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TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS

by Andrée and Charles EHRESMANN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XIX -1 (1978)

INTRODUCTION.

A topological ringoid A is an A b-category (category enriched in the

category of abelian groups) A equipped with a topology such that the under-

lying category be a topological category (in the sense category internal to

Top ) and that the addition be also continuous. Topological ringoids arise
in several problems of Differential Geometry: for instance the category of

1-jets from a differentiable manifold into itself  is &#x3E;&#x3E; a topological ringoid ;
other topological ringoids are naturally associated to vector bundles.

If A and A’ are topological ringoids and if a is a  stable &#x3E;&#x3E; set of

subsets of A , we construct a topological ringoid A’10 9 A whose underlying
A b-category is the tensor product A’ OA ( it is known [10] that Ab-Cat ad-

m its a canonical monoidal closed structure) . The continuous additive func-

tors from A’Od A to a topological ringoid A" are in 1-1 correspondence
with the continuous additive functors from A’ to the topological ringoid

Hom 9 ( A , A " ) of continuous additive functors from A to A" , equipped with

the d-open topology. This answers a question unsolved in [17].

One of the main results gives weak enough conditions on the sets

a and Q’ for the existence of an  associativity &#x3E;&#x3E; morphism or equivalence

(-Od,A’)OdA -&#x3E;Od’Od(A’Od,A). As a by-product, monoidal closed

structures are defined on the category Rd T of topological ringoids, on the

subcategory of Hausdorff ringoids and on the category T Ab-Cat (where TAb

is the category of topological abelian groups).
Several authors [11, 12 , 16] have given general existence Theorems

for monoidal closed structures on a category. But these « global» structures

are rather scarce on categories related to Topology. So there is a need for

« partial» tensor products, more adapted to a prescribed geometrical or topo-

logical situation ; such problems were the motivation for this paper.
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1. TENSOR PRODUCTS OF TOPOLOGIES.

The category Top of topological spaces is not cartesian closed.

To remedy this hindrance several solutions have been proposed:
1° to extend Top into a cartesian closed category, e. g. the category

of Choquet pseudo-topologies [7], the category of limit spaces [2,8 , the

category of Spanier quasi-topologies [21];
2° to restrict Top , e. g. by considering the category of Kelley spaces

[13] which is cartesian closed but in which the product is different from

the product in Top .
On Top itself, there are monoidal closed structures, associated to

tensor product topologies defined on the product set. This is done in [1],
from which we gather here some results used in the sequel.

A. o--open topologies on functional spaces.
Let ( E , T ) be a topological space and Q a set of subsets I of E

satisfying the axiom :

(a) Each point of E belongs to at least one I E d .

If (E’, T’) is a topological space, we denote by Cg ( T , T’) the

set C (T , T ’ ) of continuous maps f: T - T ’ from T to T ’ , equipped with

the a-open topology, which is generated by all the sets

where E E d and U’ is open in T.

REMARK. In [1], CarT, T’) is denoted by CarT’, T) ; we come back here
to the more usual notation.

There exists ([1], page 12 ) a functor Cd (T,-): Top - Top asso-

ciating to g : T’-&#x3E; T" the continuous map

which sends f: T - T’ to g o f : T f-&#x3E;T ’g-&#x3E;T".

B. a-product of topologies ( [ 1], page 23 ).
With the same hypotheses, we define on the product set E’ X E a to-

pology, called the a-product of ( T’, T) , and denoted by T’x a T ( instead
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of T’ Od T in [1] ). It is the finest topology T on E’ x E such that:

1° For each x’ in E’ we have the continuous map

2° For each E Ed, the insertion from E’ x E to E’ X E is continuous

from T’ x ( T /E into T (where Tli is the topology induced by T on 2).

The open sets of T’ Xd T are the subsets of E’ x E containing,
for each point (x’, x) of W:

1° a set {x’} x U, where U is a neighborhood of x in T ,
2° for each Ea d a set 1/’x V , where is a neighborhood of x in Tli

and v’ a neighborhood of x’ in T’.

T’ xd T has the following «universal property» : If (E" , T") is a

topological space, a map f : E’X E - E" is continuous from T’X, T to T"

iff it satisfies the two conditions :

1 ° For each x’ in E’ , we have the continuous map

2° For each l fa, the restriction f / E’ x E: T’xC ( T/E)-&#x3E; T "is conti-

nuous 

In particular, T’xaT is finer than the product topology T’ x T, so

that it is Hausdorff if so are T and T’.

EXAMP L ES. 1° If Q is the set s of all the subsets with one element of E ,

then Tlxs T is the so-called asterisk topology, considered by several au-

thors [5,6, 20], and which renders continuous the  separately continuous »

maps. We get the same topology if we take for a the set of all finite sub-

sets of E .

