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ON SIMPLY BIREFLECTIVE SUBCATEGORIES

by Jan MENU and Ale0161 PULTR

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol XVII - 2 (1976)

A description of an everyday-life concrete category follows often

the following pattern : There is given
( 1 ) a construction producing structures on sets,

( 2 ) a mechanism of choice of well-behaved mappings among all map-

pings between structured sets,

( 3 ) a delimitation of the desired objects among all the ones obtained

by the construction from (I) (the «system of axioms)) on the structure in

question ).

In [5] there was proved that the approach over the categories S ( F ) ( [3],
[4] , [7] , etc...; F is a functor Set -’ Set , the objects of S ( F ) are the

couples ( X , r) with r C F ( X ) , the morphisms ( X , r) - ( Y, s ) are the tri-

ples ( r, f , s ) with f : X - Y such that F ( f ) ( r ) C s ) .is of a fairly general
validity for the tasks ( 1 ) and ( 2 ).

In the present paper we are going to discuss the tamest case of ( 3 ) ;

namely, the delimitations leading to the subcategories that are both reflec-

tive and coreflective with, moreover, both the reflection and coreflection

morphisms identity carried ( following [4] , we call them simply bireflec-
tive ).

Consider the example of the symmetry axiom for binary relations.

The category of sets with binary relations coincides with S ( Q ) where Q

sends a set X to XXX and a mapping f to f x f . We see that its subcat-

egory of the symmetric relations is again of the type S ( G ) , namely with

and, moreover, its embedding into S ( Q ) is naturally induced by the epi-
transformation Q - G sending ( x , y ) to {x, y } . This observation led us
for a moment to the conjecture that one might describe the simply bireflec-
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tive subcategories of S( F) , generally, by means of epi-transformations
8: F - G . One sees easily that this conjecture is false. There are simply
bireflective subcategories which are not thus induced ( e. g. in S ( Q ) the

subcategory of the ( h’, r) such that ( x , x ) E r whenever ( x , y ) E r for a

y ). On the other hand, an epi-transformation always induces an embedding
onto a simply reflective, but not necessarily onto a simply bireflective sub-

category. If one, however, generalizes the definition of S ( F ) to functors

F with values in the category of quasidiscrete spaces ( see no 1 ), the situa-

tion is more satisfactory. Now, every simply bireflective subcategory is

induced by an epi-transformation and one can give an explicit characteriza-

tion of the epi-transformations which induce one. This is shown and dis-

cussed in n° 4 and n° 5 (the first three paragraphs are of a technical cha-

racter). As an application, we give at the end of n° 5 a complete list of

« systems of axioms » on A-nary relations leading to simply bireflective sub-

categories of the category of all A-nary relations.

1. Quasidi screte spaces.

1.1. A quasidiscrete space ( abbr., QD-space) is a topological space in

which the intersection of any system of open sets is open (see [1] ).

In a QD-space we denote by O-p A the smallest open subset contai-

ning A .

The category of all QD-spaces and their continuous mappings ,will
be denoted by QD Top , its full subcategory generated by the To-spaces
will be denoted by QD Top,,, .

1.2. Let ( X , T ) be a QD-space. Define a preorder  (more exactly,  T )
on X by :

On the other hand, with a preorder  on X we can associate a qua-

sidisc ete topology declaring A C X for open iff

imply x E A .

It is well-known (and very easy to check) that this construction yields an



189

isomorphism between QD Top and the category of preordered sets and mo-

notone mappings. Since obviously a QD-space is To iff

implies

QD Top o corresponds under this isomorphism to the category of partially
ordered sets.

1.3. Obviously, the continuity of a mapping f: X - Y is characterized by
the formula: f (Op { x. }) COp { f ( x) } .

1.4. CONVENTIONS. Whenever convenient, we will deal with the corres-

ponding preorders instead of the topologies. If there is no danger of con-

fusion, the preorders are indicated by  simply without further specifica-
tions. We write

for

Instead of Op { x } , we write (9p x .
The proofs of the following two lemmas are easy.

1.5. LEMMA. Let f: X-&#x3E;Y in QD Top be sucb that

implies

Then for every y E Y there is an x E X such- that f ( x )- y. Consequently,

if moreover Y is T o , f is onto.

1.6. L EMM A. L et f, g: X-Y in QD Top be such that

for every open M .

Then f ( x) rv g (x) for every x E X . Consequently, if moreover Y is To , 

i = g.

