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CAHIERS DE TOPOLOGIE Vol. XVIII-3 (1977)
ET GEOMETRIE DIFFERENTIELLE

PRINCIPAL HOMOGENEOUS OBJECTS
AS REPRESENTABLE FUNCTORS

by D. H. VAN OSDOL

INTRODUCTION.

. Let R be a ring with identity and 4 the category of unitary left

R-modules. Let X and II be in 4 ; then X XII represents the functor

4(';X)x4("n): AOP i S_e£§ .

More generally, let

i

be an exact sequence of R-modules. Does Y represent some functor, and

if so what is it?

Let G: A» A be the free R-module functor with €: G 4 the nat-
ural projection. Since p is onto and GX is free, there is a homomorphism
s: GX-> Y such that pos =¢X.If z: Z+ Y in 4 then

po(zoeZ - soG(poz))=10
so there exists a unique h: GZ » II such that
ioh =z0eZ - s0 G(poz).
Thus z gives rise to a pair of maps
poz:Z -+ X and h: GZ-11.
These are related in the following way. Since
Po(soeGX-s50GeX)=0,
there is a unique f: G2 X » II such that
iof =s0eGX-50GeX,

and one can show that
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2 D. H. VAN OSDOL

foG2(poz)=hoGeZ -koeGZ.
In addition, f is a one-cocycle, i.e.
foGeGX =foG2eX + foeG2X.
Thus if we define
D(Z,f)={(g,h)| g:Z~X, h: GZ~1I,
foG?g =hoGeZ-hoeGZ}

then there is a function (depending on s ) A4(Z,Y)>D(Z,f). In fact,
D(-.f) is a functor A°P » Sets and A(-,Y)> D(-,f) is a natural trans-
formation. In this case, it is a natural equivalence (see I.5).Thus to define
a homomorphism from Z into an extension of X by Il it is necessary and

sufficient to give two homomorphisms g: Z » X, h: GZ » Il such that
foG2g=hoGeZ-hoeGZ.

If X is a topological space and Il is a topological abelian group,

then X XII represents
Top(-, X)xTop(-,11): Top°P - Sets.

More generally let Y—L X be a principal homogeneous fibre bundle with
fibre II. Then there are an open cover {Ui} of X and homeomorphisms
‘I)i: UiXH - p'I(Ui) such that

po®; = the first projection p,,

and there exist fij U n U] > II such that
® (x,a)=®,(x, fi;. (x)+a)
for all x in U f\U]. and all ¢ in IT.
Then f = Hfij represents a Cech one-cocycle. If z: Z » Y, define
h:U(poz)1U,» 1

by taking the coproduct of the compositions
o’
z i p
hy:(poz J1U — p™!(U; ) —= U, xI —2~1I.

One can show that for u in (poz)'IUi n(poz)'IUl. we have

272



PRINCIP AL HOMOGENEOUS OBJECTS...

hi(u)-hi(u)=f;((poz)(u)).
Hence we have a function Top(Z,Y)» D(Z, f) where
D(Z,f)={(g,h)| g:Z+Y, h: Ug-l(U,)-1,
hi(u)-h (u)=f, (g(u)) for u eg'I(Ui)ng’I(Ui)} .

Once again this is a natural equivalence so that to give a map into the total

8

space of a bundle, it is necessary and sufficient to give a map Z —2— X
and maps g'I(Ui)——h—i—»ﬂ such that
hi(u)-h;(u)=f;;(g(v)) forall u in g'I(Ui)ﬁg'I(Ui).

To complete the analogy between this example and that of R-modules, we

leave it to the reader to define G and ¢ (see [2]).

It is the purpose of this paper to examine the relationships between
principal homogeneous objects (extensions) defining a cocycle f and the
functor D(-,f). The main results are 1.5, 1.6, IL.5 and I1.6. Theorem I11.6
is perhaps worthy of further consideration since it suggests a connection
between realization of one-cohomology classes and generalized descent
(for the standard theories of descent, see [3,4] ). In addition, I1.7 shows
that tripleableness is a sufficient condition for interpretation of H I by prin-
cipal homogeneous objects (a result of Beck [1]1), while IL.G indicates
that it is probably not a necessary condition. All of our results hold in case

G is a cotriple arising from a tripleable adj oint pair.

