CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES #### TIMOTHY PORTER # Essential properties of pro-objects in Grothendieck categories Cahiers de topologie et géométrie différentielle catégoriques, tome 20, n° 1 (1979), p. 3-57 http://www.numdam.org/item?id=CTGDC_1979__20_1_3_0 © Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés. L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ## ESSENTIAL PROPERTIES OF PRO-OBJECTS IN GROTHENDIECK CATEGORIES by Timothy PORTER There is a class of problems in Algebra, algebraic Topology and category Theory which can be subsummed under the question: When does a «structure» on a category C extend to a similar «structure» on the corresponding procategory pro(C)? Thus one has the work of Edwards and Hastings [7] and the author [27,28,29] on extending a «model category for homotopy theory» à la Quillen [35] from a category C, usually the category of simplicial sets or of chain complexes over some ring, to give a homotopy theory or homotopical algebra in pro(C). (It is worth noting that the two approaches differ considerably, but they agree in the formation of the homotopy category/ category of fractions Hopro(C) which, in this case, is distinct from the «prohomotopy category» proHo(C).) In some separate work, the author tried to use an extension of the simple torsion theory on a category of modules to study the "stability" problem of promodules; that is, the problem of determining not only those promodules isomorphic to constant promodules, but of using this information to obtain other results on promodules, cf. [30-33]. One of the problems there was that of finding an extension of a localisation to promodules in such a way as to give "useful" information; this proved possible only if the category was semi-artinian (cf. Popescu [26]). Another result to note from those papers was an attempt to use a "stabilised" Krull-Gabriel dimension in procategories to give restrictions on the vanishing of the derived functors of lim [33]. Similar results have recently been obtained, by very different methods, by Jensen and Gruson [14,15], who have shown that, if A is a noetherian ring and C = Mod-A, the category of finitely generated right modules over A, then any pro-object M in C which has the « \limsup » of the Krull dimensions of its constituent parts less than n satisfies $$\lim_{i \to \infty} {(i)} M = 0 \quad \text{for } i > n ,$$ where $\lim_{i \to \infty} (i)$ is the *i*-th derived functor of the limit functor $\lim_{i \to \infty} (i)$; cf. Jensen [20] for earlier results of this nature. To return to the problem mentioned at the start, the solution is known for various «structures»; for instance: if C is additive, so is pro(C); if C is abelian, so is pro(C), and so on. However the following interesting special cases do not seem to be known: - (i) If Σ is a calculus of fractions in C, one can form a class $\overline{\Sigma}$ of morphisms in pro(C) which «locally» belong to Σ : is this class always a calculus of fractions? - (ii) If $T = \langle T, \eta, \mu \rangle$ is a monad (or triple) on C, one can form a monad proT on pro(C) simply by extending T «pointwise» or «degreewise»; suppose one forms the Filenberg-Moore category C^T for T and then one forms $pro(C^T)$; alternatively one could form $pro(C)^{pro}T$. Is there any close relationship between $pro(C^T)$ and $pro(C)^{pro}T$? The reason why the form of $\overline{\Sigma}$ is suggested as such in (i) is that, in the above mentioned homotopy theory, it was this «locally in Σ » idea which worked, but the proof it did so required structure in addition to the simple calculus of fractions. A similar result will be proved in this paper, namely when Σ is the class of morphisms inverted in a localisation, here again additional structure is used to simplify the problem. As to (ii) the localisation result just mentioned gives such a connection if T is a left exact idempotent monad and C is abelian; in general this problem seems to be quite hard since for example it would give information on such things as: Is a ring object in the category of pro-abelian groups naturally isomorphic to the underlying progroup of a proring? The answer would seem to depend on whether or not the ring satis- fies some finiteness conditions, but again this is still vague. So in this paper we are not going to crack these basic problems of procategory theory, but we hopefully will scratch the surface. The main purpose of this note is to show that by an obvious adaptation of the «homotopy theory» methods previously used one can obtain results on certain types of localisation in pro-Grothendieck categories and that one can use these results to obtain a full picture of, categorically, why the result of Gruson and Jensen works. To start with, we will provide an introduction to the necessary theory of pro-objects since the sources on procategories are reticent about some of the results we will need, and the proofs do not always illustrate the results in enough detail to be comparable with later developments; however this Section contains little new material. I should like to thank Chris Jensen, Laurent Gruson and Daniel Simson for encouragement; Chris Jensen for providing me with a brief account of his joint work with Gruson; and Anders Kock, Fred Linton and Gavin Wraith for numerous discussions either in Amiens in the summer of 1975 or by letter. #### 1. PRELIMINARIES ON PROCATEGORIES. Let U be a (Grothendieck) universe. Ens will denote the category of U-sets and functions and Ab the category of U-small abelian groups and homomorphisms. C will denote a U-small category; initially there will be no other restriction on C but soon we will need C to be abelian and finally we will require it to be a Grothendieck category (i.e., AB5 plus a generator) satisfying $AB4^*$ - products are exact. A *U*-small category *l* will be called an *index category* provided: - (i) for each pair of objects i, j in l, either $Hom(i, j) = \emptyset$ or it contains precisely one element; in this later case, we write $i \rightarrow j$ or i < j. - (ii) for each pair i,j of objects of l, there is an object k in l and maps REMARK. In some of the sources on procategories, (i) is replaced by a weaker property: If $\alpha, \beta: i \to j$ are two maps in l, then there is some k and a map $\gamma: k \to i$ with $\alpha \gamma = \beta \gamma$. We do not need this added pseudo-generality in this work. A functor $F: I \to C$ will be called a projective system in C indexed by I. If C' is a subcategory of C and F factors through C', then F will be said to be of type C'. If $\alpha: i \to j$ is a map in I, and $F: I \to C$ is a projective system, then the map $F(\alpha)$ will be called a transition or transition map of F. If $\phi: I \to J$ is a functor of index categories, then we say that ϕ is an *initial functor* if for each j in J there is an i in I and a map (in J) $\phi(i) \to j$. If $F:I \to C$ is a projective system in C , then for each object T of C the composite $$I^{op} \xrightarrow{F^{op}} C^{op} \xrightarrow{Hom(,T)} Ens$$ 6 defines a functor $$Hom_C(F, T): I^{op} \to Ens: i \to Hom_C(F(i), T).$$ If $f: T \to S$ is a morphism in C, then there is a natural transformation $Hom_C(F,T) \to Hom_C(F,S)$ of functors from I^{op} to Ens. Since Ens is complete and cocomplete, we can form the colimit of these functors; we define $$h_F(T) = \underset{\overline{I}}{\underline{lim}} \operatorname{Hom}_C(F, T)$$ and similarly for $h_F(S)$. The natural transformation induced from f in its turn induces a function $h_F(T) \rightarrow h_F(S)$, so that h_F is a functor - the properties are easily verified. If C is an additive category, then $Hom_C(F(i), T)$, and hence $h_F(T)$, have natural abelian group structures, so the functor $h_F: C \to Ens$ factors through a functor from C to Ab. We next seek to identify these h_F functors amongst the functors from C to Ens (or Ab). A functor $M:C\to Ens$ is said to be prorepresentable provided it is naturally isomorphic to a functor of the form h_F for some projective system F in C. It is clear that a given functor $M:C\to Ens$ may be isomorphic to many h_F and yet the projective systems may not be isomorphic in the usual classical sense. For instance, if $\phi:I\to J$ is initial and $F:I\to C$ is such that $M\approx h_F$, then also $M\approx h_{F,\phi}$ since, for each T, $h_F(T)$ is naturally isomorphic to $h_{F,\phi}(T)$ and yet F and $F\phi$ are indexed by possibly different categories. (A proof that $h_F=h_{F,\phi}$ can be obtained by dualising Theorem 1, page 213, of MacLane [24]; it is also available in many other sources on category theory.) Since, if C is additive, each h_F factors through the forgetful functor $Ab \rightarrow Ens$, we have that any prorepresentable functor M must also factor through Ab. (To simplify the characterisation of prorepresentable functors we will assume that C is abelian from now on - some of the results go through without this, for these see Duskin [6].) #### T. PORTER Fach Hom-functor $Hom_C(X,): C \to Ab$ is left exact and U-small colimits in Ab are exact; we have that h_F is always left exact. In fact, the that any prorepresentable functor $M: C \to Ab$ is left exact. In fact, the converse is true; every left exact functor from an abelian category C to Ab is prorepresentable. The priority for this result is difficult to give; it is
«well-known» in categorical circles, being of the status of «folklore». Duskin [6] gives a version which he assigns to Deligne [3] and Lazard, which characterises prorepresentable functors from a general category C to Ens in terms of left exactness and an additional smallness condition, but the only explicit proof that I have been able to find is in Stauffer [37] which seems unusually late as I am certain the result was well-known before 1970 when that paper was written. However the proof that Stauffer gives is easy to follow so I won't try to better it and will merely comment that he uses C^{op} instead of C. Adapting his result to allow for that, we quote his Theorem 3.5 page 379 of [37]: Let C be a U-small abelian category; then a functor $M: C \to Ab$ is left exact iff M is a direct limit of representable functors over a directed index category, i.e., $M = \underset{I}{lim} Hom_{C}(F(i), -)$. REMARKS. a) If one relaxes the condition that C be U-small to C being merely a U-category, then I may not be U-small. b) It should be noted that in a later paper, Stauffer [38], it is shown that the dual of the construction of pro(C) produces another category, ind(C); and moreover ind(C) is a right completion of C whilst pro(C) is a left completion of C. In this later paper Stauffer proves the duals of many of the results we will be discussing here. In fact many of these results are well-known as he says. Of particular interest to us here is a result of Stauffer [37], page 375, Proposition 2.1, where he shows that one can always replace an arbitrary indexing category by a p.f.p. indexing category - «p.f.p.» stands for «pointwise finitely preceded» and I is p.f.p. iff for each i_0 in I, $$\{i \mid Hom_I(i_0, i) \neq \emptyset\}$$ is finite. This result seems to have been discovered independently by Mardesič about the same time as [37] was written, but, in its use of shape theory, some writers have not seemed fully aware of the statement of this result since there are often references to the fact that the procategories being used by them are not exactly the same as those used by Artin and Mazur in [1]. The two definitions are, in fact, equivalent even though they are not equally easy to check in different situations. It has become usual to denote the category of left exact functors from an abelian category C to the category Ab by Sex(C,Ab) - for the reason, see Gabriel [8], Page 348. The additive Yoneda embedding: $Y:C^{op}\to Ab^C$, where Ab^C denotes the category of additive functors from C to Ab factors through $$Y': C^{op} \to Sex(C, Ab).