2° If E fa, then T’ xd T - T’x T.
3° If Q is the set c of all (Hausdorff) compact subspaces of T , we

obtain the c-product T’Xc T . When T is locally compact, we have :

REMARK. In [22] other topologies are defined on E’ X E by specifying not

only a set Q of subsets of E but also a set Q’ of subsets of E’.
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C. c-stable sets.

Let (E, T ) be a topological space and a a set of subsets of E .

We say a is c-stable (c(T)-stable in [1], page 14) if it satisfies the axi-
om ( a ) above and:

(b) for each E E d , the topology T/E is compact and each x E E admits

a basis of neighborhoods in Tli formed by elements of a .

For example, s and c are c-stable.

THEOREM 1 ([1], page 25- 27). I f g is c-stable, the functor Cd. ( T, -) from
Top to Top admits as a left adjoint the functor -Xa T : Top , Top , associat-

i n g g x ldT : T’xd T -&#x3E; T" xd T to g : T’ -&#x3E; T " .

In other words, there exists a canonical equivalence

between functors from Top to Set . More precisely :

THEOREM 2 ([1], page 30). Suppose a is c-stable and a’ is a c-stable

set of subsets of the topological space (E’, T’). Then

is c-stable in (E’x E, T’Xu T) and the canonical equivalence above lifts
into an equivalence

between functors from Top to Top .

Theorems 1 and 2 imply the following « associativity » result :

THEOREM 3 ([1], page 32). With the assumptions o f Theorem 2 there exists
a canonical equivalence between functors from Top to Top :

COROLLARY. There exist homeomorphism:

and

defined by for any topological spaces
and
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D. Monoidal closed structures on Top and its subcategories.
Given a topological space (E, T ) and a c-stable set Q on it, we

have constructed functors - x a T and C a (T,-) from Top to T op . Is it pos-

sible to «glue together &#x3E;&#x3E; such functors to obtain a monoidal closed structure

on Top or on subcategories of Top ?

Suppose given a full subcategory S of Top containing at least a

one-point topological space, and a map d (-) associating to each object

( E , T ) of S a c-stable set d ( T ) of subsets of E such that

(c) For each f: T , T’ in S, we have f (E)E d(T’) for any E Ed ( T ) .

EXAMPLES. 1 ° The map s associating to each topological space the set

of its one-point subsets satisfies ( c ) with respect to Top .
2° The map c associating to any topological space the set of its com-

pact subsets satisfies ( c ) with respect to the subcategory H Top of Haus-
dorff spaces, but not with respect to Top itself.

THEOREM 4. lf T’xd. (T) T and Ca(T)(T, T’) are in S for any objects T
and T’ o f S, then S admits a non associative (in general) monoidal clos-
ed structure whose tensor product x a(-) extends the functors - x a(T) T: S -&#x3E; S

and whose internal Hom functor Cd(-) extends the functors

The tensor product always admits as a unit the one-point topology.

COROLLARY 1. Top is a symmetric monoidal closed category Tops when
equipped with the tensor product s and the internal Hom Cs .
COROLLARY 2. HTop becomes a monoidal closed category:

1 o H Tops when equipped with - Xs - and Cs (- , -);
20 H Topc when equipped with - xc - and Cc (-, -).

The tensor product - Xc- on HTop is not symmetric, while - Xs- is.

Let S satisfy the assumptions of Theorem 4 and let 5’ be a full co-

reflective subcategory of S containing a one-point topological space.

COROLLARY 3. If T’Xa(T)T is in S’ when T and T’ are in S’, then S’

is a non associative monoidal closed category for the restriction of the ten-
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sor product x 9 (-) and the internal Hom: where

k is the coreflector.

As an application of this last corollary, we consider the full sub-

category Ke of HTop whose objects are the Kelley spaces (also called

compactly generated spaces ) ( see [13,15] ).

THEOREM 5. Ke is a cartesian closed category and the product of ( T’, T )
in Ke is identical with T’Xc T .

P ROO F. It is well-known that Ke is a coreflective subcategory of H Top ,
the coreflector being the Kelleyfication functor K: HTop - Ke . If we prove

that T’xc T is a Kelley space for any Kelley spaces (E, T ) and (E’, T’),
it will result from Corollaries 2 and 3 that Ke is a monoidal closed category

for the tensor product - Xc - and the internal Hom: K o Cc . In fact, we shall
prove that T’Xc T is identical with the product T’ o T of ( T’, T) in Ke ,
so that Ke is cartesian closed ( see also [13] ).