The author would like to thank Michael Barr, Robert Paré and Jack
Duskin ( especially the latter for communicating Proposition 6.6.3 of [2]) for
helpful conversations on the content of this paper. Some of the results were
first announced at the 1975 winter meeting of the American Mathematical So-

ciety.
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4 D.H. VAN OSDOL

1. COCYCLES, HOMOGENEOUS OBJECTS AND REPRESENTABLE FUNCTORS.
We assume from the outset that 4 is a category, G: A+ 4 is a

functor and € : G > 4 is a natural transformation such that ¢ is the coequa-

lizer of ¢ G and Ge.Let X be an object of 4 and Il an abelian group ob-

ject in 4, whose operations will be denoted additively.

I.1. DEFINITION. A one-cocycle (on X with values in II )is a morphism
f: 62X 11 such that :

foGeGX =foG2X +foeG2X
Given a one-cocycle f we define a functor D(-, f): A% » Sets as
follows. For Z an object of 4, .
D(Z,f)={(g.h)| g:Z~X, h: GZ 11, and
foG2g+hoeGZ =hoGeZ}.
Given z:Z'+Z in A, D(z,f) on (g, h) is (goz, hoGz) in D(Z',f) .

It is easy to check that this does indeed define a functor.

1.2. DEFINITION. A G-trivial lI-principal homogeneous object over X con-
sists of an object Y in 4, aright action p: YXII»Y of Il on Y (i.e.

a morphism p such that po(2z,0)= z and
po(po(z,al),a2)=po(z,a1+a2)

for morphisms z:Z-»>Y, a;,ay:Z > ﬂ ), a morphxsm p Y>X,and a mor-
phism s: GX » Y such that: T

v

P
i) YxI

Y —P X is a kernel pair diagram,

ii) pos =eX.

1.3. PROPOSITION. If (Y_E.X, p,s) is a G-trivial II-principal homogen-
eous object over X then diagram 1.2.i is a coequalizer, and there exists

aunique t: GY -+ Il such that po(soGp,t)=¢Y.
PROOF. Since

po(socp)='€XoGp =pocY

27%



PRINCIPAL HOMOGENEOUS OBJECTS... 5

and 1.2.i is a kernel pair, the existence of ¢ as asserted is guaranteed. Now

suppose z: Y » Z has the property that zop; = zop . Then we have

(205)oeGX =z0eYoGs =zopo(soGp,t)oGs =
:ZOPIO(SOGp,t)OGS = z050GpoGs =(zo0s)o GeX,

so there exists a unique
z':X~>Z suchthat z'0eX = zos

(recall that € is the coequalizer of ¢G and Ge¢ ). A computation similar

to that just given shows that
z'opoeY =zoe?Y

and thus z'op = z . Since pos =¢X is a coequalizer, p is an epimorphism

and hence z' is the unique morphism such that z'op = z.
QED

1.4. PROPOSITION. If ( Yy P X,p,s ) is a G-trivial lI-principal homogen-
eous obj ect over X then there is a unique f: G2 X > II such that
po{soGeX,f)=5s0eGX.
Moreover f is a cocycle and
foG?p+toeGY =toGeY,
i.e. (p,t)isin D(Y,f).
PROOF. The existence of f is assured by I.2.i and the fact that
po(soGeX)=po(soeGX).
That f is a cocycle follows from I.2.i and the verification that
po(soGeXoG2eX,foG%X+ foeG2X)=
po(soGeXoG?eX, foGeGX).
The last assertion is proved analogously, since
po(soGeXoG?p, foG2p +1t0eGY) =
po(soGeXoG2p, toGeY).

QED

1.5. THEOREM.If (Y 1 X,p,s ) is a G-trivial I-principal homogeneous
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6 D. H. VAN OSDOL

object over X and f: G2X 1l is the cocycle constructed in 1.4 then Y
represents D(-,f).