$$ Since it is inconvenient to embed C^{op} , it has become customary to take the opposite of both categories and hence to obtain a natural embedding $$h: C \to (Sex(C, Ab))^{op}$$. The category $(Sex(C, Ab))^{op}$ is then taken as the category pro(C) of pro-objects in C. We next develop an intrinsic definition of pro(C). For our objects we will take all projective systems $F:I\to C$ and for our morphisms between F and $G:J\to C$ we take $$Hom_{pro(C)}(F,G) = \varprojlim_{\overrightarrow{I}} \varprojlim_{\overrightarrow{I}} Hom_{C}(F(i),G(j)).$$ To justify this we note that $$\begin{aligned} Hom_{pro(C)}(h_F, h_G) &= Hom_{Sex(C,Ab)}(h_G, h_F) \\ &= Hom_{Sex(C,Ab)}(\lim_{J} h_{G(j)}, \lim_{J} h_{F(i)}) \\ &= \lim_{J} Hom_{Sex(C,Ab)}(h_{G(j)}, \lim_{J} h_{F(i)}) \\ &= \lim_{J} (\lim_{J} Hom_{Sex(C,Ab)}(h_{G(j)}, h_{F(i)}) \\ &= \lim_{J} (\lim_{J} Hom_{C}(F(i), G(j))). \end{aligned}$$ The last stage of this string of equalities follows from the Yoneda Lemma and the fact that Sex(C, Ab) is a full subcategory of Ab^C . Clearly the category constructed above is equivalent to pro(C) and in fact some authors have defined pro(C) in this way - notably Artin and Mazur [1], Appendix. It has the advantage that it works for non-abelian categories but the definition of composition of morphisms is, it must be admitted, rather strained in this context. The definition can be made in terms of pro-representable functors but, as mentioned before, the characterisation of prorepresentables in non-abelian categories is less elegant and is more messy than even the composition of morphisms for this intrinsic definition. Our view is that it is convenient to have both definitions especially when one has some of the reindexing results which will be proved soon. The intrinsic definition is more useful in our context, but the definition as $(Sex(C,Ab))^{op}$ or as the completion of C provides a far better algebraic motivation for studying pro(C) than the intrinsic definition. To use the intrinsic definition to the full, we need to examine the morphisms in it more closely. We have the set of morphisms between ${\cal F}$ and ${\cal G}$ defined to be $$\lim_{I} (\lim_{I} Hom_{C}(F(i), G(j))).$$ An element of $\lim_{\overline{I}} Hom_C(F(i), G(j))$ consists of an index i plus a morphism $f_i \colon F(i) \to G(j)$ modulo the equivalence relation that $$f_i \colon F(i) \to G(j)$$ and $f_i \colon F(i') \to G(j)$ are equivalent if there is an i'' with (whose existence is provided for by the axioms of an indexing category) such that the following diagram commutes. Thus it is possible to represent a map in $$\lim_{\overline{J}} (\lim_{\overline{I}} \operatorname{Hom}_{C}(F(i), G(j)))$$ as a pair (ϕ , $\{f_j\}_{j \in J}$) where $\phi: ObJ \to ObI$ is a function and where each $f_j: F(\phi(j)) \to G(j)$ is a morphism in C. If $j' \to j$ in J, then there is a diagram $$F(\phi(j)) \xrightarrow{f_j} G(j)$$ $$F(\phi(j')) \xrightarrow{f_j} G(j')$$ and since $(\phi, \{f_j\})$ is to represent a map, these two morphisms with common codomain G(j) must be equivalent, i.e., there is some i in l and $$i \xrightarrow{\phi(j)} \phi(j')$$ such that $$F(i) \xrightarrow{F(\phi(j'))} \xrightarrow{f_j} G(j)$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad$$ (all unlabelled maps are the transitions relevant to that position). In order to obtain exactly $$\lim_{J} \lim_{I} Hom(F(i), G(j))$$ by such a representation we put an equivalence relation on the set of all (ϕ , { f_i }) by stating that $(\phi, \{f_j\}) R (\phi', \{f_j'\})$ if and only if for each j in J there is an i in I with #### T. PORTER such that the following diagram commutes: The set of equivalence classes is fairly easily seen to be exactly $$\lim_{J} (\lim_{I} Hom_{C}(F(i), G(j))).$$ This description of the morphisms in (intrinsic) pro(C) makes the composition of such morphisms easier to define, i.e., if $$F: I \to C$$, $G: J \to C$, $H: K \to C$ and we have $f\colon F\to G$ represented by a pair $(\phi,\{f_j\})$ and $g\colon G\to H$ represented by (ψ,g_k) , then $g\circ f\colon F\to H$ is the morphism represented by $(\phi\psi,\{g_kf_{\psi(k)}\})$. When we have obtained the reindexing results later on, the description of composition of morphisms will simplify even further. It is worth noting that Hilton and Deleanu [2] have obtained a result which suggests that, by adapting this representation of maps to non-filtered index categories, one obtains a weaker form of procategory which may be very useful in the study of comma categories. I do not know to what extent the results of this paper might extend to this weaker version of pro(C). At several places in the preceding pages, we have stated that pro(C) has (projective) limits; we can now prove this using the above description of maps in pro(C). Suppose $F: J \to pro(C)$ is a projective system in pro(C) and for each j in J suppose F(j) is the projective system $F(j): I_j \to C$. We form a fresh indexing category L with $ObL = \coprod_{j \in ObJ} Obl_j$ (where II de- notes disjoint union of sets) and, by the usual method of forming disjoint unions, we will indicate an object of L by a pair (i,j) where $i \in Obl_j$. With this notation we say: $(i_1,j_1)\leqslant (i_2,j_2) \quad \text{iff} \quad j_1\leqslant j_2 \quad \text{and, if} \ (\phi\,, \{\,f_{\!j}\,\}\,) \text{ represents the map } F(j_1)\to F(j_2), \text{ then } i_1\leqslant \phi\,(i_2).$ With this new category L as indexing category, we form a new pro-object \bar{F} by letting $$\bar{F}(i,j) = F(j)(i)$$ and if $(i_1, j_1) \rightarrow (i_2, j_2)$ is a map in L , $$\bar{F}(i_1, j_1) \rightarrow \bar{F}(i_2, j_2) = F(j_1)(i_1) \rightarrow F(j_1)(\phi(i_2)) \xrightarrow{f_{i_2}} F(j_2)(i_2)$$ (here the first map in the composite is a transition in $F(j_1)$ and the second is f_{i_2} , where $(\phi, \{f_i\})$ is the transition promap $F(j_1) \rightarrow F(j_2)$). We claim \tilde{F} is the (projective) limit of F. Clearly \tilde{F} is a proobject (in the intrinsic definition) and the limiting cone is given by the promaps $$\mu_j : \overline{F} \to F(j)$$ with representation (in, {id}), where $in: Obl_j \to ObL$ is the inclusion, and the maps $\tilde{F}(in(j)) \to F(j)$ are the relevant identities; note that $\tilde{F}(in(j))$ is the same as F(j) under the obvious identification. If $$G: K \to C$$ and $\{\lambda_i: G \to F(j)\}$ gives another cone on $F: J \to pro(C)$, then each λ_j is represented by, say, $(\psi_j, \{l_i\})$ where $\psi_j: ObI_j \to ObK$ and $$l_i(i): G(\psi_i(i)) \rightarrow F(j)(i) = \bar{F}(i,j)$$ is a morphism in C . Since L is a disjoint union, the ψ_i 's together form $$\psi: L \to K$$ with $\lambda(i, j) = \psi_j(i)$ and then the l_i 's give morphisms $$l_i(i) \colon G(\psi(i,j)) \to \bar{F}(i,j)$$ which represent the unique map $\lambda: G \to F$ in pro(C). Thus \overline{F} is a limit of F. #### T. PORTER The above demonstration sheds some more light on the relationship between the two definitions of pro(C). Suppose $F: I \to C$ is a projective system in C, then we can use the Yoneda embedding $h: C \to pro(C)$ to consider F as the projective system $$hF: I \to pro(C)$$ in $pro(C)$; since pro(C) has projective limits, we can find a limit \bar{F} for hF. In this case we have the same indexing category for each hF(i) and so L is essentially the same as I. Using the
description in terms of $(Sex(C,Ab))^{op}$ we find that the functor corresponding to $h_{\tilde{F}}$ is exactly the same as h_F . Thus even when F has no limit within C, within pro(C) one can find a limit, namely another interpretation of F itself. Although this process of «double think» may seem like cheating, it, in fact, provides a very useful insight into, and method for, the study of pro-objects. We illustrate this in the ideas which lead up to the reindexing results. Suppose we are given a functor $F: I \to C$ as usual; then F is a pro-object. If we denote the constant functor from pro(C) to $pro(C)^I$ by $c: pro(C) \to pro(C)^I$ given by $$c(F)(i) = F$$, $c(F)(i \rightarrow j) = id_F$, then the fact that F is itself the limit of the functor $h F: I \rightarrow pro(C)$ is expressed by the adjunction equation $$Hom_{pro(C)}(G, F) \approx Hom_{pro(C)}I(c(G), hF)$$ for all pro-objects G and so the adjunction equations (or limiting cone according to your interpretation) gives a map $\mu: c(F) \to hF$ in $pro(C)^I$, or equivalently a set $$\left\{ \; \mu_i \colon c \, (F \,)(i) \to h \, F(i) \right\}_{O \, b \, I}$$ of promaps such that for $i \rightarrow j$ the diagram $$c(F)(j) \xrightarrow{\mu_j} h F(j)$$ $$c(F)(i) \xrightarrow{\mu_i} h F(i)$$ commutes, the vertical maps being transitions. Omitting the «double think» this is merely a set of promaps $\{\mu_i\colon F\to F(i)\}$ where F(i) is considered as a pro-object indexed by the category with one morphism, and the diagram is then merely We now will drop once and for all the «double think» used above and will consider c, h etc... as inclusions rather than embeddings whenever this is feasible. Thus, for example, the object M of C and the pro-object $F_M: I \to C$ (where $F_M(^*) = M$ and I is the one-morphism category) will be identified. By doing this we will effectively ignore the distinction between the two interpretations (or definitions) of pro(C). This will not give rise to any confusion. We now will prove the following reindexing result: Given pro-objects $F:I\to C$, $G:J\to C$ and a map $f:F\to G$ in pro(C), there is an indexing category M_f with «initiality» functors $\phi_I:M_f\to I$, $\phi_J:M_f\to J$ and a map $\tilde f:F\phi_I\to G\phi_I$ in C^{M_f} such that the diagram commutes, the vertical maps being initiality isomorphisms. PROOF. First notice that any functor category C^I where I is an indexing category can be considered as part of pro(C) possibly with the identification of some morphisms, thus the fact that \bar{f} is in C^{Mf} means that it can be considered also as a promap. The category M_f is constructed as follows: - The objects of M_{f} are the morphisms in C which «represent» f in the sense that $f_i^i \colon F(i) \to G(j)$ represents f if the diagram in pro(C) commutes. - We say $f_{j_1}^{i_1} \leqslant g_{j_2}^{i_2}$ (or $f_{j_1}^{i_1} \rightarrow g_{j_2}^{i_2}$) if the diagram $$F(i_{2}) \xrightarrow{g_{j_{2}}^{i_{2}}} G(j_{2})$$ $$\downarrow^{i_{1}} \qquad \qquad \downarrow^{p_{G,j_{2}}^{j_{1}}}$$ $$F(i_{1}) \xrightarrow{f_{j_{1}}^{i_{1}}} G(j_{1})$$ commutes. (The vertical maps are the obvious transitions). It is easily checked that ${\it M}_f$ is an indexing category and that the projections $$\phi_I(f_i^i) = i$$ and $\phi_J(f_i^i) = j$ are initial. It remains to define $\bar{f}: F\phi_I \to G\phi_J$ to be the map given by $\bar{f}(f_j^i) = f_j^i$. Checking that this works is simple. There are more sophisticated versions of this result available, proved in a similar fashion. For example: (i) Given $$F \xrightarrow{f} G \xrightarrow{g} H$$ in pro(C), where $F: I \rightarrow C$, $G: J \rightarrow C$ and $H: K \rightarrow C$, there is an indexing category $\mathbf{M}_{f,\mathbf{g}}$, initial functors ϕ_I , ϕ_I , ϕ_K and a pair of maps $$F\phi_I \xrightarrow{\bar{f}} G\phi_J \xrightarrow{\bar{g}} H\phi_K$$ in $C^{M_{f,g}}$ such that the *obvious* diagram commutes. (Take $M_{f,g}$ to be the category of maps «representing» the pair (f,g).) (ii) Given a finite diagram scheme D with no loops and a diagram $X: D \to \operatorname{pro}(C)$ in $\operatorname{pro}(C)$ of type D, there is an indexing category M_X , initial functors $$\phi_d: M_X \to I_d$$, where $X(d): I_d \to C$ and $d \in ObD$, and a pro-object $\bar{X}: M_X \to C^D$ in C^D such that, using the obvious forgetful functor $\operatorname{pro}(C^D) \to \operatorname{pro}(C)^D$, the natural map $\bar{X} \to X$ is an isomorphism. (Take M_X to be the category of maps in C^D «representing» the diagram of promaps X.) [For a complete proof of (ii) see Artin and Mazur [1], Appendix.] These reindexing results allow one to think of pro(C) as being made up of various copies of functor categories C^I for varying indexing categories I, linked or «glued» together by initiality relations. This view enables one to suggest methods of lifting «structures» from C to pro(C) - first lift to C^I and then see how to «glue» these structures together, much as in the manner of the construction of «structures» on differentiable manifolds. To illustrate this idea we show that pro(C) is abelian (if C is abelian). That pro(C) is additive follows from the equation $$Hom_{pro(C)}(F,G) \approx \lim_{\substack{i \in I \\ i \in I}} (\lim_{\substack{i \in I \\ i \in I}} Hom_{C}(F(i),G(j))),$$ since each $Hom_C(F(i), G(j))$ is an abelian group and any zero object in C furnishes a zero for pro(C). To show the existence of a direct sum of pro-objects $F:I\to C$, $G:J\to C$, we merely have to take $$F \oplus G : I \times J \to C \,, \quad F \oplus G \,(i \,, j) = F(i) \oplus G(j) \,,$$ where the projection maps of $I \times J$ towards I and J furnish the index maps underlying the inclusions $$F(i) \rightarrow F(i) \oplus G(j)$$ and $G(j) \rightarrow F(i) \oplus G(j)$. To find the kernel of a morphism $f: F \to G$, we first represent it, by reindexing, by a promap $$\vec{f} : \vec{F} \to \vec{G}$$ in C^M so that #### T. PORTER commutes and as usual the vertical maps are initiality isomorphisms; next we take the kernel of \bar{f} in the category C^M , i.e., for each m in M, $$(Ker\bar{f})(m) = Ker(\bar{f}(m)).