1.7. If ( X. T ) is a QD-space, we denote by C9 (X, T) the lattice of all

the open subsets of ( X , -r) - It is well-known ( and very easy to see) that

O( X , T) is irreduci hl y generated, and the irreduci bl e elements are exactl y
the sets o f the form Op x with x E X. ( *)
(*) An irreduci bl e el em ent of a lattice A i s a non-zero elem ent aE A such that

a  V bi implies there is an i with a  bi. A is said to be irreducibly generated
if every x E A.is a union of irreducible elem ents.
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1.8. The following fact is also well-known ( and easy to prove) :
An irreducibly generated lattice A is a Boolean algebra iff its ir-

reducible elements are disjoint. Consequently, O ( X ,  ) is a Boolean alge-
bra iff  is symmetric ( and, hence, an equival ence).

1.9. QD Topo is a reflective subcategory of QD Top . Let us denote by J
the embedding QD Top o C QD Top , by L the reflection functor and by

the reflection transformation. (Suitable L and n may be obtained putting
first

for

for

and th en putting L ( f ) = ø y o L’ (f) oø -1X. )
1.10. The following property of the mappings nX is evident :

M is open in for an open N in

2. The categories S ( F ) w ith F : set - QD Top .

2.1. Let F: Set - QD Top be a functor ( Set is the category of all sets and

mappings). The category S (F) is defined as follows : The objects are the

couples ( X , r) with r an open subset of F( X ) ; the morphisms from ( X , r)

to ( Y, s ) are the triples ( r,f, s ) with /: X - Y such that F ( f ) ( r ) C s .

S( F ) will be regarded as a concrete category with the forgetful
functor sending ( r , f , s ) to f .

2.2. Thus defined categories S( F ) include the categories S( F) , with

F : Set -Set introduced in [2] and studied in various papers. It suffices

to regard a functor into Set as a functor into QD Top with discrete values.

2.3. Let 0 : F -&#x3E; G be a transformation. Define a functor



191

putting

2.4. OBSERVATION. [8] is faithful and a right adjoint.

2.5. A transformation 8 : F - G is said to be an epi-transformation if every

8X is a mapping onto.

(The epi-transformations are exactly the epimorphisms in the ille-

gitimate category [ Set, QD Top ] , which follows immediately by the co-

continuousness of the evaluation functor and by the fact that the epimor-

phisms in QD To p are onto. )

2.6.. PROPOSITION. If E is an epi-transformation, then [E] is a full em-

bedding.

PROOF ( quite analogous to the corresponding one for Set-valued functors

- see [7] ). Since 8X are onto,

implies

Thus, since [61 is faithful, it is one-to-one. If

we have

Thus [8J is also full.

2.7. R E M A R K. If [8J is a full embedding, 8 is not necessarily an epi-

transformation, which is easily seen. It is necessarily an epi-transformation
if the values of G are in QD Topo ( s ee 1.5) .

2.8. Evidently, we have :

PROPOSITION. Let 8: F-&#x3E;G be an epi-trans formation. Then [E] is an

isofunctor mapping S( G) onto S( F ) iff the following condition bolds :
For every X , M is open in F ( X ) iff M = 8-1 ( N) for an open set N in

G (X).



192

3. The transformations 17 F .

3.1. In the notation of 1.9, for an F: Set - QD Top put F’ = J L F . We have

epi-transformations n F: F -&#x3E; F’ .

3.2. We have obviously F" = F’ and n F’ = 1 F’.

3.3. By 1.10 and 2.8 we obtain immediately :

PROPOSITION. [nF] is an isofunctor of S(F’) onto S(F).

3.4. THEOREM. Let O: S(F) -&#x3E; S (G) be an isofunctor such that U’ O = U

for the natural forgetful functors U, U’ . Then there is a natural equiva-

l ence K : G’ = F’ such that the diagram

commutes.

PROOF. Given H, K: Set - QD Top o and an isofunctor y:S(H)=S(K)
preserving the underlying mappings, the formula

defines obviously lattice isomorphisms OX : O(H(X)) -&#x3E;O(K(X)) . Since
OX sends irreducibles to irreducibles and since K ( X ) is a T’o-space, the

formula 

defines homeomorphisms k X : H ( X ) = K ( X ) (see 1.2) such that

for an open

Let 1: X - Y be a mapping, x E X. Since H (f)(Opx) CpH(f)(x), we
h ave

so that
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Similarly, and hence

Thus

and since the spaces are To , consequently, K (f) kX = kY H(f) , so that

X is a natural equivalence. Now, apply the just proved assertion to

and put

3.5. R E M A R’K . In particular, we see that S ( F ) and S ( G ) are equally car-

ried ( i. e. there is an isofunctor O with U’ O = U ) iff F’ * G’ . In fact,

if S ( F ) and S ( G ) are isomorphic, they are equally carried necessarily

(which, in essence, may be proved characterizing internally up to isomor-

phism the objects ( 1, Ø)). Thus, if S ( F ) * S( G), then F’ * G’.