PROOF. Given z in A(Z,Y ) define a(z)=(poz, toGz). Then a(z)is

inD(Z,f) byl.4, and a is obviously a natural transformation
a:4(-,Y) » D(-,f).
Given (g,h) in D(Z,f) we have:
po(soGg, h)oGeZ=po(s0GeXoG2g, hoGeZ)=
=po(soGeXoG2g, foG2g +hoeGZ) =
=po(po(soGeX, f)oG2g, hoeGZ) =
=pof(s0oeGCXoG?g, hoeGZ)=po(soGg, h)oeGZ,
so there exists a unique
z:Z-Y suchthat zoeZ =po(soGg, h).
Define B(g,h)=2; then B:D(Z,f)> A(Z,Y ). A simple computation
shows that
pPozoeZ =goeZ, so pofB(g,h)=g.

Thus to prove that a o B(g, k) =(g,h) it suffices to see that to Gz = h.
But
po(soGg,toGz)=po(soGp,t)oGz=¢Y oGz =

=zo0eZ =po(soGg,h),
so 1.2.i implies to Gz = k. Finally
(Boa(z))oeZ =B(poz,toGz)oeZ =
=po(soGpoGz,toGz)=€¢YoGz=20¢Z,

so Boa(z)=1z.
QED

1.6. THEOREM. If f: G2X 51l is a cocycle and Y represents D(-, f ),

then there exist
p: YXII > Y, p:Y> X and s:GX > Y

such that (p,p,s) is a G-trivial I-principal homogeneous object over X .
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PRINCIPAL HOMOGENEOUS OBJECTS...

Moreover the cocycle which it defines is exactly f.

PROOF. Let [-,-1:D(-,f) - A(-,Y) be a natural equivalence. There
exist p: Y > X, t: GY > 11 such that [p,¢] is the identity on Y and we

get the following computational rules :
i) ifz:Z'>Z then, forany (g,h) in D(Z,f):
lg,hloz=[goz, hoGz];

ii) if (g,h) isin D(Z,f) then g =polg.h] and h =10 Gl g, k] ;
iii) if y: Z-> Y then y =[poy, to Gyl .

Moreover since f is a cocycle, (e¢X,f) isin D(GX, f) and, by ii,
poleX,fl=€X.
Hence for s = [e X, f], I.2.ii is satisfied. Next notice that
(popy, toGp; +elloGpy )
isin D(YXIL, f), and let
p=[popy, toGp, +ello Gpyl.

By ii, pop =popy, so suppose z, z': Z - Y are such that poz = poz’;

we want to show that there is a unique w: Z » Y XII such that
pjow=2" and pow =z

(this is 1.2.i). Let g, g’ Z> X and h,h’: GZ Il be the unique maps

such that
{g,hl =2z and [g" ']l =2".

Then poz =poz' means g =g’, and we have
(h-h')oeGZ =hoeGZ-h'oeGZ =
=-foG2g+hoGeZ-(-foG?g"+h'0GeZ)
=hoGeZ-foG2g+ foG2g-h'0GeZ =
=(h-h')oGeZ.

Thus there exists a unique

k:Z->I1 suchthat koeZ =h-b'
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8 D. H. VAN OSDOL

and ([ g, k'), k): Z> YXII. Now by the above
po(lg,k'), k)=1[polg,h'), toGlg, k'l +elloGEk]=
=[g,h'+koeZl =g, h'+h-h'] =[g,R].
Ifalso ([x,y), z): Z» YXII satisfies
pro(lx,y1,2)=1[g,k'] and po(lx,yl,z)=1g,4],
then
[%,y1 =[g, k'] and [x,y +elloGz] =[g, 4]
so
x=g, y=h', y+elloGz=h.
Thus h-h' =zoeZ , which implies
z=k and ([x,yl,2z)=(lg,h'), k).
Therefore 1.2.1 is verified. I't remains to check that p is an action of Il on
Y . This follows easily from iii. Hence (p,p, s) is a G-trivial [I-principal
homogeneous object over X. For the final sentence we use 1.4, together
with i and ii:
pols0GeX,f)=[pop;, toGpy+elMoGpylofLe X, floGe X, [ )=
= [poleX,floGeX, to GleX, floG?e X +elloGf] =
=[eXoGeX, foG2eX + foeG?X] =
=[eXoeGX, foGeGX] =[eX,floeGCX=so0eGX.
QED
1.7. THEOREM. Let (Y-E~X,p, s ) be a G-trivial U-principal homogeneous
object over X and f the cocycle that it induces (seel.4). If D(-,f)is