$$ This pro-object together with the monomorphism $Ker\bar{f}\to \bar{F}\stackrel{\approx}{\to} F$ gives the kernel of f. To see this, suppose the composite $$E \xrightarrow{g} F \xrightarrow{f} G$$ is the zero morphism; by (i) above we can represent this as a composition of promaps in some \mathbb{C}^N : $$E_1 \xrightarrow{g_1} F_1 \xrightarrow{f_1} G_1$$; N consists of all map pairs $$E(k) \xrightarrow{x} F(i) \xrightarrow{y} G(j)$$ such that the diagram $$\begin{array}{cccc} E & \xrightarrow{f} & F & \xrightarrow{g} & G \\ \downarrow & & \downarrow & & \downarrow \\ E(k) & \xrightarrow{x} & F(i) & \xrightarrow{y} & G(j) \end{array}$$ commutes and N contains an initial subcategory N_o consisting of those pairs (x,y) such that yx=0. There is an initial functor $$\phi: N_0 \to M: (x, y) \to y$$ and so we can obtain a diagram in C^{N_o} : $$Ker\bar{f} \approx (Ker\bar{f})\phi \longrightarrow \bar{f}\phi \xrightarrow{\bar{f}\phi} \bar{G}\phi$$ $$fg'$$ where $\psi: N_0 \to K$ sends (x, y) to k, the index of the domain of x. Clear- ly g' factors through the kernel of $\bar{f}\phi$ as required. A similar dual discussion describes the cokernel of f. In the above discussion we have made use of the fact that a morphism $f\colon F\to G$ is the zero morphism iff for any index j of G and i of F such that $f^i_j\colon F(i)\to G(j)$ represents f, there is some $i_0\to i$ so that the composite map $$F(i_0) \xrightarrow{p_i^{i_0}} F(i) \xrightarrow{f_j^{i}} G(j)$$ is zero. This is immediate from the definition of maps in pro(C) as it is merely the statement that the elements $$f_i^i$$, $0 \in Hom_C(F(i), G(j))$ have the same image in $\lim_{t \to \infty} Hom_C(F(i), G(j))$. As a consequence of this applied to the identity map on F, we find that F=0 iff, for any index i of F, there is an index $i_0 \to i$ such that $p_i^{i_0}=0$. As was mentioned before, none of this material is new. It has been collected here together for the convenience of the reader since the methods of proof and the results are scattered around in the literature. For further information on procategories, we refer the reader to the following sources: Artin and Mazur [1], Appendix; Deligne in Hartshome [3], Appendix; Duskin [6]; and Grothendieck [13]. From now on we will assume that C is a Grothendieck category. #### 2. ESSENTIAL EQUIVALENCE OF PROJECTIVE SYSTEMS. At the start of Section 1, we introduced the terminology «of type C'» where C' was a full subcategory of C. We also saw in Section 1 that if $C' = \{0\}$ was the full subcategory consisting of the zero object, then a pro-object F could be isomorphic to O without having any of its «objects» zero: For example let I be any index category and X any object of C, define a pro-object $X_0: I \to C$ by: $$X_o(i) = X$$ for each i in I , $p_{X,j}^i = 0$ for each $i \rightarrow j$ in I . X could be chosen to be non-zero, but $X_0 \approx 0$. Thus in this case X_0 is isomorphic to something in pro(C') without being in fact in pro(C') itself. To enable a sensible classification of pro-objects to be carried out, one has to allow for this. This is handled in the following definition: Suppose C_1 is a full subcategory of C, then X in pro(C) is said to be essentially of type C_1 if it is isomorphic to some object of $pro(C_1)$. This idea of «essential» properties of pro-objects has been studied by Verdier [40] and Laudal [23] (for a fuller account of [40], see Duskin's Strasbourg Notes [6]). The internal description of when $X \approx 0$ in pro(C) is mirrored by internal descriptions of when X is essentially of type C_1 . Such an internal description was given by Laudal [23] (cf. Duskin's Notes [6]). Although we will not make very extensive use of this result, it is useful as a means to
check whether or not a given pro-object is essentially of a certain type, we therefore include it and will prove it, as proofs are difficult to come by. PROPOSITION 2.1. In order that a pro-object be essentially of type C_1 , it is necessary and sufficient that its defining system $F: I \to C$, say, have the property: (*) for each i in I there is a j and $j \rightarrow i$ such that the transition $p_{F,i}^{j}$ factors through an object M_{i}^{j} of C_{I} . PROOF. Let F have the property mentioned above. We form a new indexing category C(I) as follows: - the ordered pair (j,i) is in C(l) if i,j are in l and there is a factorisation $$p_{F,i}^j \colon F(j) \to M_i^j \to F(i)$$ with M_i^j in C_l . (We will write $$s_i^j \colon F(j) \to M_i^j$$ and $t_i^j \colon M_i^j \to F(i)$.) - There is a single morphism in C(l) between (j',i') and (j,i) precisely when there are morphisms $j' \rightarrow j$ and $i' \rightarrow i$ in l. There are two projections: $$p_1: C(I) \rightarrow I$$, $p_1(j,i) = j$, $p_2: C(I) \rightarrow I$, $p_2(j,i) = i$, and the property (*) ensures that both are initial, so the pro-objects F, Fp_1 and Fp_2 are isomorphic. We refine C(I) by looking at an initial subcategory D(I) of C(I) with the same objects but with a single morphism from (j',i') to (j,i) precisely when a map $i' \rightarrow j$ exists. Thus $$F_1 = F p_1 a$$ and $F_2 = F p_2 a$ are both isomorphic to F, where $a: D(1) \rightarrow C(1)$ is the inclusion. We now define M by: $$M: D(1) \rightarrow C$$, $M(j,i) = M_i^j$, and $$p_{M,(j,i)}^{(j',i')} = M((j',i') \rightarrow (j,i)) = s_i^j p_{F,j}^{i'} t_i^{j'}.$$ Since $t_i^{j'}, s_i^{j'} = p_{F,i}^{j'}$, it is easily checked that this does in fact define a pro-object in C; of course it is of type C_I since each M(j,i) is in C_I . If $(j', i') \rightarrow (j, i)$ in D(l), there are diagrams $$F_{1}(j,i) \xrightarrow{s(j,i)} M(j,i)$$ $$\downarrow \qquad \qquad \downarrow$$ $$F_{1}(j',i') \xrightarrow{s(j',i')} M(j',i')$$ and $$\begin{array}{cccc} M(j,i) & \xrightarrow{t(j,i)} & F_2(j,i) \\ \downarrow & & \downarrow \\ M(j',i') & \xrightarrow{t(j',i')} & F_2(j',i') \end{array}$$ both commuting, where $$s(j,i) = s_i^j$$ and $t(j,i) = t_i^j$ modulo the identifications of $F_1(j,i)$ with $F_{1}a(j,i) = F(j)$ and of $F_2(j,i)$ with $F_{2a}(j,i) = F(i)$. These diagrams express the fact that the $\{s_i^j\}$ and $\{t_i^j\}$ give morphisms $$s: F_1 \to M$$ and $t: M \to F_2$. Thus it is obvious that the composed maps $$F(j) = F_1(j,i) \xrightarrow{s(j,i)} M(j,i) \xrightarrow{t(j,i)} F_2(j,i) = F(i)$$ are precisely the transitions of F and hence that ts is the natural isomorphism $x: F_I \to F_2$ given by the initiality condition. Now if we write $p = s \, x^{-1} \, t$ we have that p is an idempotent and we can form a projective system $$\dots \rightarrow M \xrightarrow{p} M \xrightarrow{p} M \rightarrow \dots$$ within pro(C). Since pro(C) is left complete, we can use this system to define a limit of itself as in Section 1, we call this «interlaced» limiting system \bar{M} ; since M is in $pro(C_1)$, so is \bar{M} . We have now merely to show that F is isomorphic to \bar{M} . The above projective system in pro(C) is clearly isomorphic to the system $$\cdots \rightarrow M \xrightarrow{t} F_2 \xrightarrow{x^{-1}} F_1 \xrightarrow{s} M \xrightarrow{t} F_2 \xrightarrow{x^{-1}} F_1 \xrightarrow{s} M \rightarrow \cdots$$ obtained by splitting up each $p = s x^{-1} t$ into its constituent parts. This is, in turn, isomorphic to $$\cdots \rightarrow F_2 \xrightarrow{x^{-1}} F_1 \xrightarrow{x} F_2 \xrightarrow{x^{-1}} F_1 \xrightarrow{x} F_2 \rightarrow \cdots$$ which collapses to give the constant system on F_I or F_2 depending on the collapse used. Hence \bar{M} and F_I must be isomorphic, i.e., F is isomorphic to a pro-object of type C_I as required. The converse is easier. Suppose given an isomorphism $f\colon F\to M$ with inverse $g\colon M\to F$, with M in $\operatorname{pro}(C_I)$; we must check condition (*), so we are given some i in the index category of F. By our previous work, if $M\colon K\to C$, there is a set map $\phi\colon I\to K$ and a map $$g(i): M(\phi(i)) \to F(i)$$ in C representing g . Similarly there is a set map $\psi:K\to I$ and for each k in K , a map $$f(k): F(\psi(k)) \to M(k)$$ in C representing f. Taking $k = \phi(i)$ we get a map $$F(\psi\phi(i)) \xrightarrow{f(\phi(i))g(i)} F(i)$$ representing the composite $fg=id_F$. Since these two maps are equal, there is some j in l such that $j\to\psi\;\phi(i)$ and e is some $$j$$ in l such that $j \rightarrow \psi \phi(i)$ and $$F(j) \xrightarrow{p_i^j} F(i) = F(j) \xrightarrow{p_{\psi}^j \phi(i)} F(\psi \phi(i)) \xrightarrow{f(\phi(i))} M(\phi(i))$$ $$F(i)$$ i.e., the transition p_i^j factors through an object in C_I , so F satisfies condition (*). The next theorem is of central importance in what follows. It is stated incorrectly in both Verdier [40] and Duskin [6], but the mistake is not that serious. THEOREM 2.2. Suppose C_1 is closed under extensions, i.e., if A_1 , A_3 are in C_1 and there is a short exact sequence $$0 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow 0$$ in C, then A_2 is also in C_1 . If $$(2.2.1) 0 \rightarrow F_1 \xrightarrow{u} F_2 \xrightarrow{v} F_3 \rightarrow 0$$ is an exact sequence in pro(C) and F_1 , F_3 are essentially of type C_1 , then F_2 is essentially of type C_1 . PROOF. First we reindex so as to be able to replace (2.2.1) by an isomorphic exact sequence indexed by a single indexing category, i.e., so as to represent (2.2.1) by a pro-object in the category of exact sequences in C. To this end, we consider the category of all pairs (u_1, v_1) : $$F_1(i) \xrightarrow{u_1} F_2(j) \xrightarrow{v_1} F_3(k)$$ such that $v_1u_1=0$ and v_1 represents v and u_1 represents u in the sense introduced in Section 1. For each such pair (u_1,v_1) we associate the short exact sequence $$0 \rightarrow Kerv_1 \rightarrow F_2(j) \rightarrow Imv_1 \rightarrow 0$$ and if $\alpha:(u_1,v_1)\rightarrow(u_2,v_2)$ is a morphism in this category (i.e., a diagram $$\begin{array}{c|c} F_{1}(i) \xrightarrow{u_{1}} F_{2}(j) \xrightarrow{v_{1}} F_{3}(k) \\ \downarrow p_{i}^{i} & \uparrow p_{j}^{i} & \uparrow p_{k}^{k} \\ F_{1}(i') \xrightarrow{u_{2}} F_{2}(j') \xrightarrow{v_{2}} F_{3}(k') \end{array}$$ representing a map of pairs), then we associate to α the corresponding map of exact sequences $$0 \longrightarrow Ker v_1 \longrightarrow F_2(j) \longrightarrow Im v_1 \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p_j^{j'} \qquad \qquad \downarrow \downarrow$$ This assignment gives therefore a «pro-exact sequence» in C and there are, in the limit, isomorphisms $$F_1 \approx «Kerv_1»$$ and $F_3 \approx «Im v_1»$ induced by the natural morphisms $$F_1(i) \rightarrow Kerv_1$$ and $Im v_1 \rightarrow F_3(k)$. We thus will assume that (2.2.1) is indexed by some category I. We next assume that F_1 and F_3 satisfy condition (*) of 2.1, and we will check that F_2 also satisfies this condition. Given i in the indexing category I we can find some j in I and a factorisation of ${}_{I}p_{i}^{j}\colon F_{I}(j)\to F_{I}(i)$ as $$F_1(j) \xrightarrow{I^{S_i^j}} M_i^j \xrightarrow{I^{t_i^j}} F_1(i).