- Indeed, a subspace W of T’Xc T is open iff:

are open in the topology induced by the product topology T’ xT, for each

point x’ of E’ and each compact B of T . Now, {x’}xT and T’xB are

Kelley spaces [13] so that Wx, and WB are open iff their intersection with

each compact of {x’}xT and of T’x B are open. Hence W is open in the

topology T’ Xc T iff its intersection with any B’x B , where B’ is a compact
of T’, is open. But this is exactly the definition of the open sets for the

Kelley product

2. TENSOR PRODUCTS OF TOPOLOGICAL RINGOIDS.

A. Monoida I c losed structure on A b Cat .

The category Ab of abelian groups has a well-known monoidal clos-

ed structure. The tensor product G’ O G of the abelian groups G’ and G is

their tensor product as Z-modules.

From general results [10], it follows that the category A b Cat of A b-
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categories admits a monoidal closed structure which we recollect briefly for

later use.

Ab-categories ( i. e. categories enriched in Ab ) are variously nam-

ed ; to keep the idea of «rings with several objects » [19] with a shorter na-

me, we call them ringoids (annoïdes in French [3]) and we reserve the

often used name «additive categories &#x3E;&#x3E; for those ringoids admitting finite pro-
ducts (as in [3]). An A b-category may be defined in several ways, the

simplest one being probably the data A of a category A* and of a lifting
of its Hom functor A * X A’- Set into a functor

We denote by Ao the set of objects of A , i. e. of A*, by A+ the groupoid

coproduct ( in Cat ) of the abelian groups A ( e, e’), for any objects e and

e ’ of A , and by 0,,e’ the zero of A ( e , e’) . The couple (A*,A+) entirely
determines the ringoid A .

We denote by Rd (shorter than A b-Cat ) the category of ringoids.

To the ringoid A is associated [3] the horizontal ringoid 00 A of
commutative squares of A*, whose multiplication is :

and the vertical ringoid B A ; their couple 0 A is called the double ring-
oid o f squares o f A .

if A and A’ are ringoids, we denote by Hom(A, A’) the ringoid of

additive functors from A to A’ . The morphisms of this ringoid, i. e. the nat-

ural transformations between additive functors from A to A’ , are identified

[3] with additive functors from A to 8 A , by identifying

0 : F ===- F ’: A -+ A’

with the additive functor (D : A -&#x3E; 8 A’ which sends a : e -&#x3E; u in A onto the

commutative square
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This defines the « internal» Hom of the closed category Rd .

The tensor product in Rd associates to the ringoids A and A’ the

ringoid A’ O A whose set of objects is Ao x A0, the abelian group from the

object ( e’, e) to (u’, u) being the tensor product group

The canonical bi-additive functor J : (A’, A -&#x3E; A’ O A is defined by

J (a’, a) = a’Oa for any morphisms a’ of A’ and a of A .

The image J ( A’ x A )  additively generate s » the ringoid A’ O A .

The additive functors from A’ O A to a ringoid A " are in 1-1 cor-

respondence with the bi-additive functors from (A’, A) to A", and also with

the additive functors from A’ to Hom(A , A"). The canonical isomorphism

maps F : A’-&#x3E; Hom( A, A") onto the additive functor sending a’Øa onto

the diagonal of the square F ( a’)( a) =

for a : e - u in A and a’: e ’ - u’ in A’.

B. Topological ringoids.
Ringoids may also be considered as sketched structures [4] : indeed

there exists a projective cone-bearing category, the sketch of ringoids, who-
se realizations into Set are &#x3E;&#x3E; the ringoids [18] . The realizations of this

sketch into Top are called topological ringoids.
A topological ringoid A is a couple (A, T) of a ringoid A and of
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a topology T on the set of morphisms of A , such that:

1° (A* , T ) is a topological category (in the sense: category internal

to Top , i. e. the domain, codomain and composition maps are continuous

[8  ); let To be the topology induced by T on Ao .
2° (A+, T ) is a topological groupoid (hence the addition and the op-

posite map are continuous); let 7B be the topology induced by T on the

set At of objects of A+, which is the set of 0-morphisms of A .
3° The continuous map 0e e’ l-&#x3E; ( e , e’) from To to To X To is a ho-

meomorphism.

These conditions imply that A ( e, e’) becomes a topological group
for the topology T ( e , e’) induced by T .

EXAMPLES. 1 ° A topological (unitary) ring is a topological ringoid, with

only one object.
2° If M is a differentiable manifold, the topological category J 1 ( M) of

I -jets from M to M underlies a topological ringoid [9].

3° To a vector bundle is associated the topological ringoid of homo-

morphisms from fibre to fibre.

4° If E is a set, we have the ringoid A of couples of elements of E

whose set of objects is E , the group A ( e, e’) being reduced to its zero

( e , e ’) for any pair of objects. If T is a topology on E , then ( A , T X T)
is a topological ringoid, called the topological ringoid o f pairs of T.