represented by Y' then there exists an isomorphism y: Y > Y' such that

P;
YXI "y p X
" |
yxII y i
P] ’
Y'xIn Y’ d X
pl
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PRINCIPAL HOMOGENEOUS OBJECTS... 9

commutes.
PROOF. The bottom row of the diagram was derived in 1.6. Since Y repre-
sents D(-,f ) by 1.5, there is an isomorphism y: ¥ > Y’ such that
D(-,f) Sm2=>, A(-y) _4(-y)  A¢-,¥)
is equal to
(- f) Lozl ae v,
In particular, yo<p,t> = [p,t] ;but <p,t>=Y so
y =[p,t] and p'oy=p'olp,tl=p
by I.6.ii. Now
plof(yXM) =1[pop;, t'oGp;+elloGpyloflp,t]1XIl) =
=[p'olp,tlop;, t'oGlp,tloGp;+elloGp,l =
= [pop;, toGp;+elloGp,]
whereas
yop =[p,tlop = [pop, toGpl = [pop;, toGp],
so it remains to show that

toGp; +elloGpy =toGp.
But
po(soGpoGpy, toGpy+elloGp,) =
=pofpo(soGp,t)oGpy, elloGp,) =
=po(eYoGp;,elloGpy)=poe(YXII) =
=eYoGp =po(soGp,t)oGp=
=po(soGpoGp, toGp)=po(soGpoGpy, toGp).

QED

1.8. DEFINITION. A morphism of G-trivial [I-principal homogeneous obj ects

over X is a map such that the diagram in I.7 commutes.

1.9. PROPOSITION. /f

(Y—LoX,p,s) and (V' ELX,p",s")
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10 D.H. VAN OSDOL

are G-trivial Il-principal homogeneous objects over X, with corresponding
cocycles f, f'yand y: Y> Y' is a morphism between them, then there ex-

ists u: GX-1II such that f-f' =uoGeX-uoeGX.
PROOF. Since
plo(yos)=pos=€¢X =phs’,

there exists a unique u: GX » Il such that p 'o(yos, u) = s'. The comput-
p

ation
plo(yosoGeX, uoGeX + ') =po(s'oGeX, f') =
=s"0eGX =plofyosoeGX, uoeGX) =
plo(yopo(soGeX, f), uoceGX) =
=p'o(po(yxMM)o(s0GeX,f), uoeGX) =
plo(p'o[YosoGeX,f), uoceGX)=
=p'o(yosoGeX,uo0eGX +f)

1}

shows that the stated condition holds.
QED
I.10. DEFINITION. If two cocycles are related as in 1.9 then they are said

to be cohomologous.

1.11. PROPOSITION. If f and f' are cohomologous, then D(-,f )and
D(-,f') are naturally equivalent functors. If, in addition, D(-,f) and
D(-,f') are representable, then there is a morphism between the associated

homogeneous obj ects over X.
PROOF. Let
f-f'=uoGeX-uoeGX.
If (g,h) isin D(Z,f) then (g, h-uoGg) isin D(Z, '), and this de-
fines a natural transformation D(-,f)- D{-,f'). The inverse is given

by sending (g,h) to (g, h + uoGg). The second sentence follows from

the first and 1.7.
QED

It follows from all the above that if f: GZX » Il is a cocycle and
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PRINCIP AL HOMOGENEOUS OBJECTS... 11

D(-,f) is representable, then there is a G-trivial [I-principal homogeneous
object over X associated to it. Conversely a G-trivial II-principal homo-
geneous obj ect over X gives rise to a cocycle. These two assignments are
mutually inverse, provided we identify cohomologous cocycles on the one
hand, and homogeneous obj ects if there is a morphism between them on the
other. Since H!(X,Il) is by definition the abelian group of one-cocycles
modulo the relation «is cohomologous to», we see that there is aninterpre-
tation of HI(X,I1) in terms of equivalence classes of G-trivial [I-principal

homogeneous obj ects over X provided each D(-, f) is representable.