$$ Also by refining j further if necessary, we can assume that, for this j, the morphism $_3p_i^j\colon F_3(j)\to F_3(i)$ also factorises as $$F_3(j) \xrightarrow{3s_i^j} _3M_i^j \xrightarrow{3t_i^j} F_3(i),$$ where of course ${}_{I}M_{i}^{j}$ and ${}_{3}M_{i}^{j}$ are in C_{I} . We repeat the procedure starting with j to find a k sufficiently «fine» so that $_1p_j^k$ and $_3p_j^k$ factor through $_1M_j^k$ and $_3M_j^k$ respectively. Thus we have a large commutative diagram $$0 \longrightarrow F_{1}(i) \longrightarrow F_{2}(i) \longrightarrow F_{3}(i) \longrightarrow 0$$ $$\downarrow^{M_{i}^{j}} \qquad \downarrow^{2p_{i}^{j}} \qquad \downarrow^{3M_{j}^{i}} \downarrow^{3M_{j}^{i}}$$ where all the maps are the obvious ones. Working with the bottom rectangle first we take the pushout of $$\begin{array}{c|c} I^{M_j^k} - - - - \triangleright B_j^k \\ \downarrow & \downarrow \\ F_1(k) & \downarrow \\ F_2(k) & \downarrow \\ F_2(k) & \downarrow \\ \end{array}$$ and form the induced exact sequence $$0 \longrightarrow_{I} M_{j}^{k} \longrightarrow B_{j}^{k} \longrightarrow F_{3}(k) \longrightarrow 0$$ $$\downarrow p.o. \qquad \downarrow \sigma_{j}^{k} \qquad \downarrow$$ $$0 \longrightarrow F_{I}(k) \longrightarrow F_{2}(k) \longrightarrow F_{3}(k) \longrightarrow 0$$ (as in the Yoneda description of the extension group). By the universal property of pushouts, $_2p_j^k$ factors through σ_j^k as, say, $_2p_j^k = \tau_j^k\sigma_j^k$. We have thus replaced (2.2.2) by the following diagram: $$(2.2.3) \begin{array}{c|c} 0 \longrightarrow F_{1}(i) \xrightarrow{u(i)} F_{2}(i) \xrightarrow{v(i)} F_{3}(i) \longrightarrow 0 \\ & 1^{p_{i}^{j}} t_{j}^{k} & 2^{p_{i}^{j}} r_{j}^{k} & 3^{M_{i}^{j}} \\ & & 3^{M_{i}^{j}} & 3^{M_{i}^{j}} \\ & & 3^{k} i p_{j}^{k} 3^{k}$$ We next take the induced exact sequence given by the diagram $$0 \longrightarrow_{1} M_{j}^{k} \longrightarrow_{2} M_{i}^{k} \longrightarrow_{3} M_{i}^{j} \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \downarrow$$ where the right hand square is a pullback. We thus can replace (2.2.3) finally by (2.2.4) (by using the universal property of pullbacks): $$(2.2.4) \begin{array}{c|c} 0 \longrightarrow F_{1}(i) \xrightarrow{u(i)} F_{2}(i) \xrightarrow{v(i)} F_{3}(i) \longrightarrow 0 \\ & I^{p_{i}^{j}} I_{j}^{k} & \downarrow_{2} I_{i}^{k} & \downarrow_{3} I_{i}^{j} \\ 0 \longrightarrow I^{M_{j}^{k}} \longrightarrow 2^{M_{i}^{k}} \longrightarrow 3^{M_{i}^{j}} \longrightarrow 0 \\ & I^{s_{j}^{k}} & \downarrow_{2} I_{j}^{k} & \downarrow_{3} I_{j}^{k} \\ 0 \longrightarrow F_{1}(k) \xrightarrow{u(k)}
F_{2}(k) \xrightarrow{v(k)} F_{3}(k) \longrightarrow 0 \end{array}$$ where the vertical centre maps factorise $_2p_i^k$. Since C_1 is closed under extensions, it follows that $_2M_{\,i}^k$ is in C_1 , so condition (*) is satisfied by F_2 . If we combine this proof with that of Proposition 2.1 applied to the subcategory of the category of exact sequences in $\mathcal C$ consisting of exact sequences in $\mathcal C_I$, we obtain the following useful result. PROPOSITION 2.3. If $$0 \to F_1 \to F_2 \to F_3 \to 0$$ is an exact sequence in $\operatorname{pro}(C)$, C_1 is a full subcategory of C which is closed under extensions and F_1 and F_3 are essentially of type C_1 , then there is a short exact sequence in $\operatorname{pro}(C_1)$ isomorphic to the given sequence, i.e., there is moreover the first and last isomorphisms can be specified to start with. One of the most important consequences of the proof of 2.2 is the following: PROPOSITION 2.4. Given any short exact sequence $$0 \longrightarrow F_1 \longrightarrow F_2 \longrightarrow F_3 \longrightarrow 0$$ in pro(C), there is an index category 1 and a short exact sequence $$0 \longrightarrow E_1 \longrightarrow E_2 \longrightarrow E_3 \longrightarrow 0$$ in C^{I} (considered as a part of pro(C)) such that $$0 \longrightarrow E_1 \longrightarrow E_2 \longrightarrow E_3 \longrightarrow 0$$ $$\uparrow \qquad \qquad \uparrow \approx \qquad \uparrow \approx$$ $$0 \longrightarrow F_1 \longrightarrow F_2 \longrightarrow F_3 \longrightarrow 0$$ commutes, where the vertical isomorphisms are from the various initiality relations; i.e., any short exact sequence in pro(C) is isomorphic to a «pro-short exact sequence in C». COROLLARY 2.5. Suppose F_1 is a subobject of F_2 , i.e., there is a monomorphism $0 \to F_1 \xrightarrow{f_{\bullet}} F_2$; then f can be represented up to isomorphism by a pro-monomorphism, i.e., a promap all of whose components are monomorphisms. PROOF. Form $$0 \longrightarrow F_1 \xrightarrow{f} F_2 \longrightarrow Cokerf \longrightarrow 0$$ and use 2.4. COROLLARY 2.6. If F_3 is a quotient object of F_2 then the quotient epimorphism $F_2 \xrightarrow{g_*} F_3 \rightarrow 0$ can be represented up to isomorphism by a proepimorphism. PROOF. Form $$0 \longrightarrow Kerg \longrightarrow F_2 \xrightarrow{g} F_3 \longrightarrow 0$$ and use 2.4. COROLLARY 2.7. If C_1 is closed under subobjects and F_2 is essentially of type C_1 , then any subobject of F_2 is also essentially of type C_1 . PROOF. Take $0 \to F_1 \to F_2$; replacing F_2 by M_2 in $pro(C_1)$ we still get $0 \to F_1 \to M_2$; now use 2.5 to find a pro-monomorphism $0 \to E_1 \to E_2$. The method outlined in the proof of 2.2 shows that this can be done in such a way that E_2 is in $pro(C_1)$ and hence E_1 must also be in $pro(C_1)$, i.e., F_1 is essentially of type C_1 . Similarly and dually one obtains: COROLLARY 2.8. If C_1 is closed under quotients, then any quotient of a pro-object F_2 which is essentially of type C_1 is also essentially of type C_1 . In order to sum up these results in a way relevant to the use which will be made of them later, we will introduce some notation and a wellknown definition. If C_I is a full subcategory of C, then we will denote by $\mathrm{E}(C_I)$ the full subcategory of pro(C) consisting of the pro-objects which are essentially of type C_I . A subcategory C_1 of C is called thick (épaisse) if, for each short exact sequence in C: $$0 \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow 0$$ B is in C_I iff both A and D are in C_I . (The translation of épaisse varies according to the author. Demers who translated Gabriel and Zisman [9] uses «thick». Popescu [26] uses «dense». We will use «thick» since it seems to be nearer the original. The terminology «Serre subcategory» is also sometimes used but seems somewhat clumsy even though it assigns the origin of the idea correctly.) PROPOSITION 2.9. If C_1 is a thick subcategory of C, then $E(C_1)$ is a thick subcategory of Pro(C). The converse is also true but we will not need it and hence will not prove it. It is non-trivial. Following Gabriel [8] we could in this situation form the quotient category $pro(C)/E(C_1)$ and the obvious thing to expect would be some natural connection with $pro(C/C_1)$. In fact there is such a natural connection and, although we will not be studying it in detail here, it is worth noting how it arises. There are canonical functors $$T: C \to C/C_1$$ and $T: pro(C) \to pro(C)/E(C_1)$ such that the usual universality properties hold. For instance, if X is an object of C_1 , $T(X) \approx 0$ and, for any additive functor $S: C \to D$ such that $S(X) \approx 0$ for all X in $Ob C_1$, there is a unique functor $S': C/C_1 \to D$ so that S = S'T; similarly for \bar{T} . If we extend T «pointwise» to a functor $$pro\ T:\ pro\ (C) \rightarrow pro\ (C/C_1)$$, we find that, for any pro-object X which is of type C_1 , $\operatorname{pro} T(X) \approx 0$. Of course this is also true for any X which is essentially of type C_1 (to see this, note that X is isomorphic to something in $\operatorname{pro}(C_1)$ or that, by 2.1, the transitions of $\operatorname{pro} T(X)$ will eventually factor through 0, and hence $\operatorname{pro} T(X) \approx 0$). Thus for each X in $\operatorname{E}(C_1)$, $\operatorname{pro} T(X) \approx 0$, which implies that there is a unique functor $$T': pro\left(\left.C\right.\right)/\operatorname{E}\left(\left.C_{1}\right.\right) \to pro\left(\left.C\right/C_{1}\right).$$ One might expect T' to be an equivalence, but at present it is not known in general it is or it is not. The only information available is that, if C_I is a localising subcategory, then T' is an equivalence, but in the analogous non-additive homotopy theory problem, T' is most certainly not an equivalence. #### 3. EXTENDING TORSION THEORIES AND LOCAL ISATIONS. At this point in the development of the ideas of this paper there are two directions in which we may go. The one which we will not yet take is to consider what happens if C_I is a localising subcategory, and hence the significance of the existence of a section functor S, which would be a right adjoint to T. This route leads speedily to a useful conclusion, but omits much of the structure of this localisation situation. It seems #### T. PORTER better to proceed at a more leisurely pace and to look at the algebraic details of the various structures involved in the main result instead of smashing the problem to pieces with an instant categorical sledgehammer. We therefore will need the details of how to attack localisation from as many different directions as possible, and for this we refer the reader to Gabriel [8], Popescu [26] or Hacque [16,17]. We first assume as before that C_I is a thick subcategory of C and recall the following result (cf. Hacque [16], page 25, or Popescu [26], page 174, 4.4, Lemma 4.1). For any object M in C the following conditions are equivalent: a) For each morphism $u: P \to Q$ with Keru and Cokeru in C_1 , $$Hom_C(u, M): Hom_C(Q, M) \rightarrow Hom_C(P, M)$$ is a bijection. b) Each subobject of ${\it M}$ appearing in ${\it C}_{\it I}$ is null and any short exact sequence $$0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0$$ with P in C_I splits. c) For any P in C, $$T(P,M): Hom_C(P,M) \rightarrow Hom_{C/C_1}(T(P), T(M))$$ is a bijection. As usual we say that M is C_1 -closed if it satisfies these equivalent conditions. We need to know the connection, if any, between the $\mathrm{E}\left(C_{I}\right)$ -closed pro-objects in $\mathrm{pro}\left(C\right)$ and the essentially C_{I} -closed pro-objects in $\mathrm{pro}\left(C\right)$. PROPOSITION 3.1. If $M: I \to C$ is essentially C_I -closed, then it is also $E(C_I)$ -closed. PROOF. Examination of the three equivalent conditions cited above should convince the reader that conditions b and c will be difficult to verify. For b, one can easily show that the sequence is «locally» split, but to show that the various «splittings» fit together to make a promap will be difficult; and for c we do not know enough about $pro(C)/E(C_1)$ to be able to describe Hom in that category. (In fact, it is precisely condition c which provides a description of Hom in $pro(C)/E(C_1)$ and enables us to describe $pro(C)/E(C_1)$.) Thus we are left with condition a. We break the proof in two parts by splitting u as a monomorphism composed with an epimorphism. Firstly the epimorphism $P \to lmu$. This we will relabel to be u itself as this will cause no confusion; so we consider an epimorphism $u: P \to Q$ with Keru in $E(C_1)$. We need to replace u by an isomorphic promap by reindexing in such a way that u is still epimorphic and Keru is of type C_1 ; this we do as follows. By the proof of 2.2 we can replace the short exact sequence $$0 \longrightarrow Keru \longrightarrow P \xrightarrow{u} Q \longrightarrow 0$$ by a pro-short exact sequence - we assume this has been done. Now Keru is in $E(C_1)$, so by 2.1 given any index i there is a j with $j \rightarrow i$ and a factorisation of this transition $$K(j) \xrightarrow{s_i^j} M_i^j \xrightarrow{t_i^j} K(i),$$ with M_i^j in C_1 (writing (Keru)(j) as K(j) for simplicity). We thus obtain the diagram $$0 \longrightarrow K(i) \longrightarrow P(i) \longrightarrow Q(i) \longrightarrow 0$$ $$\downarrow M^{j} \qquad \qquad \downarrow$$ $$0 \longrightarrow K(j) \longrightarrow P(j) \longrightarrow Q(j) \longrightarrow 0.$$ As in similar situations before, we take the pushout of $$M_i^j \longleftarrow K(j) \longrightarrow P(j)$$ to obtain a new diagram $$0 \longrightarrow K(i) \longrightarrow P(i) \longrightarrow Q(i) \longrightarrow 0$$ $$0 \longrightarrow M_i^j \longrightarrow P_i^j \longrightarrow Q(j) \longrightarrow 0$$ $$\uparrow p.o. \uparrow \qquad \parallel$$ $$0 \longrightarrow K(j) \longrightarrow P(j)