General results on sketched structures ( see also [18] ) assert that

the category of topological ringoids, denoted by RdT, admits both projec-
tive and inductive limits. The faithful functors from RdT to Rd and to Top
preserve projective limits, and the first one is an initial-structure functor

[23] (topological functor in the terminology of Herrlich [14] , which is con-

tradictory with ours). Rd T is the category of 1-morphisms of a 2-category.

Let A = ( A , T) be a topological ringoid. If we equip the ringoids
of squares of A with the topology o T induced by the product topology T4,
we get two topological ringoids ID A and B A , whose couple is the topo-

logical double ringoid of squares of A .



96

Let A’ =(A’, T’) be a topological ringoid ; we denote by Hom (A , A’)

the subringoid of Hom ( A, A’) of continuous additive functors from A to

A’ . Let Q be a c"stable set of subsets of A . Identifying a morphism F of

Hom (A,A’), i. e. a continuous additive natural transformation, with the cor-

responding continuous additive functor F: A - B A’ , we equip Hom ( A, A’ )

with the topology induced by CarT, o T’) and get the topological ringoid [17]

Homd (A,A’)."We have the endofunctor Hom d(A, -) of Rd T such that

Hom d (A,F’):Hom d(A,A’)-&#x3E; Hom d (A, A") : Fl-&#x3E; F’o F,

if F’ : A’ -&#x3E; A" , where o is the total law of the 2-category on RdT .

C. Tensor products of topologiccrl rings.
Let A = ( A, T) and A’ = (A’,T’) be topological ringoids and Q be

a set of subsets of A whose union is A .

If A" = (A ", T") is a topological ringoid, we say that

is a d-continuous bi-additive functor if it is a bi-additive functor from (A ’,A)
to A" which is continuous from T’xdT to 7"B

THEOREM 1. 10 There exists a finest topology T on the ringoid A’OA,
such that (A ’ O A , T) be a topological ringoid, denoted by A’Od A? and

a a-continuous bi-additive functor.
20 The a -continuous bi-additive functors from ( A’ , A)a to A" are in

1-1 correspondence with the continuous additive functors from A’ Od A to

A", for each topological ringoid A" . 

P ROOF. Let L be the class of all or-continuous bi-additive functors

Each F in L determines the additive functor

Let i be the initial topology associated to the family ( F’, T" ) F E L ( i.e.

the coarser topology on A ’OA such that F’ :T -&#x3E; T" be continuous for any
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F in L . The forgetful functor Rd T - Rd being an initial-structure functor,
and the functor Rd T-&#x3E; Top preserving initial-structures, (A’ O A,T) is a

topological ringoid, A’ ø a A, which is the initial topological ringoid asso-
c iated to the family (F’, A")F E L. So by construction, each F in L de-

termines the continuous additive functor F’: A’ O d A -&#x3E; A" .

- L et f : ( A " A )-&#x3E; A’ O A be the canonical bi-additive functor. Each F

in L being continuous from T’ x d T to T " and factorizing through J , the

universal property of the initial topology implies that J : T’xd T -&#x3E; T is con-

tinuous ; it follows that T is the finest ringoid topology such that

be a continuous bi-additive functor J .

COROLL ARY 1. With the notations of Theorem 1, the topology To induced
on Ao = A’ X Ao by A’Oa A is finer than the topology To induced by T’x T
0

and coarser than that T"0 induced by T’ xd T . Hence if To and To are Haus-
dorff (resp. discrete) topologies, so is T0.

P ROO F. ,j : T ’Xa T -&#x3E; T being continuous, its restriction to Ao which is the

identity on Ao is continuous from To to To . On the other hand, let B be

the topological ringoid of pairs of To ( Example 4 above). There exists a

bi-additive functor G : ( A’, A) -&#x3E; B which maps

if a: e - u in A and a’: e’-&#x3E; u’ in A’ . It is continuous from T’ X T to

T’0 x T"0 ( since the maps domain and codomain are continuous in A’ and

in A ), and a fortiori cy -continuous. Hence G factors through a continuous

additive functor G’: A ’Od A - B ; the identity of Ao being the restriction

of G’ to Ao , it is continuous from To to To . Finally, T"0-&#x3E; T0 -&#x3E; To .

EXAMPLE. If A and A’ are topological rings, so is A’ O d A .
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THEOREM 2 (Unitarity). Let Z be the ring of integers, with the discrete

topology. Then

PROOF, We shall construct a g -continuous bi-additive functor

and prove that each g -continuous bi-additive functor from (Z, A)d factors

through it. From the universal property of ZOd A , it will follow that A is

isomorphic to this tensor product. Indeed, there exists a bi-additive functor

Since Z is discrete, the topology Z xd T is the coproduct of the topologies

({z}xT) Z E Z. The addition on A being continuous, each map

is continuous, so that H : Zxd.T-&#x3E; T is continuous.