4. Simply reflective subcategories.

4.1. Let (K, U) be a concrete category. A subcategory 2 of Kis said to
be simply reflective ( resp. coreflective) in (K, U) if it is reflective ( resp.

coreflective) and if there is a reflection (resp. coreflection) transformation.

such that

for every.

4.2. PROPOSITION. Let 8: F -G be an epi-transiormation. Then [E] maps
S ( G ) onto an isomorphic simply reflective subcategory of S ( F ) such that,

moreover,

th en

PROOF follows immediately by 2.4, 2.6 and the fact that
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4.3. Let K be a subcategory of an S( F) . Denote by x the full subcategory
of S( F) generated by all the objects of the form

with for every ;

4.4. R E M A R K. Since ( X , U a.) may be expressed as a colimit of the dia-

gram consisting of the identity carried morphisms ( X , Ø) -&#x3E; ( X , ai ) , and
since the forgetful functor of S ( F ) preserves colimits, we see that for a

simply coreflective K , we have K =K . On the other hand, one sees easily

that the condition K = K does not imply simple coreflectivity.

4.5. Let K be a simply reflective subcategory of S( F) . Denote by

the identity carried reflection. Define a functor F K: Set - QD Top as fol-

lows : The underlying set of F K ( X) coincides with that of F ( X ) and the

topology of F K ( X) is given by the preorder:

iff

for a mapping f put FK ( f ) ( u ) = F( f ) ( u ) . (This is correct: if we have

p Ôp u C p Opv , then by the basic property of reflections and by 1.3 : 

Since the preorder  K is obviously stronger than the original one, we have

an epi-trapsformation 8 K: F - FK defined by ( EK) X ( u ) = u .

4.6. LEMMA. M is open in F K (X) iff (X, M) E K.
PROOF. Let M be open in FK(X). Then for every u E M , pOpu CM, so
that M = U p Opu . Thus, (X, M) E K . On the other hand, suppose that

uEM

(X, M) EK and u  K v E M . Then, u is in pL9pvCM. Thus, M is open.

4.7. THEOREM. Let K be a simply reflective subcategory of S( F) . Th en

S( FK) and [6K is the embedding K CS( F).
PROOF follows immediately by 2.6 and 4.6.
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4.8. R EM A R K. By 4.7 and 4.2, for a simply reflective K, the category K
is also simply reflective.

4.9. Theorem 4.7 is in a way converse to Proposition 4.2, stating that

every simply reflective subcategory satisfying ( * ) is an image of an epi-
transformation induced functor. By 3.3 we have another epi-transformation

inducing also an isomorphism of S ( F’K ) and K. We will show now that

every epi-transformation E’: F - G such that [8] represents th e embedding
K C S (F) lies in between 8 K and 8’K. We have

THEOREM. Let K be a simply reflective subcategory of S (F) such that

K = . L et 8: F - G be an epi-transformation and let there be an iso func-

tor O such that the diagram

commutes. Then there are epi-trans formations

such that the diagram

commutes.

PROOF. By 3.4 there is a natural equivalence K : G’ - F’K such that

Put y = K ° n G : G -&#x3E; F’K . Now, let M be’open in G ( X ) . Th en ( X , M ) is

in S ( G ) and hence ( X , E-1 X (M )) = O (X, M) EK . Thus, by 4.6, E-1X ( M )
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is open in FK( X). Consequently, we can define an epi-transformation

,6: F K - G putting BX(u) = EX(u) . Thus, we obtain immediately

Further, we obtain ( using ( 3 ) (4 ) and ( 1 ) )

Since [8K ] is an embedding, we have, hence, [y o B ]= [n F k]. Since

and since F’ K (X) is a To-space, we obtain by 1.6 finally 7)FX= yoB .
Thus, the diagram ( 2) commutes.

4.10. R E M A R K . On the other hand, if ( 2 ) in 4.9 commutes and if 6 is an

epi-transformation, then it induces a full embedding onto K . Really, /3 is

then necessarily an epi-transformation and we have [nFK ]= [/3] [y] .
Since [n F K] is an isofunctor and [,8] a full embedding, [B] is an

isofunctor.

5. Simply bireflective subcategories.

In this paragraph, we are going to characterize the epi-transforma-
tions 8 such that [E] is a full embedding onto a simply coreflective sub-

category, By 2.4 and 2.7, every [E] is a full embedding onto a simply re-

flective subcategory, by 4.4 and 4.7 every simply bireflective ( i. e. simply
reflective and simply coreflective) subcategory of an S (F) is represented

by an embedding [8 J. Thus, we will obtain a characterization of all simply
bireflective subcategories of S( F ) .