\longrightarrow Q(j) \longrightarrow 0$$ where two vertical maps in the middle column compose to give the appropriate transition. We thus get a new pro-short exact sequence, indexed by D(l) (cf. Proof of 2.1) $$0 \longrightarrow M \longrightarrow \bar{P} \xrightarrow{\bar{u}} \bar{Q} \longrightarrow 0$$ where $$M(j,i) = M_i^j$$, $\bar{P}(j,i) = P_i^j$ and $\bar{Q}(j,i) = Q(j)$. It is fairly easily seen that $\bar{u}:\bar{P}\to\bar{Q}$ is isomorphic to $u:P\to Q$, since both are initial subsystems of the promap represented by the two right hand columns of the above diagram and the maps between columns. Clearly M is $Ker\bar{u}$ so we can replace u by a map in which Keru is actually of type C_1 and not just essentially of type C_1 . Now we assume this done and can thus consider an epimorphism $u:P\to Q$ which is a promap, indexed by I, say, such that Keru(i) is in C_1 for each i in I. We are given some M in pro(C) which is essentially C_1 -closed, since we have to examine the natural function $$Hom(u, M): Hom(Q, M) \rightarrow Hom(P, M);$$ we can replace M by an isomorphic pro-object actually of «type C_1 -closed», just as we could replace u by an isomorphic promap with special properties. Thus we assume: $M: J \to C$ satisfies M(j) is C_1 -closed for each j in J. Thus for each i in I, j in J we have $u(i): P(i) \to Q(i)$ has Keru(i) in C_1 and M(j) is C_1 -closed, so that the induced natural map $$Hom_C(u(i), M(j)): Hom_C(Q(i), M(j)) \rightarrow Hom_C(P(i), M(j))$$ is a bijection. Moreover given $i' \rightarrow i$ and $j' \rightarrow j$ the obvious diagrams commute and all the horizontal maps are bijections, thus $$\underbrace{\lim_{j \in I} (\lim_{l \to \infty} Hom_{C}(u(i), M(j))):}_{I}$$ $$\underbrace{\lim_{j \in I} (\lim_{l \to \infty} Hom_{C}(Q(i), M(j))) \rightarrow \lim_{j \in I} (\lim_{l \to \infty} Hom_{C}(P(i), M(j)))}_{I}$$ must be a bijection, as required. The proof for u a monomorphism follows obviously a similar, if partially dual, path and hence will be omitted. We next turn our attention to torsion theories. Recall from Dickson [5] (cf. Popescu [26], Section 4.8) that a torsion theory for the category C consists of a pair (T, F) of full subcategories of C satisfying the following axioms: - (i) $T \cap F = 0$, - (ii) T is closed under quotients, - (iii) F is closed under subobjects, - (iv) for each X in C, there is a short exact sequence $$0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$$ with X' in T and X'' in F. An alternative but equivalent set of properties involves (iv) above and in addition the two axioms: - (v) T and F contain complete isomorphism classes, - (vi) if X is in T and Y in F, then $Hom_C(X, Y) = 0$. Suppose now that (T, F) is a torsion theory in the Grothendieck category C. By 2.7 and 2.8, E(T) is closed under quotients and E(F) under subobjects. Moreover (vi) is clearly satisfied for X in E(T) and Y in E(F) as is (v). Thus an obvious question to ask is: Is (E(T), E(F)) a torsion theory in pro(C)? We have to verify (iv). We first check (i) as this is quite simple. LEMMA 3.2. $$E(T) \cap E(F) = 0$$. PROOF. Suppose X is in both $\mathrm{E}(T)$ and $\mathrm{E}(F)$. We will if necessary replace X by an isomorphic pro-object of type T, but only essentially of type F. Thus given any index i there is a j with $j \to i$ such that the relevant transition factors as $$X(j) \xrightarrow{s_i^j} M_i^j \xrightarrow{t_i^j} X(i),$$ where M_i^j is in F and of course X(j) is in T. By (vi) for (T,F), we have $s_i^j = 0$, so the transition p_i^j is zero, i.e., $X \approx 0$. As is well-known (Popescu [26], Section 8, page 200, Stenström [39] or Lambek [22]), any hereditary torsion theory (T, F) (that is one in which T is closed under subobjects) is completely determined by a «subfunctor of the identity» t satisfying: (i) $$t^2 = t$$, (ii) $$t(X/t(X)) = 0$$ for all X in C. t is the torsion radical associated with (T,F). t(X) is the maximal subobject of X which is in T and the exact sequence of axiom (iv) can in this case be written $$0 \longrightarrow t(X) \longrightarrow X \longrightarrow X/t(X) \longrightarrow 0$$. If (E(T), E(F)) is a hereditary torsion theory, the obvious candidate for the torsion radical \bar{t} will be the extension to pro(C) of the of the torsion radical of (T,F). (Note (T,F) is bound, in this case, to be hereditary.) Now E(T) is closed under subobjects if T is, by 2.7, so we wish to examine it to see if \bar{t} is a torsion radical, or alternatively use it to show that (E(T), E(F)) is a hereditary torsion theory. So, suppose X is any pro-object in C LEMMA 3.3. $\bar{t}(X)$ is the maximal subobject of X appearing in E(T). PROOF. If $X: I \to C$, then $\bar{t}(X)(i) = t(X(i))$. Now suppose Y is in E(T) and Y is a subobject of X. By 2.5 we may assume Y is indexed by I and the monomorphism $u: Y \to X$ satisfies: u(i) is a monomorphism for each i. Applying \bar{t} to u gives an inclusion $$t(u(i)): t(Y(i)) \rightarrow t(X(i))$$ for each i. By assumption Y is essentially of type T, so by 2.1 there is, for each such i, a j with $j \rightarrow i$ such that the transition ${}_{Y}p_{i}^{j}$ factors: $$Y(j) \xrightarrow{s_i^j} T_i^j \xrightarrow{t_i^j} Y(i).$$ Applying t gives $$Y(j) \longrightarrow T_i^j \longrightarrow Y(i)$$ $$\downarrow \qquad \qquad \downarrow$$ $$t(Y(j)) \longrightarrow T_i^j \longrightarrow t(Y(i))$$ the vertical maps being natural inclusions from property (ii) of t. Thus the inclusion map $\bar{t}(Y) \to Y$ has cokernel a pro-object such that the tran- sition corresponding to $j \rightarrow i$ factors through 0, i.e., this inclusion is an isomorphism in pro(C), so $\bar{t}(Y) \approx Y$ and the diagram $$\begin{array}{cccc} \bar{t}(Y) & & \bar{t}(u) \\ & \downarrow & & \downarrow \\ Y & & u & & X \end{array}$$ shows that u factors through $\bar{t}(X)$, so $\bar{t}(X)$ is the maximal subobject of X which appears in E(T). PROPOSITION 3.4. If (T, F) is a hereditary torsion theory on C, then (E(T), E(F)) is a hereditary torsion theory in pro(C). PROOF. It remains only to check (iv), so suppose X is in pro(C). There is a short exact sequence $$0 \longrightarrow \bar{t}(X) \longrightarrow X \longrightarrow X/\bar{t}(X) \longrightarrow 0$$, $\bar{t}(X)$ is in E(T) and $X/\bar{t}(X)$ is represented by the pro-object with $$(X/\bar{t}(X))(i) = X(i)/\bar{t}(X(i)),$$ so $X/\bar{t}(X)$ is of type F and hence is in E(F). COROLLARY 3.5. The associated torsion radical of (E(T), E(F)) is the extension to pro(C) of the torsion radical of (T, F). We now can look at the case when C' is a localising subcategory. C' is localising if it is thick and the projection functor $T: C \to C/C'$ has a right adjoint S. The characterisations of localising subcategories are many (see for instance Hacque [16,17]) but the most useful, for our purposes, shows that any localising subcategory C' must form the torsion class of a hereditary torsion theory on C and moreover, if C' is the associated torsion radical, each C' is embeddable in a C'-closed object (cf. Popescu [26], 4.4.5, page 177, or Hacque [16], 4.2.8, page 30). This condition is both necessary and sufficient. PROPOSITION 3.6. If C' is a localising subcategory of C, then E(C') is a localising subcategory of P(C). #### T. PORTER PROOF. Since C' is a hereditary torsion class, we can deduce from 3.4 that E(C') is so as well. C' being localising implies that for any X in C, X/t(X) can be embedded in a C'-closed object of C. In fact writing L=ST, there is a natural transformation $\psi:I\to L$, L(X/t(X)) is C'-closed for each X and $\psi(X/t(X))$ is a monomorphism (see Hacque [16 or 17]). Thus if we use the extension \bar{L} of L to pro(C) and invoke 3.1 and 3.5, we find that $\bar{L}(X/\bar{t}(X))$ is E(C')-closed for each X in pro(C) and that $$\bar{\psi}(X/\bar{t}(X))\colon X/\bar{t}(X)\to \bar{L}(X/\bar{t}(X))$$ is the desired embedding in a E(C')-closed pro-object. Thus E(C') is localising. In our investigation of this localisation, we have now the following information: we know the quotient functor \bar{T} and the associated subcategory $Ker\bar{T}=E(C')$; we know that \bar{T} has a section \bar{S} , but we as yet have no description of \bar{S} other than as being right adjoint to \bar{T} ; we also know that the image of \bar{S} , that is the E(C')-closed objects, contains the essentially C'-closed objects, however we do not know if these form all the E(C')-closed objects. In order to increase our knowledge in these directions, we adopt an approach and some terminology from Hacque [17]. Let A be any category; a localising system in A is a pair (L,ψ) where $L:A\to A$ is a functor which commutes with finite projective limits and $\psi:Id_A\to L$ is a natural transformation for which the associated natural transformations $$\psi L: L \to L^2$$ and $L\psi: L \to L^2$ are equal isomorphisms. An object M of A is an invariant of (L, ψ) if the morphism: $\psi(M): M \to L(M)$ is an isomorphism. Two localising systems (L, ψ) and (L', ψ') are equivalent if there is a natural isomorphism $\epsilon\colon L\to L'$ such that $\psi'=\epsilon\circ\psi$. With these definitions, a local system in A is an «equivalence class» $[L,\psi]$ of localising systems (L,ψ) in A. ~ · · · · ~ #### PRO-OBJECTS IN GROTHENDIECK CATEGORIES Hacque [17] shows there is a one-one correspondence between local systems in A and «local subcategories» of A. By a local subcategory, he means a subcategory L of A for which the inclusion $S'\colon L\to A$ has a left adjoint T' which commutes with finite projective limits. In fact, if A is abelian, then L is also abelian, T' is exact and commutes with inductive limits whilst S' commutes with all projective limits (Lemme 1.2 of [17]). Later in that paper Hacque shows (1.6) any localisation in A can be determined uniquely by any one of the following: - a) a localising subcategory C of A, - b) a local subcategory L of A,