- Let F: (Z , A )d -&#x3E; A’ be a a -continuous bi-additive functor. In particu-

lar, F (1, -) : A-&#x3E;A’ is a continuous additive functor. The composite

maps (z, a) onto

(we use the bi-additivity of F ), hence it is identical with F, and F fact-

ors through A .

- A similar method proves that A is isomorphic with Ags Z . ..

If F’ : A’ -&#x3E; A" is a continuous additive functor, the map sending
( a’, a ) onto F’(a’) O a defines a or -continuous bi-additive functor
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so that it factors through an additive functor

This determines an endofunctor - O d A of Rd T.

D. Some canonical isomorphisms.

THEOREM 3. I f A = ( A , T) is a topological ringoid and g a c-stable set

of subsets of A, then the functor -19, A is a right adjoint of the functor

P ROO F. We denote by J : (A’ , A )0, -* A’ O d A the canonical projection. Let

where A’=( A’, T’) and A"= (A ", T"), be a continuous additive functor.

Then G determines an additive functor from A’ to Hom ( A , A ") , hence a

unique additive functor G’: A’ O A -&#x3E; A " (universal property of the tensor

product) . The composite

defines a bi-additive functor. If we show that F is a -continuous, it follows

frorn Theorem 1 that G’ defines a continuous additive functor from A’ O d A ,
to A" , denoted by G’ .

- Indeed, by construction of Horn ( A , A" ) , we have the continuous map

As or is c-stable, this implies that the map (a’, a)l-&#x3E;G(a’)(a) is contin-

uous from T’xaT to o To. The diagonal map 6: o T " -&#x3E; T " is continuous so
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the map

is also continuous from T’xd T to T" ; this map is F . Hence F is Q -cont-

inuous. We have constructed a canonical bijection

whose inverse maps onto

where P is the «liberty morphism » defined by

Now we lift the canonical isomorphisms into topological ones. Sup-

pose o’’ is a c-stable set of subsets of A’ . For each topological ringoid A"

the a-continuous bi-additive functors F : ( A’ , A)d -&#x3E; A" are objects of the

ringoid Hom((A’,A)d, A"), whose morphisms from F to G are identified

with the d-continuous bi-additive functors F : ( A’ , A)d-&#x3E; BA" such that

( a and (3 being the domain and codomain maps). By this identification we

equip Hom ((A’, A)d, A") with the topology induced by Cd’xd(T’xdT, c T").
As d’xd is c-stable (Section 1), so is constructed a topological ringoid
denoted by Homg, ((A’ ,A)d ,A" ) .

Ibe consider the set d’Od of subsets of A’OA formed by the sets

and by the one-point sets {y}, where y is not in the image of the canonical

projection J : (A’,A)d -&#x3E; A’ 09 A .

THEOREM 4. I f a and a’ are c-stable, the 1-1 correspondence qo between

the a-continuous bi-additive functors from ( A’ , A )0, to A" and the conti-

nuous additive functors from A’10, A to A" extends into an isomorphism
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PROOF. 1° There is clearly a ringoid isomorphism 11 . We have to show that

it is an homeomorphism from the topology

to the topology

This will imply that Hom (A’10, A, A" ) equipped with S’ is a topological

ringoid, yet denoted by Hom d’Od(A’ QUA A" ) , and that TJ is a topological

isomorphism. (Remark that the existence of this topological ringoid is not

obvious a priori, since al Øa is not always c-stable, and the construction

of Hom d ( A , - ) uses the preservation of pullbacks by Cd (T, - ).)

is continuous. Indeed, it is sufficient to see that the image by 77 of each

elementary open set of S ; 

where U open in 0 T" and E’Ed’ , EEd, is open in S’. This is true, since:

30 71 : S I S’ is continuous. Indeed, the elementary open sets of S’ are

of the form

It suffices to show that the image by 7y of these sets are open sets in S.

From Part 2 :

i s open in 5 . We are going to show that n-1 ({y}, U&#x3E;) is a neighborhood
of each of its elements F . A s J(A’xA) additively generates A’OA , there
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exist such that

implies We have so that:

Since the addition of B A" is continuous, there exist open neighborhoods
U. 

i 
of F (xi) in 0 T", i = 1, ... , n , such that U1+ ... + Un C U . Each x i is

contained in a E. E d’ x d. Since d’’ x d is c-stable and F 1 ( Ui ) is an open

neighborhood of xi , there exist

Therefore the set is an open neighborhood of F in S . It

is included in n -1  {y}, U&#x3E; , because G E V implies

and so

A set Q of subsets of A is called rc-stable for A if it is c-stable

and if the images of each Yea by the maps domain a and codomain 0 of
A are in Q . For example such is the case if Q - s , or if Q = c and T is

a Hausdorff space.