5.1. LEMMA. L et F, G : Set - QD Top be functors and T: F - G a trans-

formation. Let R : S( F) - S( G) be a functor such that there is a natural

equivalence

such that
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for U, U’ the natural forgetful functors.

Then wh ere

PROOF. Since T-1X ( C r) C r, 1X carries a morphism [ T ] ( X, C r) -&#x3E; ( X, r)
and hence it carries also a morphism (X, C r) -(X, r’ ) . Thus, Cr C r’ .

On the other hand, if b c r’ , 1X carries a morphism ( X, Opb) -&#x3E; R ( X , r) .
Consequently, T’1X (Opb) Cr, and hence b E C r.

5.2. REMARK. For the R from 5.1 we have U’ R = U. The formula

for obj ects

is obvious immediately. Now consider a

We have

Thus

5.3. THEOREM. Let F, G: Set -&#x3E;QD Top be functors, 8: F -&#x3E;G an ePi-

transformation. [8] is a full embedding onto a simply coreflective ( and,
hence, simply bireflective) subcategory i f f :
( A ) for every f : X - Y and every b E G ( X ) ,

P RO O F . Let [8 ] be a full embedding onto a simply coreflective subcat-

egory. Take an f : X-Y and a b E G ( X ) . We have

since, if

and

is such that F ( f ) ( z ) -- y , then
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Put Then f carries a morphism

in

and hence also a morphism

in

( C from 5.1 ), so that in particular G( f ) ( b ) c C r , i. e.

Now, let (A) hold. Define R : S(F) -S(G) by R ( r, f , s )= ( C r, f , C s ) .

(This is correct :

Behave iff

iff

iff

Thus, f carries a morphism [61(x) - y iff it carries a morphism x - R (y) -

5.4. REMARKS. 1° From the first part of the proof of 5.3 we see that the

inclusion

holds for any 6. Thus, the condition ( A ) is equivalent to the reverse in-

clusion

Rewriting this, we obtain the following condition on 8 equivalent to ( A ) :

(B) For every f:X-&#x3E;Y, every a E F( Y) and every b E G ( X ) such that
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, there is a such that

and

2° In the case of an E: F - G such that F and G have discrete va-

lues, th e condition (A) reduce s to:

For every f: X - Y and for every b E G ( X ) ,

5.5. PROPOSITION. Let 8: F - G satisfy (A).Then, whenever F (f) is

an open mapping, G (f) is also an open mapping.

PROO F. We have

If F ( f ) is an open mapping, we continue

5.6. Simpl y bireflective subcategories o f the category o f sets with A-nary
rel ations : Let A be a set. An A-nary relation on a set X is a subset of

X A ; if r ( resp. s ) is an A-nary relation on X (resp. Y ), a mapping f :
X - Y is an r s-homomorphism if

implies

Thus, the category of sets with A-nary relations and.their homomorphisms
coincides with S (QA) where

the topology on Q A ( X ) being discrete. By 4.7 and 5.4, we will obtain a

complete list of bireflective subcategories of S( QA) if we list all the epi-

transformations E : Q A. -+ G satisfying ( A ) and such that the underlying

mappings of 6 are the identities.

Consider such an epi-transformation. Since QA ( X) are discrete,

we have all Q A ( f ) open and, hence, by 5.6, all

are open. Thus, in particular, if a 5 /3 in G ( X ) , then, since we have

B = G (B ) ( 1 A), , there is a O  1A in G (A) such that
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Conversely, of course, if qb 5 1A , we have necessarily

Thus, in particular, if and , we have

Hence, there is a submonoid M of A A such that

in iff

On the other hand, let there be given a submonoid M of A A and let us put

G ( X ) = ( X A ,  ) with  defined by the formula ( 1 ) , G ( f ) ( a. ) = f o a ,

(Obviously, thus defined  is transitive, and

implies

Define 8: : QA-&#x3E;G putting E X (a) = a . If E Y ( a )  G ( f )( B ) , i. e. if

a  fo B, we have a = fo B o O for a O E M. Put Y = B o O. Then

and

Hence, the condition ( B ) is satisfied.

Thus, we conclude that the simply bireflective subcategories K of

S( QA ) are exactly those obtained as follows : A submonoid M of A A is

given, and an object ( X , r) o f S( QA ) is in K iff

ac, o 0 c r, for every a E r and O E M .

Moreover, we see easily that, among them, the ones representable by an

E : Q A -&#x3E; G with discrete G ( X ) are exactly those where M is a group. (By

1.8, cP E M , i. e. O  1 , implies 1  O ; hence there exists a

with
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