- c) a local system $[L, \psi]$ in A. The method of passage between these is simple: - a) C = KerT = KerT' = KerL, - b) L = full subcategory of C-closed objects = full subcategory of invariants of (L, ψ) , - c) $[L, \psi]$ is given by L = ST or L = S'T', with, in either case: $\psi: Id_A \to L$ the unit of the adjunction. In our position we know the localising subcategory E(C') of pro(C); we need to know L and $[L,\psi]$. In order to find these we compare the given localisation with another. We have in C the following data: a localising subcategory C', a quotient functor T with section functor S, a localising system $[L,\psi]$ with L=ST and a local subcategory L consisting of the C'-closed objects. Extending all this structure «pointwise» to pro(C) we have a localising subcategory E(C'), a functor $$pro\ T: pro\ (C) \rightarrow pro\ (C/C')$$ with a right adjoint $$pro S: pro(C/C') \rightarrow pro(C)$$ (thus $(pro L, pro \psi)$ is a localising system in pro(C)). The subcategory E(L) is a local subcategory of pro(C) since it is the full completion of pro(L) and there is a left adjoint $$pro\ T': pro\ (C) \rightarrow pro\ (L)$$ to the inclusion $$pro S: pro(L) \rightarrow pro(C)$$; it thus remains to check that $pro\ T'$ preserves finite projective limits but this is clear from the reindexing results, since we can calculate limits pointwise in some L^I and then use $T'^I: L^I \to C^I$ before passing back into $pro\ (C)$. $$E(C') = Ker(pro\ T) = Ker(pro\ T') = Ker(pro\ L),$$ so by Hacque's characterizations we get the following result: THEOREM 3.7. If C' is a localising subcategory of C determining a local subcategory L of C and a local system $[L, \psi]$ in C, then E(C') is a localising subcategory of pro(C) whose associated local subcategory of E(C')-closed objects is precisely E(L) and whose associated local system is precisely $[pro L, pro \psi]$. Thus to all intents and purposes one can extend localisations from C to pro(C) merely by using the extended localising functors and an adequate use of the word «essentially». - REMARKS. (i) This result compares favorably with those obtained on the localisation in [31]; there the localisation existed only if C was semi-artinian and even then the description of the localisation was beyond the tools available. The questions raised at the end of that paper are trivial in this case as the answers form an integral part of our result above. - (ii) It is worth noting that the change-of-rings situation considered in [30] corresponds exactly to a localisation extended from Mod-A to pro(Mod-A). - (iii) A comparison between the above situation and the situation in the non-abelian case as considered in pro-homotopy theory [27] suggests that the reason for the simple solution here is the existence of a right adjoint for T. This cannot exist in the homotopy situation since one cannot «realise» homotopy theory within any of the usual categories used in homotopy. # 4. TRIPLES AND LOCALISATION IN pro(C). This section is essentially an aside and is not necessary for the main flow of the work. However it answers, in particular cases, one of problems asked in the Introduction. The connection between triples and localisation is fairly well-known. When the base category C is abelian, Heinicke [18] shows the following results: Let T = $$\langle G, \eta, \mu \rangle$$ be a triple on C ; thus $G \colon C \to C$ is a functor, $$\eta \colon Id_C \to G \quad \text{and} \quad \mu \colon G^2 \to G$$ are natural transformations for which the diagrams commute. Let $C^{\mathbf{T}}$ denote the Eilenberg-Moore category of \mathbf{T} ; thus an object in $C^{\mathbf{T}}$ is a pair (X,ϕ) where X is an object of C and $\phi:G(X)\to X$ is a morphism in C for which commute. A morphism $f: (X, \phi) \to (X', \phi')$ in C^T is a morphism $f: X \to X'$ in C for which $$G(X) \xrightarrow{G(f)} G(X')$$ $$\phi \downarrow \qquad \qquad \downarrow \phi'$$ $$X \xrightarrow{f} X'$$ commutes. Heinicke [18] uses the term «localising triple» for a triple in which G is left exact and μ is an equivalence. He proves, amongst other things, that in this case (G, η) is a localising system in the sense (due to Hacque [17]) introduced above. However of most interest to us here is his proof of the identification of C^T (when $T = \langle G, \eta, \mu \rangle$ is localising) with the full subcategory of C determined by those objects X for which $\eta(X)$ is an isomorphism. (Note his results are stated only for a category of modules, but they do not depend on this fact.) Linking up Heinicke [18] and Hacque [17] shows that, for a localising triple T, $C^{\rm T}$ is the same as the local subcategory determined by (G,η) . We can now use this to reinterpret Theorem 3.7 above in terms of localising triples. THEOREM 4.1. Let T be a localising triple on a (locally small) abelian category C and let T be its extension to pro(C), i.e., $$\bar{T} = (pro G, pro(\eta), pro(\mu));$$ then there is an isomorphism of categories between pro(C)^T and $E(C^T)$. The strength - isomorphism of categories rather than mere equivalence - of this result is due mainly to the power of the results of Heinicke [18] and thus to the particular hypothesis that T is localising. Without this hypothesis one might conjecture that $pro(C)^T$ and $E(C^T)$ would be equivalent, but «isomorphic» would seem at first sight to be too strong. Another reason for 4.1 is that we had at our disposal the powerful characterisations of localisations in (locally small) abelian categories. Removal of «abelian» raises more problems. First and foremost is that of determining what one means by localisation in this context. It is hoped to make an examination of this the subject of another paper. #### 5. KRULL-GABRIEL DIMENSION. (From now on C will denote a Grothendieck category.) In this section we recall the essentials of Gabriel's generalisation of Krull dimension. We will also have to introduce some new definitions for later use. The principal references will be: Gabriel [8], Popescu [26], Gordon and Robson [12]. Recall that an object M in C is a finite length if there is a filtration $$O = M_{-1} \subset M_0 \subset \ldots \subset M_n = M$$ of M by subobjects M_i such that each quotient M_i/M_{i-1} is simple. We define the Krull-Gabriel filtration of C to be the ordinal indexed collection $\{C_{\alpha}\}$ of localising subcategories of C defined as follows: $C_{-1} = \{0\}$, the zero category, C_0 is the smallest localising subcategory of C containing all objects of finite length. Let $T_0\colon C\to C/C_0$ be the quotient functor and S_0 the associated section functor. Assuming that $\alpha=\beta+1$, that C_{β} is defined and is a localising subcategory of C, we denote by $T_{\beta}:C\to C/C_{\beta}$ the quotient functor and by S_{β} the corresponding section functor. An object M is in C_{α} iff $T_{\beta}(M)$ is in $(C/C_{\beta})_{0}$. If α is a limit ordinal, then C_{α} is the smallest localising subcategory of C containing $\underset{\beta \leq \alpha}{\cup} C_{\beta}$. We will be interested only in the C_{α} for α finite and we will write $KG\text{-}dim\,M=n\quad\text{if}\quad M\text{ is in }C_{n}\text{ but not in }C_{n-1}\;.$ REMARK. A few words need to be said as to why we have chosen to use this, the earlier version of Gabriel rather than his later version introduced on his joint work with Rentschler [10]. This latter seems to have attracted more attention amongst algebraists than his original version; see for instance the memoir of Gordon and Robson and the bibliography there [11]. However our methods depend heavily on the use of localising subcategories, whilst the Gabriel-Rentschler version only uses thick subcategories (for this see Gordon and Robson [12]). This alone would mitigate against use of the later version here, however the connection between the two versions, as indicated in [12] is such that those objects of C with a given Krull-Gabriel dimension form a larger class than those with the later version of that dimension. In fact, if M has a Krull-Gabriel dimension, then it has a Krull dimension (à la Gabriel-Rentschler) iff each homomorphic image of M has finite uniform dimension (i.e., each homomorphic image of M contains no infinite direct sum of non-zero subobjects). Thus in proving results related to KG-dimension, we combine ease of method with the benefits of considering a larger class at any one time. Returning to the localising subcategories C_n of the Krull-Gabriel filtration, each is determined by an idempotent torsion radical τ^n defined by: $\tau^n(M)$ is the maximal subobject of M which is in C_n . It will be necessary to consider how we may construct τ^n in each case. For n = 0, it is relatively straightforward and is, of course, well known. We start by defining a left exact subfunctor of the identity as follows: $$\tau_I^0(M) = soc(M) = \bigoplus \{ S \mid S \subset M, S \text{ is simple} \}.$$ Using this and transfinite recursion one defines an ordinal sequence of subfunctors of the identity: If $\alpha = \beta + I$ and τ_{β}^{0} is defined, then τ_{α}^{0} is given by $$\frac{\tau_{\alpha}^{0}(M)}{\tau_{\beta}^{0}(M)} \approx \tau_{1}^{0}(\frac{M}{\tau_{\beta}^{0}(M)}).$$ If α is a limit ordinal, $\tau_{\alpha}^{0}(M) = \bigcup_{\beta \leq \alpha} \tau_{\beta}^{0}(M)$. Finally one checks that $\tau^0(M) = \bigcup_{\alpha} \tau^0_{\alpha}(M)$. Thus M is in C_0 iff $r^0(M)=M$. In this case $r_a^0(M)=M$ for some ordinal α , and the minimal such α is called the 0-length (or length) of M. Note that M is of finite length M has an unambiguous meaning although the M-length will in general be different in the two cases. To define τ^n intrinsically for n>0 is harder. We first assume that τ^{n-1} has been defined and say that M is n-simple if (i) $$\tau^{n-1}(M) = 0$$, and (ii) $T_{n-1}(M)$ is
simple. Thus if M is n-simple and $N \subset M$, N cannot be in C_{n-1} and the quotient M/N is in C_{n-1} . The simplest example of this is, of course, the case: $$n = 1$$ for $C = Ab$ with $M = Z$. Z is torsion free (i.e., $\tau^0(Z) = 0$) and if $N \subset Z$, then N = nZ for some n so Z/N is torsion, hence in C_0 . We shall assume for simplicity that $\tau^{n-1}(M) = 0$ to start with — the adjustment to the general case will follow. Let $$\tau_1^n(M) = \Sigma \{ S \mid S \subset M, S \text{ is } n\text{-simple} \}.$$ In general, this sum is not direct, since for example $$\tau_1^I(Z) = \sum \{ m Z \mid m \in Z \} = Z$$ is certainly not direct! However it is always an essential extension of a direct sum of n-simples, since n-simples are coirreducible (i.e., are essential extensions of all subobjects) and hence there is a KRSG-decomposition by n-simples (see Popescu [26], Chapter 5). (We will use Σ for «sum» and Θ for «direct sum».) The relationship between τ_I^n and τ_I^0 is: $$T_{n-1} \tau_1^n = soc(T_{n-1}) = \tau_1^0 T_{n-1}$$. This relation will be fundamental in the sequel. Defining $\tau^n(M)$ as before by recursion, we obtain τ^n and the concept of *n*-length (cf. Porter [34]). We can easily lift the restriction $\tau^{n-1}(M) = 0$ by defining, for a general M, $\tau^n(M)$ by: $$\frac{\tau^n(M)}{\tau^{n-1}(M)} = \tau^n_{\alpha}(\frac{M}{\tau^{n-1}(M)}) ;$$ thus $\tau_{\alpha}^{n}(M)$ will be the maximal subobject of M satisfying $$T_{n-1} \tau_{\alpha}^{n}(M) = T_{n-1} \tau_{\alpha}^{n} \left(\frac{M}{\tau^{n-1}(M)} \right).$$ We next need a generalisation of the notion of finitely generated. The usual concept is not the right one for use in this context - it would, for instance, impose finite n-length on all objects being considered. We therefore introduce a weaker form which, for want of a better term, will be called «pseudo-finitely generated» (or «p.f.g.» for short). We define the term solely on objects with finite Krull-Gabriel dimension as it will be defined recursively. If n = -1, all objects in C_{-1} are p.f.g. Now assume the term is defined as far as C_{n-1} is concerned and suppose M is a sum of n-simple objects; then M is p.f.g. if it satisfies the two conditions: - (i) $T_{n-1}(M)$ is a direct sum of finitely many simple objects of C/C_{n-1} and - (ii) If $N \subset M$ is such that M/N is in C_{n-1} , then M/N is p.f.g. In general M in C_n is p.f.g. if - (iii) $\tau^{n-1}(M)$ is p.f.g. and - (iv) for each α , writing $\bar{M}=M/\tau^{n-1}(M)$, one has $\tau_1^n(M/\tau_\alpha^n(\bar{M}))$ is p.f.g. in the above sense. PROPOSITION 5.1. If M is a Noetherian object of finite Krull-Gabriel dimension, then M is p.f.g. PROOF. If KG-dim M = -1, the result is trivial, so suppose the result holds for all Noetherian objects with KG-dimension less than n. First we consider the case that M is a sum of n-simples. By Popescu ([26], page 372), $T_{n-1}(M)$ is Noetherian and so has only finitely many simple direct summands; hence (i) is satisfied. If $N \subset M$ is such that M/N is in C_{n-1} , then M/N is Noetherian and hence by the induction hypothesis is p.f.g.; hence (ii) is satisfied. In general if M is in C_n and is Noetherian, then $\tau^{n-1}(M)$ is in C_{n-1} and is Noetherian and hence is p.f.g., whilst $$M/\ \tau_\alpha^n(M)\approx \bar{M}/\ \tau_\alpha^n(\bar{M})$$ is a factor object of M, hence Noetherian. Since it is a sum of n-simples, it is p.f.g. by the first case considered above. COROLLARY 5.2. For a right Noetherian ring A and any finitely generated right