If and are topological ringoids, we say
that F : ( (A" , A I)a I A )d-&#x3E; B is a (a’,a )-continuous tri-additive functor,
if F is a tri-additive functor, continuous from ( T" X d T ’ ) Xu T to S.

THEOREM 5. Let a be rc-stable for A and or’ be rc-stable for A’; then:

10 Each (d’ ,d )-continuous tri-additive functor factors through the ten -

sor product (A" 00,, A I ) 00, A .
20 There exists a continuous additive  associativity» functor:

which is an isomorphism if a I Øa is c-stable.
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PROOF. 1- Let F: ((A" A’)d’, A)d-&#x3E; B = (B, S) be a (a’,a )-continuous

tri-additive functor. We want to show the existence of the broken line in the

diagram (*):

in which J’ and J" are the canonical projections ; the composite H :

is a (a’ ,a)- continuous tri-additive functor. Since F is tri-additive, it det-

ermines the bi-additive functor G: ( An, A’) -&#x3E; Hom( A, B), which maps

( a", a’) onto the additive functor G (a ", a’): A , BB:

Suppose proven that G : (A", A’ )d’ -&#x3E; Homa (A , B) is a’- continuous. Then
it factors through a continuous additive functor

to which is associated by Theorem 3 the continuous additive functor

- Hence it suffices to prove that G: T"xd,T’-&#x3E; Ca (T, o S) is continuous.

Indeed, Q’ being stable by a , the map

is continuous. As - xa, T and - x. T are endofunctors of Top , we have the
continuous map
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Using the stability of or by a , we find that

is continuous. Let fB and gp be the similar maps with respect to B. These

maps determine the continuous map

from which follows the continuity of

20 We have the following diagram :

in which 11. is the homeomorphism (cf. Section 1 )

and J and J are the canonical projections ; by definition, J maps o’’ x d in-

to a’ Øa, so that

is continuous, where T is the topology of A’ 0 A . Therefore H’ :

is a (a’,a)- continuous tri-additive functor, and Part 1 implies that it factors

through H to give the continuous additive functor y .

30 Suppose that d’Od is c-stable. To prove that y is an isomorphism,

it suffices to prove that each (a’ ,a)- continuous tri-additive functor F as

above also factors through H’ . Indeed, by a method similar to that used in

Part 1 we associate to F the continuous additive functor
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such that K(a"): T’xdT -&#x3E; oS maps (a’, a) onto the square G(a", a’)(a )
drawn in Part 1. As CF’0(y is supposed to be c-stable, Theorem 3 associates

to the continuous additive functor

( where 71 is defined in Theorem 5 ) a continuous additive functor

whose composite with H’ is F .

COROLLARY 1. There exists an associativity isomorphism

PROOF. This follows from Theorem 5 applied in the case Q = s and a’ = s ,

in which Q’ Od = s is c-stable. In this case there is a simple proof of Part

1 (and similarly of Part 3 ) . Indeed, given the diagram (*) above, F defines

a bi-additive functor

L is s -continuous, since the ( s, s) -continuity of F implies the continuity
of the maps :

since there exist , w ith

H ence L factors through H .

CO ROL L A R Y 2. I f a and a’ are rc-stable, and if Q’Od is c-stable, there

exist isomorphisms

E. g. they exist if a = s and Q’ = s .

P ROOF. oi is constructed from the identity of Horn ( A’ , Homa ( A , A " ) ) ,
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by repeated use of the adjunction and associativity» maps. Then o ’ is the

composite n-1 o w (cf. Theorem 4). As d’ Od is c-stable, (ù -1 is deduced

in a similar way from the identity of Homa Oa ( A’ Oa A , A" ) .

From Theorem 3 and Corollary 1 of Theorem 5, we obtain:

THEOREM 6. RdT admits a symmetric monoidal closed structure whose ten-

sor product Os extends the functors - Os A: RdT-&#x3E; RdT and whose internal
Hom extends the functors Homs ( - , .A ) .

3. HAUSDORFF RINGOIDS AND Top-RINGOIDS.

We study here two subcategories of RdT , a reflective one and a co-

reflective one.

A. Hausdorff ringoids.
A Hausdorff ringoid is defined as a topological ringoid A whose to-

pology T is a Hausdorff topology.

We denote by RdH the full subcategory of Rd T whose objects are

the Hausdorff ringoids. It is complete and cocomplete, and the forgetful func-

tors toward Rd and Top preserve projective limits.
General existence theorems prove that RdH is a reflective subcat-

egory of Rd T . Let A = ( A , T ) be a topological ringoid and P : A - A the

reflection morphism ; its restriction Po : Ao - Ao is onto : otherwise the res-

triction P’ : A - A’ of P to the full subringoid of A such that Ao - P( Ao)
could not factor through P though A’ be a Hausdorff ringoid.