In the next section we will give some necessary and sufficient con-
ditions for a given D(-, f) to be representable. For now, we offer the fol-
lowing problem :

Give necessary and sufficient conditions that a functor F: A°P » Sets

be naturally equivalent to D(- /. for some cocycle f: G?X-1.

1. NECESSARY AND SUFFICIENT CONDITIONS FOR D(-,f) TO BE
REPRESENTABLE.

Given a cocycle f: G2 X - I1, under what conditions is D(-,f) 1e
presentable ? The main purpose of this section is to provide two necessary
and sufficient conditions for the representability of D(-,f ). The results
of Section I serve as motivation for interest in this question. Throughout
this section, let f: GZX~II be a cocycle and assume G" X XII exists for
0<ng3.

I1.1. PROPOSITION. If { =0, then D(-, f) is represented by X XII,

PROOF. Define A(Z,XXI1)» D(Z,f) by sending (z,a) to (z, aceZ).
This obviously gives a natural transformation. For its inverse, if (g, k) is

inD(Z,f), then hoGeZ = hoeGZ, so there exists a unique
a:Z 11 suchthat aoeZ =4 ;

thus sending (g, k) to (g, a) provides an inverse. This result also follows
from 1L.6.
QED
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12 D.H. VAN OSDOL

I1.2. DEFINITION. A three-tuple (G,¢,8) is a cotriple on A if G: A+ 4

is a functor, ¢: G> A and 8: G~ G? are natural transformations such that
€God=6G=Geod and 8God=Gdo4.

I1.3. PROPOSITION. If (G,¢) is part of a cotriple (G,e,8) on A and

X=GX, for some X, in A, then D(-, f) is represented by X XII.

PROOF. If (z,a) isin A(Z, X XII), then a short computation (using I11.2

and the fact that f is a cocycle) shows that
(z, a0eZ + foGE8XoGz)
isin D(Z,f). Thus
YZ(z,a)=(z,a0eZ + foG6XoGz)
defines a function
wZ:A(Z,Xxl1)» D(Z,f),

and ¢y: A(-, XXII)» D(-, f) is obviously a natural transformation. Given

(g,h) in D(Z,f) one can see (for the same reasons as before ) that
(h-foG86XoGg)oGeA =(h-foG8XoGgloeGA.
Hence there is a unique
a:Z-+1I1 suchthat aoeZ =h-foG6XoGg.

It is easy to verify that the inverse of /Z is given by sending (g, k) to

(g,a).
QED

I11.4. LEMMA. Let Z:T" » A be a functor whick has a colimit C:

Z
a\
/C
7
8
Zg

Then there is a function 6: D(C, f)- limD(Z_,f ) which is one-to-one.

PROOF. Define
0(g,h) = the family (goi_, hoGi,) fora in I ;
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PRINCIP AL HOMOGENEOUS OBJECTS... 13

this clearly defines a function. To see that it is injective, suppose (g, k)

and (g’, k') are members of D(C, f) such that

(goiy, hoGi,)=(g'oi,, h'sGi,)
for each a in I" . Then since

C =colimZ_ and goi_  =g'oi, ,
it follows that g = g’. Now
(h-h')oGeC =foG?g +hoeGC-foG?g"-h'0eGC =(h-h')oeGC

so there exists a unique

a: C> 1l such that aoeC =k-h'.
If a = 0 then we will be done. But for each @ in I",

aoizo€eZ, =aoceCoGi, =hoGi -h'oGi =0

so aoi,=0.Since C =colimZ_,a=0.
QED

11.5. THEOREM. Suppose that A is cocomplete and G X XII has only a set
of regular quotients (i. e. quotients which are coequalizers ). Then, D(-,f)
is representable if and only if the function 0 of 11.4 is onto for all functors
Z_: that is, if and only if D(-, f) preserves limits.