A-module M of finite Krull-Gabriel dimension, M is p.f.g. This Corollary will be crucial in showing that the result of Gruson and Jensen mentioned in the Introduction is in fact a special case of the main result of the next section. # 6. KRULL-GABRIEL DIMENSION AND THE VANISHING OF $lim^{(i)}$. In [36] Roos proved the following result: Let A be a regular ring and M a projective system of A-modules of finite type, then $$\lim_{i \to \infty} {i \choose i} M = 0$$ for all $i > \dim A$. Another result of the same type is due to Jensen [20]: Let M be a projective system of Artinian modules over a commutative ring A, then $$\lim_{i \to 0} {i \choose M} = 0$$ for all $i > 0$ if either A is Noetherian or each M(i) is Noetherian. Further developments of the same theme include Jensen's removal of «commutative» and «Noetherian» from the above result and also his extensions of the result of Roos to quotients of finite dimensional Gorenstein rings. Finally he proved: If A is a local Noetherian ring of Krull dimension I, then $$\lim_{i \to \infty} {i \choose i} M = 0$$ for all $i \geqslant 2$, for all projective systems of A-modules of finite type. (These latter results are all in Jensen's Note [21]: the first in Chapter 7 and the last two in Chapter 9.) Jensen also conjectured ([21], page 82) that a result similar to these was true for arbitrary Noetherian rings and recently he and Gruson (details unpublished as yet, cf. [14]) have proved this to be true. Specifically they have proved: Let A be a right Noetherian ring and M a projective system of finitely generated right A-modules. If (Krull dimension of $$M(\alpha)$$) < n for all α , then $\lim_{\longrightarrow} {}^{(i)}M = 0$ for i > n. The fact that for Artinian modules, no condition on the ring is necessary suggests that all these results should follow as special cases of some result such as the following: If M is a projective system of Noetherian modules and $$KG$$ -dim $M(\alpha) \leq n$ for all α , then $\lim_{i \to \infty} {}^{(i)}M = 0$ for i > n. In this Section we will prove this theorem by the obvious method of recursion on n. In fact, we will prove a more general result and then use 5.1 to deduce this result. As in previous work, we introduce the classes $L^{(k)}$, $$L^{(k)} = \{ M \mid M \text{ in } pro(C), \underline{lim}^{(i)}M = 0 \text{ for } i > k \},$$ and we recall various of the properties of $L^{(k)}$ - for convenience we repeat the proofs. LEMMA 6.1. For each k, $L^{(k)}$ is closed under extensions. PROOF. Given $$0 \longrightarrow M' \longrightarrow M \longrightarrow N \longrightarrow 0$$ in pro(C) with M', $N \in L^{(k)}$, then the long exact sequence for the $\lim_{k \to \infty} f(k)$ immediately gives $M \in L^{(k)}$. From now on, we shall assume C has exact products. Usually direct limits are not exact in pro(C), however given an object $X: I \to C$ and a family of subobjects $\{X_\alpha\}$ of X in such a way as the resulting diagram can be considered as belonging to C^I , the direct limit of the X_α in pro(C) can be taken within C^I to give a subobject of X (in pro(C)). Of course this sort of limit is exact since C^I is AB5. We will call such limits special direct limits. (I would like to thank L. Gruson and S. Zdrawkovska for pointing out the necessity of working with special direct limits in the following theory.) LEMMA 6.2. For each k, $L^{(k)}$ is closed under (filtered) special direct limits. PROOF. Suppose $\{M_{\alpha}\}$ is a special direct system in D and, for each α , $\lim_{i \to \infty} {j \choose i} M_{\alpha} = 0$ if j > k . There is a double complex defined as follows: Firstly for any pro-object N in C, let $\Pi(N)$ be the cochain complex defined by: $$\Pi(N)^k = \prod_{i_0 \leqslant \dots \leqslant i_k} N(i_0, \dots, i_k),$$ where $N(i_0, ..., i_k) = N(i_0)$ and $\delta^m : \Pi(N)^m \to \Pi(N)^{m+1}$ is given by: $$\begin{array}{l} \delta^{m}(n)(i_{0},\ldots,i_{m+1}) = \\ p_{i_{0}}^{i_{1}}n(i_{1},\ldots,i_{m+1}) + \sum\limits_{j=1}^{m+1}(-1)^{j}n(i_{0},\ldots,\hat{i_{j}},\ldots,i_{m+1}) \,. \end{array}$$ Note that $H^p(\Pi(N)^*) = \lim_{n \to \infty} {(p)}N$ (cf. Roos [36] or Jensen [21], Chapter 4). Dually, if $N: I^{op} \to C$ is an inductive or direct system in C, we set $$\Sigma(N)_k = \bigoplus_{i_0 \leq \dots \leq i_k} N(i_0, \dots, i_k),$$ where $N(i_0, ..., i_k) = N(i_0)$ and the differential ∂^k is given by $$\begin{array}{l} \partial^{k}(j(i_{0},\ldots,i_{k})n) = \\ j(i_{1},\ldots,i_{k})p_{i_{0}}^{i_{1}}n + \sum\limits_{i=1}^{k+1}(-1)^{i}j(i_{0},\ldots,\hat{i_{i}},\ldots i_{k})n \ \text{for} \ n \in N(i_{0}), \end{array}$$ where $j(i_0,\ldots,i_k)$ is the natural monomorphism from $N(i_0,\ldots,i_k)$ into $\Sigma(N)_k$ as the (i_0,\ldots,i_k) -th summand. Again we get $$H_0(\Sigma(N)_*) = \lim_{\longrightarrow} N,$$ and since $\lim_{k \to \infty}$ is exact, $H_k(\Sigma(N)_*) = 0$ for $k \neq 0$. Since we have a special direct system $\{M_{\alpha}\}$ of projective systems, we can form up the double complex $\Sigma(\Pi M)$, and study its spectral sequences. Adopting the indexing system suggested by Hilton and Stammbach [19] rather than the classical one, we obtain $${}_{1}E_{1}^{p,q} = \begin{bmatrix} \lim_{n \to \infty} (-p) \lim_{n \to \infty} (q+p) & M & \text{for } p \leq 0, q \geqslant -p, \\ 0 & \text{otherwise} \end{bmatrix}$$ and $$_{2}E_{1}^{p,q}=\left[egin{array}{ll} \lim_{q \to \infty} (-p)\lim_{q \to \infty} (q+p)M & \text{for } p \leqslant 0 \text{, } q \geqslant -p \text{,} \\ 0 & \text{otherwise} \end{array} \right.$$ and which, if they converge, will converge to the same limit. Now generally 4-th quadrant spectral sequences cannot be expected to converge, but since C is an AB5 category, $\lim_{n \to \infty} a_n = a_n + a$ $$\lim_{n \to \infty} f(j) M_n = 0 \quad \text{for } j > k,$$ many of the terms are zero. In fact, we get $${}_{1}E_{1}^{p,\,q}=\left[\begin{array}{cc} 0 & \text{if } q\neq -p\,,\\ \\ \lim{}^{(-p)}lim\,M_{\alpha} & \text{if } q=-p\,, \end{array}\right.$$ and $${}_2E_1^p, {}^q = \Big[\begin{matrix} 0 & \text{if } p \neq 0 \text{ or } q > k \,, \\ \\ \lim \lim (q) M_\alpha & \text{if } p = 0 \text{ and } q \leqslant k \,. \end{matrix}$$ Putting $B = Tot(\Sigma\Pi(M))$, the ₂E-sequence clearly gives $$H^{q}(B) = \begin{bmatrix} \lim (\lim^{(q)} M_{\alpha}) & \text{for } 0 \leqslant q
\leqslant k, \\ 0 & \text{otherwise.} \end{bmatrix}$$ Feeding this back into $_1E$ gives $$\lim_{\alpha \to 0} (\lim_{\alpha \to 0} M_{\alpha}) = 0 \quad \text{if} \quad q > k.$$ Thus $\lim_{n \to \infty} M_n$ is in $L^{(k)}$ as promised. LEMMA 6.3. If $f: M \to N$ is a morphism in pro(C) such that Kerf and Cokerf are in $L^{(k)}$, then the induced limiting morphisms $$\lim_{i \to \infty} f: \lim_{i \lim_{$$ are isomorphisms for i > k+1. PROOF. Look at the long exact sequence corresponding to $$0 \longrightarrow Kerf \longrightarrow M \longrightarrow Imf \longrightarrow 0 ;$$ it gives $$\cdots \longrightarrow \lim^{(k)} \lim f \longrightarrow \lim^{(k+1)} \operatorname{Ker} f \longrightarrow \lim^{(k+1)} M \longrightarrow \lim^{(k+1)} \lim f \longrightarrow \lim^{(k+2)} \operatorname{Ker} f \longrightarrow \cdots$$ and since $$\lim_{k \to \infty} {(k+i)} Ker f = 0$$ for $i > 0$, $\lim_{t \to \infty} {}^{(q)}M \to \lim_{t \to \infty} {}^{(q)}Imf$ is an isomorphism for $q \geqslant k$. Similarly consider the long exact sequence corresponding to $$0 \longrightarrow Im f \longrightarrow N \longrightarrow Coker f \longrightarrow 0$$; clearly $\lim_{k \to \infty} {(k+i) \operatorname{lim} f} \to \lim_{k \to \infty} {(k+i) \operatorname{N}}$ is an isomorphism for i > 1. Thus putting these two isomorphisms together to get the induced morphism $\lim_{n \to \infty} f(q) f$ for q > k+1 completes the proof. We next need a result on projective systems of semi-simple objects. (This result appears in a slightly different form in [30,32].) LEMMA 6.4. Suppose M is such that each M(i) is a direct sum of at most n simple objects of C, then M is essentially constant and the canonical morphism $h(\lim M) \to M$ is an isomorphism in pro(C), in particular $$\lim_{i \to 0} f(i) M = 0$$ for $i > 0$. Moreover lim M is a finite direct sum of simple objects of C. PROOF. Since, if S and S' are two non-isomorphic simple objects, $$Hom_C(S, S') = 0$$, we can apply the S-socle functor, i.e., the functor τ_S^0 where S is a simple object of C and $$\tau_S^0(M) = \bigoplus \{ N \mid N \subset M, \ N \approx S \},\,$$ and split M into a possibly infinite direct sum $M \approx \bigoplus_{S} r_S(M)$, indexed by isomorphism types of simple objects, where $r_S(M(i))$ consists of finite direct sums of copies of S. In fact, since each M(i) involves only finitely many simples, this sum must in fact be finite and hence we can restrict attention to the case where all the summands in M(i) are isomorphic to one single S, i.e., $r_S(M) = M$. We first suppose the index i is fixed; then the family $\{p_i^j(M(j))\}$ is a family of subobjects of the Artinian object M(i). Hence there is some index f(i) such that $p_i^{f(i)}(M(f(i)))$ is a minimal element of this family, and so $$p_i^j M(j) = p_i^{f(i)} M(f(i))$$ for all $j > f(i)$. Now we form the category E(I) with objects ordered pairs (j, i) with $j \geqslant i$ in I, and a map $$(j',i') \rightarrow (j,i)$$ if $j' \geqslant j$ and $i' \geqslant i$. Let $M_E: E(I) \rightarrow C$ be defined by $$M_E(j,i) = p_i^j(M(j)),$$ with maps $M_E(j',i') \rightarrow M_E(j,i)$ given by $p_i^{i'}$ restricted to $p_i^{j'},M(j')$. The diagonal functor $$\Delta: I \to E(I), \quad \Delta(i) = (i, i),$$ is initial and $M=M_E\,\Delta$, so $M_E\approx M$; similarly the functor $$\Delta_f \colon I \to E(I), \quad \Delta_f(i) = (f(i), i),$$ is cofinal and $$M_E \Delta_f(i) = p_i^{f(i)} M(f(i))$$ is a projective system for which all transitions are epimorphic. Thus M is isomorphic to a projective system for which all the transitions are epimorphic; moreover by the method shown above this new system also satisfies the hypothesis of the theorem. We may thus replace M, if necessary, by this new pro-object. Now consider, for fixed i, the number of summands k(j,i) in the kernel of p_i^j for each j > i. Since each p_j^k is onto, k(j,i) is increasing with j and, since it is bounded, it must achieve a maximum, i.e., there is some j_0 such that $$k(j_0,i) \geqslant k(j,i)$$ for all $j > i$. However, if $j_{I} \rightarrow j_{2}$, then $k(j_{I},i) \geqslant k(j_{2},i)$, so $$k(j,i) = k(j_0,i)$$ for all $j \geqslant j_0$. Again using the fact that transitions are onto, we obtain that $p_{j_0}^j$ is a monomorphism and hence is an isomorphism for all $j > j_0$, i.e., M is a proobject for which the transitions are cofinally isomorphisms. The result follows. COROLLARY 6.5. Suppose M is such that M(i) is a finite direct sum of simple objects of C; then M is in $L^{(0)}$, i.e., $\lim_{n \to \infty} {}^{(i)}M = 0$ for i > 0. PROOF. M is the special direct limit of subobjects of the type satisfying the conditions of 6.4, thus the result follows from 6.2 and 6.4. COROLLARY 6.6. If M is p.f.g. and KG-dim $M(i) \le 0$ for all indices i, then $\lim_{j \to 0} f(j) = 0$ for all j > 0, i.e. $M \in L^{(0)}$. PROOF. Since M is p.f.g., each $\tau_1^0(M/\tau_\alpha^0(M))$ satisfies the conditions of 6.5. Using 6.1 for non-limit ordinals and 6.2 for limit ordinals shows that each $\tau_\alpha^0(M)$ is in $L^{(0)}$ and hence $\tau^0(M) = \bigcup_\alpha \tau_\alpha^0(M)$ is in $L^{(0)}$. Since M is in $\operatorname{pro}(C_0)$, $\tau^0(M) = M$, so we are finished with the proof. If we denote the subcategory of C_n consisting of p.f.g. objects by $C_{n,p.f.g.}$, we obtain the first (or rather zero-th) case of the general theorem: COROLLARY 6.7. If M is in $E(C_{0,p.f.g.