THEOREM 1. I f A = (A, T) is a topological ringoid such that To be a Haus-

dor f f topology, then :
10 P : A -&#x3E; A = (A , T) is onto and Po : To -&#x3E; To is a homeomorphism.
20 I f a is a c-stable set of subsets of A , for each Hausdorff ringoid

A’ there is an isomorphism

where
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P ROO F . 1 ° Let B be the topological ringoid of pairs of To ( Example 4-2 ).

Its topological space of objects is To . The continuous additive functor:

admits a factorization

( since B is Hausdorff) , and its restriction to the objects

is an identity; hence the onto map Po: T0 -&#x3E; To is an homeomorphism (and

P will be chosen so that Po be an identity). It follows that P(A) is a Haus-

dorff subringoid of A , hence P ( A ) = A .

2° The canonical 1-1 correspondence E deduced from the universal pro-

perty of the reflection is an isomorphism, since it maps the set of elementary

open sets

 P (E) , U&#x3E;&#x3E;, where E E d and U open in 8 A’,

of Hom,5 ( A , A’) onto the set of elementary open sets of Hom, (A , A’ ) :

Let A = ( A , T) be a Hausdorff ringoid. Then 8 A is also a Haus-

dorff ringoid. If Q is c-stable on A , the a -open topology Ca (T, S) is a

Hausdorff topology if S is a Hausdorff topology. It follows that, for each

Hausdorff ringoid A’ , H oma (A , A’ ) is a Hausdorff ringoid ; hence the func-

tor Hom, (A, - ) admits as a restriction an endofunctor of RdH.

On the other hand let Q be a set of subsets of A whose union is A 

and let A’ be a Hausdorff ringoid. The tensor product A’ Od A is not ne-

cessarily a Hausdorff ringoid, but the set of its objects has a Hausdorff to-

pology (Corollary 1 Theorem 1-2). We denote by A’ 0 A the Hausdorff ring-
oid associated with A’09 A , and call it the Hausdorff g-tensor product o f
A’ and A . Theorem 1 asserts that the reflection morphism

is onto and that its restriction to the objects is a homeomorphism.
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A’ Od A solves the universal problem to render continuous additive

the a -continuous bi-additive functors from ( A’ , A )0, to Hausdorff ringoids.
We denote by - Od A the composite functor (where p is the reflector) :

From Theorem 3-2 and transitivity of adjunctions, we get:

THEOREM 2. If a is c-stable, the functor -Od A is a left adjoint of the
functor Hom, (A , ,-): RdH -&#x3E; RdH.

Let a’ be a c-stable set of subsets of A’ . Ve denote by d’ Od the

set formed by the P (E’OE), where E E a and E’ Ed’.

THEOREM 3. Theorems 2, 4 and 5 of Section 2 are yet valid if we replace in
them 0 by 0 and topological ringoid by Hausdorff ringoid.

PROOF. From Theorems 4-2 and 1, we deduce the isomorphism

The other results are proved as in Section 2.

COROLLARY. lo RdH admits a symmetric monoidal closed structure whose

tensor product 0s extends the functors - OSA and whose internal Hom is

a restriction of Homs . 
2o RdH admits a semi-associative monoidal closed structure whose

tensor product ec extends the functors - Oc A and whose internal Hom ex-
tends the functors Homc (A, - ):RdH -+ RdH.

B. Top-ringoids.
A Top-ringoid is the data consisting of a ringoid A and of a topolo-

gical group A(e, e’) on A(e, e’) for each couple (e, e’) of objects of A,

such that, for each triple ( e , e’, e") of objects, the composition map:

be continuous.
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To each topological ringoid A = ( A , T ) is associated the Top-ring-
oid obtained by taking A and on each group A ( e , e’ ) the topology induc-

ed by T ; this Top-ringoid entirely determines A if the topology induced

by T on the set Ao of objects is discrete.

Conversely, if (A , A ( e , e’) ) is a Top-ringoid and if we equip A

with the topology S coproduct of the topologies A ( e , e’) , we obtain a to-

pological ringoid in which the topological space So of objects is discrete.

Hence we identify the Top-ringoids with the topological ringoids whose to-

pological space of objects is discrete.

We denote by T-Rd the full subcategory of Rd T whose objects are

the Top-ringoids. It is a coreflective subcategory, the coreflection of A be-

ing the Top-ringoid associated above to A and the coreflection morphism

being defined by the identity of A .

Let A be a Top-ringoid and Q a set of subsets of A whose union

is A .