PROOF. Obviously if D(-,f) is representable then it preserves limits.
Conversely, it suffices to verify the solution set condition [5, V.6.3]. Let

L be the class of all coequalizers of the form

(GgoGeZ, hoGEZ)

62z cxxm —12 C
(CgoeGZ, hoeGZ)

for all Z in A, and all (g,h) in D(Z,f). Since L is a subclass of the
set of all regular quotients of GXXII, it is a set. We proceed to show that
L is a solution set for D(-,f ). Since D(-, ) preserves limits, if (g, h)
isin D(Z,f ) then

D(C,f)—=D(GXxI,f)”—ID(G%Z,f)

is an equalizer. Now

283



14 D. H. VAN OSDOL

(eXopy, foGp; +€ll oGp,)
is in D(GXXII, f ) since f is a cocycle, and its two images in D(G2Z,f)

are
(eXoGgoGeZ, foG2g0G%Z +elloGhoG2Z)
and

(¢XoGgoeGZ, foG2g0GeGZ +eMloGhoGeGZ).

But these images are equal by the naturality of ¢ and the fact that (g, k)
isin D(Z, f ). Hence there exists a unique (g’,h’) in D(C, f) such that:

g'og=cXop; and h'oGq=foGp; +elloGp,.
Noticing that
qgo(Gg,h)oeGZ = qo(Gg,h)oGeZ,
we find a unique
k:Z -+ C suchthat koeZ =qo(Gg,h).

If
g'ok=g and Rh'oGk =h,

then the solution set condition will be verified. But we have
D(eZ,f)(g'ok, h'oGk)=(glokoeZ, h'oGkoGeZ) =

=(g'090(Gg, k), h'oGqoG(Gg,h)) =
=(eXop;o(Gg,h), (foGp, +elloGp,)oG(Gg, h)) =
=(eXoGg, foG%g+eNoGh)=(goeZ, foG2g+hoeCZ )=
=(go€Z,hoGeZ)=D(eZ,f)(g,h),

and D(eZ, f) is one-to-one since

D(Z,f)—D(GZ,f)—ID(G*Z,f)

is an equalizer.
QED

I1.6. THEOREM. In order that D(-,f ) be representable it is necessary and
sufficient that the following «descent-types condition (see [3,4] ) be ful-
filled: For the diagram
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PRINCIP AL HOMOGENEOUS OBJECTS 15

(eGXopy, py)

G?xxI GXxII

P P
GX
G2X < CX—<€X | x
GeX
there should exist GXXIM 9. Y_P X such that

i) GXxII 7 Y

P p

GX —£X____x

is a pullback and
ii) go(eGXopy,py) = qo(GeXop;y, fopy+ py).

PROOF. Suppose that Y represents D(-,f). Then by 1.6 there exists the

structure of G-trivial II-principal homogeneous object on Y, say

(Y P X, p:YXII>Y,s:GX>Y).

Let g =po(sXIl): GXXII» Y. Condition ii follows from 1.4 and the last

sentence of I.6. For condition i, recall that in any category
AxCc—uXC  pxc

le p
A u B

1

is a pullback. Applying this with u =s and C =II and using I.2.i we see

that each square in

cxxm _sX_yxm_p .y

S

GX s Y P X

is a pullback. Now the j uxtaposition of two pullbacks is a pullback, po s =

=eX by 1.2.ii, and p o(s XII) = gq. Hence condition i has been verified.
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16 D.H. VAN OSDOL

Conversely assume conditions i and ii. Define D(Z,f)+ A(Z,Y) by

sending (g,kh) to b: Z > Y, where b is the unique map such that
boeZ =qo(Gg, k).
Such a morphism exists since
go(Gg,h)oeGZ = qo(e CXop,,p,)o( G g, hoeGZ) =
= go( GeXopy , fop 1+ py Jo( GZg, hoeGZ ) =
= qofGeXoG?g, foG2%g + hoeGZ) =
= qo(GgoGeZ, hoGeZ)=qo(Gg,h)oGeZ.

Then D(-,f)- A(-,Y) so defined is clearly a natural transformation. Gi-

ven a: Z » Y, consider

GZ eZ Z
\
G X xII Z Y
G(poa)
P p
CX eX X

Since the outside diagram commutes and the inside is a pullback, there ex-

ists a unique
k: GZ -1l suchthat qofG(poa), k)=aceZ.
I claim that (poa,k ) isin D(Z, ), and this will be true provided
(G(poa),k)oGeZ =(GeXop;, fop;+py )of GZ(poa), koeGZ).