})$, then M is in $L^{(0)}$. Clearly any Artinian object in C is in $C_{0,p,f,g}$, so we reobtain Jensen's result [21], page 57, 7.2 (cf. also the discrete case of Oberst [25], page 512, 5.20 and Demazure and Gabriel [4], V, 2.2, page 563). COROLLARY 6.8. If M is essentially Artinian, then M is in $L^{(0)}$. Although the proof of the main theorem would have produced these corollaries by itself, the proof of these results indicates the general plan of attack to be taken in the proof of the theorem. It is important to note that although the only part of 6.4 used in these corollaries is the conclusion that $$\lim_{i \to 0} (i)M = 0$$ for $i > 0$, in fact the more important conclusions from the point of view of the main theorem are that the natural map $h(\lim_{\longrightarrow} M) \to M$ is an isomorphism and the description of $\lim_{\longrightarrow} M$. THEOREM 6.9. Let M be in $E(C_{n,p,f,g,})$; then $M \in L^{(n)}$. PROOF. The case n = -1 is more or less trivial as $E(C_{-1})$ contains only the essentially zero objects and, by the functionality of $\lim_{n \to \infty} P(C)$, these have zero limits and zero derived limits. The case n = 0 has already been dealt with but would anyway have been given as an especially easy special case of the general inductive step. We will make the assumption that all objects in $E(C_{n-1,p.f.g.})$ are also in $L^{(n-1)}$ and we will consider first an object M in $E(C_{n,p.f.g.})$ satisfying: - (i) $\tau^{n-1}(M) = 0$, - (ii) $T_{n-1}(M)$ satisfies the conditions of Lemma 6.4 as an object of $$pro(C)/E(C_{n-1}) \approx pro(C/C_{n-1}).$$ Thus $\overline{T}_{n-1}(M)$ is isomorphic in $pro(C/C_{n-1})$ to a finite direct sum of simples $h(\overset{m}{\bigoplus} S_i)$. Each simple S_i is equal to $T_{n-1}(N_i)$ for some p.f.g. n-simple N_i and since T_{n-1} is exact and the sum is finite, $$h(\bigoplus_{i=1}^{m} S_i) \approx h(T_{n-1}(\bigoplus_{i=1}^{m} N_i))$$ and by the construction of \bar{T}_{n-1} , this is the same as $\bar{T}_{n-1}h(\bigoplus_{i=1}^m N_i)$. Collecting up these isomorphisms, we obtain an isomorphism $$\overline{T}_{n-1}(M) \approx \overline{T}_{n-1} h \left(\bigoplus_{i=1}^{m} N_i \right).$$ We will write $N = \bigoplus_{i=1}^{m} N_i$ for short and note that $\tau^{n-1}(N) = 0$. Now from localisation theory one obtains the following result (cf. Popescu [26], page 172, 4.3.9): Any morphism of C/A can be written as $T(s_2)^{-1}T(f)T(s_1)^{-1}$ where s_1 and s_2 are invertible modulo A (i.e., each has its kernel and cokernel in the localising subcategory A), s_1 is a monomorphism and s_2 is an epimorphism. Interpreting this in our situation we obtain a representation of the isomorphism $T_{n-1}(M) \to T_{n-1}h(M)$ in $pro(C)/\mathbb{E}(C_{n-1})$ as the image of morphisms $$M \stackrel{s_1}{\longleftarrow} M' \stackrel{f}{\longrightarrow} N' \stackrel{s_2}{\longleftarrow} h(N),$$ and since the result is an isomorphism, f must also have Kerf and Cokerf in $\mathrm{E}(C_{n-1})$. s_1 is a monomorphism, so M' satisfies $\tau^{n-1}(M')=0$ and is in $\mathrm{E}(C_{n,p.f.g.})$. s_2 is an epimorphism, but $Kers_2 \in \mathrm{E}(C_{n-1})$ and, since $\tau^{n-1}(h(N))=0$, $Kers_2=0$ and s_2 is itself an isomorphism. We thus have a diagram $$M \stackrel{s_1}{\longleftarrow} M' \stackrel{f}{\longrightarrow} h(N)$$ or at least we may replace our original diagram by this one. We will show that s_1 and f satisfy the conditions of Lemma 6.3 for k=n-1 and hence induce isomorphisms of $\lim_{n \to \infty} {inm \choose n} M$ with $\lim_{n \to \infty} {inm \choose n} M'$, and of the latter with $\lim_{n \to \infty} {inm \choose n} M$ for all $i \ge n+1$. Since $$\underline{\lim}^{(i)}h(N)=0 \quad \text{for all } i,$$ this will complete the proof for this special case. Since each $Cokers_1(i)$ is a quotient of the corresponding M(i) which is p.f.g. in the first sense (i.e., $T_{n-1}(M)$ has finitely many simple summands and each quotient of M(i) in C_{n-1} is p.f.g.), we have that $Cokers_1$ is in $\mathbb{E}(C_{n-1,p.f.g.}) \subset L^{(n-1)}$, by the inductive assumption. $Kerf \subset M' \subset M$ and hence must be zero (recall $\tau^{n-1}(M') = 0$). Finally, h(N) is p.f.g. and so Cokerf is in $\mathbb{E}(C_{n-1,p.f.g.})$ and thus in $L^{(n-1)}$. Applying 6.3 as indicated shows that M is in $L^{(n)}$. Now, if we suppose, more generally, that M is such that each $T_{n-1}(M(i))$ is a direct sum of finitely many simples, then M is the special direct limit of objects of the kind already
considered, so an application of 6.2 will do the trick. If M is in $\mathrm{E}(C_{n,p,f,g,})$ and $\tau^{n-1}(M)=0$, then each $\tau^n_1(M/\tau^n_\alpha(M))$ is as above and hence is in $L^{(n)}$ and the use of 6.1 for non-limit ordinals and 6.2 for limit ordinals completes this case to show M is in $L^{(n)}$. Finally, if M is anything in $E(C_{n,p,f,g})$, then $r^{n-1}(M)$ is in $E(C_{n-1,p,f,g})$ and hence in $L^{(n-1)}$. A long exact sequence argument corresponding to the short exact sequence $$0 \longrightarrow \tau^{n-1}(M) \longrightarrow M \longrightarrow M/\tau^{n-1}(M) \longrightarrow 0$$ shows $$\lim_{n \to \infty} {(i)} M \approx \lim_{n \to \infty} {(i)} M / \tau^{n-1} (M)$$ for $i > n$ and as objects of the form $M/r^{n-1}(M)$ have already been handled, M is in $L^{(n)}$ and the proof is complete. COROLLARY 6.10. Let M be a projective system of Noetherian objects of C such that KG-dim M(i) < n for all i, then $$\lim_{j \to \infty} f(j) M = 0$$ for all $j > n$. In particular if C = Mod-A where A is a right Noetherian ring, then any projective system M of finitely generated right A-modules of Krull dimension not greater than n satisfies $\lim_{n \to \infty} {in \choose n} M = 0$ for i > n. #### APPLIC ATIONS. There are many uses in the literature of the main result in the case where n=0 so all the modules are Artinian. It thus seems likely that there will be a rich play off when the possibility of extending these results has been investigated; this seems by no means easy, as often, unfortunately for thoughts of applications for n>0, the Artinian condition occurs naturally from the start. Much work remains to be done in this area. Given this we will limit ourselves to one «canonical» application. This particular application has received the same use many times as it requires little preparatory work. COROLLARY 6.11. Let A be a commutative ring, then $\operatorname{Ext}_A^i(M,N)=0$ for all flat A-modules M, all A-modules N which are p.f.g. of Krull dimension $\leqslant n$ and for all i > n. PROOF. One can represent M as a direct limit of finitely generated free modules $M = \lim_{n \to \infty} F_n$; now use the spectral sequence with $$E_1^{p,q} = \underline{\lim}^{(p)} Ext_A^{(q-p)}(F_{\alpha}, N) \Rightarrow Ext^n(\underline{\lim} F_{\alpha}, N)$$ (cf. Jensen [21], 4.2, page 35). $$Ext^{(q-0)}(F_{\alpha}, N) = 0$$ if $q \neq p$ and is a finite direct sum of copies of N if q=p, hence $E_I^{p,q}=0$ unless p=q and, by 6.9, unless $p\leqslant n$. The result follows by the usual sort of spectral sequence collapse. REMARK. For n=0, Jensen fits this sort of result into a set of equivalent conditions for M to be a finite product of complete local rings (Jensen [21], page 68, Theorem 8.1). This, of course, raises the interesting possibility of classifying Noetherian commutative rings A via the condition: $\lim_{i \to \infty} {^{(i)}M} = 0 \quad \text{for all projective systems of A-modules $M = \{M_{\alpha}\}$ of finite type and for all $i > n$.}$ Clearly if KG-dim $A \le n$, then this follows from 6.10, but what if KG-dim $A \ge n+1$? For n=0, this problem is tackled by Jensen's Theorem. Some of his implications seem to generalise, but others do not. Above all one needs to know what sort of condition to put in place of «finite product of complete local rings». Department of Mathematics University College CORK. Republic of IREL AND. #### REFERENCES. - M. ARTIN and B. MAZUR, Etale Homotopy, Lecture Notes in Math. 100, Springer (1969). - 2. A. DELEANU and P. HILTON, Borsuk shape and Grothendieck categories of pro-objects, Math. Proc. Camb. Phil. Soc. 79-3 (1976), 473-482. - P. DELIGNE, Cohomologie à support propre et construction du foncteur f[!], Appendix to Hartshorne: Residues and duality, Lecture Notes in Math. 20, Springer (1966). - 4. M. DEMAZURE and P. GABRIEL, Groupes algébriques, Tome 1, Masson-North Holland, 1970. - 5. S.E. DICKSON, A torsion theory for abelian categories, Trans. A.M.S. 121 (1966), 233-235. - 6. J. DUSKIN, Pro-objects (after Verdier), Sém. Heidelberg-Strasbourg 1966-67, Exposé 6, I. R.M. A. Strasbourg. - 7. D. EDWARDS and H. HASTINGS, Čech and Steenrod homotopy theories, Lecture Notes in Math. 542, Springer (1976). - 8. P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448 (Thèse, Paris, 1961). - P. GABRIEL and M. ZISMAN, Calculus of fractions and homotopy theory, Erg. der Math. 35, Springer, 1967. - 10. P.GABRIEL and R.RENTSCHLER, Sur la dimension des anneaux et ensembles ordonnés, C.R.A.S. Paris, Série A, 265 (1967), 712-715. - 11. R. GORDON and J.C. ROBSON, Krull dimension, Mem. A.M.S. 133. - R. GORDON and J. C. ROBSON, The Gabriel dimension of a module, J. Algebra 29 (1974), 459-473. - 13. A. GROTHENDIECK, Techniques de descente et théorèmes d'existence en Géométrie algébrique, Sém. Bourbaki 195 (1960). - 14. L. GRUSON and C.U. JENSEN, Modules algébriquement compacts et foncteurs $\lim_{i \to \infty} (i)$, C.R.A.S. Paris 276 (1973), 1651-1653. - 15. L. GRUSON and C.U. JENSEN, Sur l'annulation de $\lim_{i \to \infty} (i)$, Mat. Inst., Copenhagen University (1973). - 16. M. HACQUE, Eléments de la théorie de la localisation, Notes d'Enseignement (D.E.A.), Dépt. Math., Univ. Lyon, 1 (1970). - 17. M. HACQUE, Caractérisations générales des localisations, Publi. Dept. Math. Lyon 7-4 (1970), 45-103. - 18. A.G. HEINICKE, Triples and localisations, Canad. Math. Bull. 14-3 (1971), 333-339. - 19. P. HILTON and U. STAMMBACH, A course in homological Algebra, Graduate Texts in Math. 4, Springer, 1970. - 20. C.U. JENSEN, On the vanishing of lim (i), J. Algebra 15-2 (1970), 151-166. - 21. C.U. JENSEN, Les foncteurs dérivés de lim et leurs applications en Théorie des modules, Lecture Notes in Math. 254, Springer (1972). - J. L AMBEK, Torsion theories, additive semantics and rings of quotients, Lecture Notes in Math. 177, Springer (1971). - 23. O. A. L AUDAL, Sur la limite projective et la théorie de la dimension, Topo. et Géo. Diff. V (1961). - 24. S. MACLANE, Categories for the working mathematician, Graduate Texts in Math. 5, Springer, 1970. - 25. U. OBERST, Duality theory for Grothendieck categories and linearly compact rings, J. Algebra 15 (1970), 473-542. - N.POPESCU, Abelian categories with applications to rings and modules, London Math. Soc. Monographs 3, Academic Press, 1973. - T. PORTER, Abstract homotopy theory in procategories, Cahiers Topo. et Géo. Diff. XVII-2 (1976), 113-125. - 28. T. PORTER, Coherent prohomotopy theory, Idem XIX-1 (1978), 3-46. - 29. T. PORTER, Coherent prohomotopical algebra, Idem XVIII-2 (1977), 139-180. - 30. T. PORTER, Stability of algebraic inverse systems, I: Stability, Weak stability and the weakly stable socle, Fund. Math. 100 (1978), 17. - 31. T. PORTER, Stability of algebraic inverse systems, II: Purity and localisation, J. Pure and Appl. Algebra 7 (1976), 133-143. - T. PORTER, Stability results for algebraic inverse systems, Proc. Royal Irish Acad, Section A, 76-9 (1976), 79-83. - 33. T. PORTER, Torsion theoretic results in procategories I, II, III, Proc. Royal Irish Acad. 76 A (1976), 145-172. - T.PORTER, Quelques résultats sur les anneaux semi-noethériens, Bull. Acad. Polon. Sci. 25 (1976), 829-834. - 35. D. QUILLEN, Homotopical Algebra, Lecture Notes in Math. 43 (1967). - 36. J.E. ROOS, Bidualité et structure des foncteurs dérivés de <u>lim</u> dans la catégorie des modules sur un anneau régulier, C.R.A.S. Paris 254 (1962). - 37. H.B. STAUFFER, A relationship between left exact and representable functors, Can. J. Math. 23-2 (1971), 374-380. - 38. H.B. STAUFFER, Completions of abelian categories, Trans. A.M. S. 170. - 39. B. STENSTRÖM, Rings and modules of quotients, Lecture Notes in Math. 237. - J.-L. VERDIER, Equivalence essentielle des systèmes projectifs, C. R. A. S. Paris 261 (1965), 4950-4953.