T H EO R EM 4. 1° A’ Od A is a Top-ringoid, for each Top-ringoid A’ .

20 I f a is c-stable, the functor - @or A : T-Rd , T-Rd admits as a right
adjoint the functor

where v is the coreflector.

P ROOF. Corollary 1, Theorem 1-2 asserts that the topological space of ob-

jects of A’Od A is discrete, so that A’Oor A is a Top-ringoid. The second

assertion comes from the transitivity of adjunctions.

COROLLARY. T-Rd is a symmetric monoidal closed category for the ten-

sor product restriction of Os and for an internal Hom extending the func-
tors HS (A ,-).

REMARK. The topological ringoids Hom d ( A , A’ ) are not Top-ringoids (in

general) since even the simplest of them m A is a Top-ringoid iff the topo-

logy of A is discrete.

Similar results for H Top-ringoids are deduced from A .
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C. Examples.

1 ° The category of topological rings TR is a full subcategory of the

category T-Rd of Top-ringoids. If A is a topological ring and a a set of

subsets of A whose union is A , the functor -Od A admits as a restriction
an endofunctor of TR . In particular, TR admits a symmetric monoidal (not

closed) structure whose tensor product is a restriction of Os and also a
semi-associative monoidal structure for the tensor product -Ott- obtained

by taking on each A the set rr of all its subsets.

20 A topological abelian group B may be identified with the Top-ring-
A A

oid B admitting only two objects u and u’ and such that B ( u , u’) = B and

B(u, u ) and B(u’, u’) are discrete groups with two elements.

Let Q be a set of subsets of B whose union is B . If B’ is a topo-

logical abelian group, by a method similar to that of Theorem 1-2 it is cons-

tructed a topological abelian group, denoted by B’O- B , such that each Q-
continuous bi-homomorphism from ( B’ ,B ) to a topological abelian group

B" factors through B’ øa B into a continuous homomorphism toward B" .

So is defined an endofunctor -Od B on the category TAb of topo-

logical abelian groups.

I f ff is c-stable, -Od B admits a right adjoint Homa (B,- ) such
that Hom.-(B,B") be the group of continuous homomorphisms from B to

B" , equipped with the topology induced by the d-open topology Ca ( B , B" ),
for each topological abelian group B" .

It follows that T Ab admits a symmetric monoidal closed structure

with tensor product - Os - and the internal Hom functor Homs ( - , - ) .
It also admits a symmetric semi-associative monoidal (not closed)

structure (TAb), for the tensor product -Ott-, where rr associates to B

the set of all its subsets. A bi-homomorphism from ( B’ , B ) is 77-continuous

iff it is continuous for the product topology B’ xB and it then factors through

B’O 7r B . Hence, the Top-ringoids may be identified with the (TAb)tt-cat-
egories ( categories enriched in (TAb)tt ).
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4. RINGOIDS IN A CATEGORY.

A realization A of the sketch of ringoids in a category X is called

a ringoid in(ternal to) X . Let RdX be the category of ringoids in X and

suppose X equipped with an intial-structure functor y : X -&#x3E; Set.

Then the methods and results of Section 2 may be generalized. More

precisely, let A be a ringoid in X ; it is entirely determined by the couple

(A, X), where A is the ringoid defined by the realization X o A and where

X E X° is the «object of morphisms » ( see [18] ).

1 ° If -&#x26; X is an endofunctor of X such that

we construct as in Theorem 1-2 an endofunctor -&#x26; A of RdX such that the

ringoid underlying A’ &#x26; A be A’OA.

2° To A is associated the double ringoid DA in X , over D A.

3° Let M ( X, -) be an endofunctor of X preserving pullbacks. If A’ is

a ringoid in X , the realization M (X, -) o A’ is a ringoid M (X , As in X .

Its object of morphisms is M(X, X’). We’ll suppose moreover that

In this case, M(X, 00 A’ ) admits a subringoid M ( A , A’) in X over the ring-

oid of morphisms from A to A’ ( whose morphisms are the F : A -&#x3E; BA’ ).

4° If M(X, -) is a right adjoint of -&#x26;X, then -&#x26; A admits a right ad-

j oint M ( A , - ) . If (X ,&#x26;,M (-, -)) is a monoidal closed category, the func-

tors -&#x26; A and M ( A , - ) extend to give a monoidal closed structure on RdX .

For instance, the ringoids in the cartesian closed category Ke ( see

Section 1) of Kelley spaces form a monoidal closed category. (Remark that

a Kelley ringoid is not necessarily a topological ringoid, pullbacks in Ke

differing from pullbacks in Top.) The ringoids in the categories of limit-

spaces, or of pseudo-topologies, or of Spanier quasi-topologies,... form also

monoidal closed categories.
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