These will be equal if their compositions with p;, as well as ¢, are equal.

The first components are obviously equal, and
QO(GeXopl,fop1+p2)o(c2(poa),koeGZ)=
=qo(eCXop1,p2)o(G2(poa), koeGZ) =
= go(G(poa)oeGZ, koeGZ) =qo(G(poa), k)JocGZ =
=aoeZoeGZ =aoeZoGeZ = qo(G(poa),k)oGeZ.

286



PRINCIPAL HOMOGENEOUS OBJECTS... 17

Hence we can map A(Z,Y)> D(Z,f) by taking a to (poa, k), where
k is uniquely determined by the condition
go(G(poa), k) =aoeZ.
We need to show, using the above notation, that
(g-h)=((pob),k) and a=5b.
For the first,
poboeZ =poqo(Cg,h)=eXop;o(Gg,h) = goeZ
so that pob = g, and thus k =& since
go(G(pob), k) =boeZ =qo(Gg, h)=qo(G(pob),h).
For the second,
boeZ =qo(G(poa), h) =aoeZ so b=a.

QED

I1.7. COROLLARY (Beck [1]1). If U: A~ B is tripleable (also called mo-

nadic in [5]) with left adjoint F, G =FU, and UG" XX UII exists for
0<n<2, then D(-,f) is represented by the coequalizer ( which exists)

(eGXopy, py)

G2xx1 G X xII q Y.
(GeXopI, fop1+p2)

PROOF. We have the following U-split coequalizer diagram [5] :

(UeGXoUpy, Up,)
UG2xxUun UGXxUI

(UG(XoUpl, UfoUp1+Up2)

(nUGXoUp,, Up,) (nUXoUp;,Upy)

(UeXoUp;,UfonUGXoUp;+ Up,)

Uxxul

where n: B> UF is the unit for the adjunction. The only problem invol-
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18 D.H. VAN OSDOL

ved in the verification is that foFnpUX =0, but
foFnUX =foGeGXoGFnUXoFqUX =
=foG2¢Xo GFnUXoFnUX + foeG?Xo GFnUXo FnUX =
=foFqUX+ foFnUXoeGXo FnUX = foFnUX+ foFnUX.

Since U is tripleable, there exists G X XII Ly as asserted, and such that
" Uq=(UeXoUp,, UfoqUGXoUp;+ Up,).
Since
€eXopjo(eGXop;y,py) =€XoeGXop; =
=eXoGeXop; =€XopjofGeXopy, fop;+py)
and ¢ is a coequalizer, there exists a unique
p: Y> X suchthat pog=eXop;.

By I1.6 we need only see that pog =e¢Xop; is a pullback diagram.But

since U creates limits [ 5], it suffices to prove that
UeXoUp; =UpoUq=Upjo(UeXoUp;, UfonUGXoUp;+ Up,)

is a pullback. This was first noticed by Duskin and is proved in [2].
QED

We will end with two examples in which I1.7 is not directly applic-
able but I1.6 is. Let 4 be the category of torsion-free abelian groups and
all homomorphisms. Let { G,¢,8) be the free abelian group cotriple on 4 .
Then € is the coequalizer of ¢G and Ge in 4. If f: G2X-1 is a co
cycle in 4 then we can verify I1.6 by using I1.7 indirectly.Consider the
diagram of I1.6 in the category of abelian groups. By IL.7, D(-,f) is re-
presented by an abelian group Y ; if Y is in 4 then we will be done. But,
by I.6,

0-OT->Y->X->0
is an exact sequence of abelian groups and hence Y isin 4.

An example in which the technique of the last paragraph is not avail-

able is that of «simplicially generated» spaces. Let G be the functor which
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assigns to a topological space the geometric realization of its singular
simplicial set. Then there exist €¢,8 making G a cotriple. Let 4 be the
category of spaces X such that ¢ X is the coequalizer of e GX and GeX,
and all continuous maps. Then (G,¢,8) is a cotriple on 4 and it is not
(known to be ) the cotriple of any tripleable adjoint pair. If f: G2X->1 is
a cocycle and Il is discrete, then a space in 4 representing D(-, f) would

be a kind of simplicially generated simplicial covering space of X .
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