,

page 172, 4.3.9 ) :

Any morphism of C/A can be written as T (s2 )-1 T ( f ) T (s1 )-1 where
s1 and s2 are invertible modulo A ( i. e., each has its kernel and coker-

nel in the localising subcategory A ), Si is a monomorphism and s2 is

an epimorphism.

Interpreting this in our situation we obtain a representation of the

isomorphism Tn-1 (M )--&#x3E; Tn-1h(M) in pro(C)/E (Cn-1 ) as the image
of morphisms

and since the result is an isomorphism, f must also have Ker f and Coker f
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in E ( Cn-1 ) . s1 is a monomorphism, so M’ satisfies Tn-1 (M’) = 0 and
is in E(Cn,p.f.g.). s 2 is an epimorphism, but Ker s2 E E ( Cn-1 ) and,

since Tn-1 (h(N)) = 0, Kers 2 =0 and s2 is itself an isomorphism. We

thus have a diagram

or at least we may replace our original diagram by this one. We will show

that s1 and f satisfy the conditions of Lemma 6.3 for k = n-1 and hence
induce isomorphisms of lim(i)M with lim(i)M’, and of the latter with

lim(i)h(N) for all i &#x3E; n + 1. Since

this will complete the proof for this special case.

Since each Cokers1 (i) is a quotient of the corresponding M (i )
which is p.f.g. in the first sense ( i, e., Tn-1 (M) has finitely many simple
summands and each quotient of M(i ) in Cn-1 is p.f.g. ), we have that

Cokers 1 is in E(Cn-1,p.f.g. ) C L (n-1) , by the inductive assumption.

Kerf C M’C M and hence must be zero (recall tn-1 (M’) = 0 ). Finally,

h (N ) is p.f.g. and so Coker f is in E (Cn-1,p.f.g. ) and thus in L(n-1).,P.f.g.
Applying 6.3 as indicated shows that M is in L (n)

Now, if we suppose, more generally, that M is such that each

Tn-1 (M( i )) is a direct sum of finitely many simples, then M is the spe-

cial direct limit of objects of the kind already considered, so an applica-
tion of 6.2 will do the trick.

If M is in E ( Cn, P. f. g. ) and rn-1 (M ) = 0 , then each tn1 (M/tna (M ))
is as above and hence is in L (n ) and the use of 6.1 for non-limit ordinals

and 6.2 for limit ordinals completes this case to show M is in L(n).

Finally, if M is anything in E (Cn,p.f.g. ), then tn-1 (M ) is in

E ( Cn-1 p, f. g. ) and hence in L(n-1). A long exact sequence argument cor-
responding to the short exact sequence

shows
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and as objects of the form M/ Tn-1 (M) have already been handled, M is
in L(n) and the proof is complete.

COROLLARY 6.10. Let M be a projective system of Noetherian objects
o f C such that KG-dim M(i )  n for all i, then

In particular if C = Mod-A where A is a right Noetherian ring,
then any projective system M of finitely generated right A-modules of

Krull dimension not greater than n satisfies lim (i) M = 0 for i &#x3E; n .

APP L IC ATIONS.

There are many uses in the literature of the main result in the

case where n = 0 so all the modules are Artinian. It thus seems likely
that there will be a rich play off when the possibility of extending these

results has been investigated; this seems by no means easy, as often, un-

fortunately for thoughts of applications for n &#x3E; 0 , the Artinian condition

occurs naturally from the start. Much work remains to be done in this area.

Given this we will limit ourselves to one «canonical» application. This

particular application has received the same use many times as it requires
little pre paratory work.

COROLLARY 6.11. Let A be a commutative ring, then Exti A (M, N) = 0
for all flat A-modules M, all A-modules N which are p. f.g. of Krull dim-

ension  n and for all i &#x3E; n .

PROOF. One can repre sent M as a direct limit of finitely generated free

modules M = lim Fa ; now use the spectral sequence with

(cf. Jensen [21] , 4.2, page 35 ).

and is a finite direct sum of copies of N if q = p , hence EI’q = 0 un-
less p = q and, by 6.9, unless p  n . The result follows by the usual
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sort of spectral sequence collapse.

REMARK. For n = 0 , Jensen fits this sort of result into a set of equi-
valent conditions for M to be a finite product of complete local rings ( Jen-
sen [21], page 68, Theorem 8.1 ). This, of course, raises the interesting .

possibility of classifying Noetherian commutative rings A via the con-

dition :

lim (i)M = 0 for all projective systems of A-modules M M a I of

finite type and for a 11 i &#x3E; n .

Clearly if KG-dim A  n , then this follows from 6.10, but what if

KG-dim A &#x3E; n + 1 ? For n = 0 , this problem is tackled by Jensen’s Theor-

em. Some of his implications seem to generalise, but others do not. Above

all one needs to know what sort of condition to put in place of

«finite product of complete local rings. 

Department of Mathematics

University College
CORK. Republic of IRELAND.
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