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WHEN IS 03A9 A COGENERATOR IN A TOPOS? (*)

by Francis BORCEUX (**) 

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVI - 1 (1975)

Let E be a topos such that the subobjects of 1 form a set of

generators; then is a cogenerator in E . This means that the composi-
tion map ( A , B ) -&#x3E; ( ( B , Q ), ( A , Q ) ) is a monomorphism in the category

of sets, for any obj ects A and B of E . Let us now consider the compo-

sition mor p hism BA -&#x3E; ( Q A ) ( Q B ) in E; this morphism is monic in any

topos, proving that D is an internal cogenerator in any topos. In particu-
lar the functor Q(-) : E* -&#x3E; E is faithful for any topos E .

If the subobjects of 7 form a set of generators in the topos E, the

same property holds in any one of the following topoi : the topoi E/ X,

where X is any object of E ; the topoi of sheaves for any topology on E

and the topoi of E-valued presheaves over any preordered object of E .

In all these topor, Q is thus a cogenerator. We also give an example of a

topos in which D is not a cogenerator, and another example in which

Q is a cogenerator but the subobjects of 1 do not form a set of genera-

tors.

1. Cogenerators i n a cartes ian c losed category.

In this section, E will be a cartesian closed category. All the

results of this section remain true when E is a symmetric monoidal clo-

sed category (cf. [1]-§5). We first define the notion of an internal co-

generator.

In the category S of sets, an object C is a cogenerator if the

composition map

(*) This paper was written during a one year visit of the author to Columbia U-

niversity : I thank Professor Eilenberg who organized this visit.

(**) Partially supported by a N. A. T.O. fellowship.
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which sends f to Cf is monic for any sets A and B . If E is cartesian

closed, such a morphism exists in E for any objects A, B, C ; we recall

its construction (cf. [2] ):

D E F I N I TI O N 1 . L et E be a cartesian closed category. An object C E| Li
is called an internal cogenerator if, for any objects A and B of E , the

composition morphism K A, B C : BA - ( CA ) (C ) is a monomorphism.

The notion of an internal generator is defined in an analogous way

using the left composition morphisms

P R O P O SI T I O N 1 . 1 is an internal generator in any cartesian closed ca-

tegory. B

If C is an internal cogenerator in the cartesian closed category

E , the maps (A, B) - (CB, CA ) which send f to Cf are injective ( ap-

ply the limit preserving functor ( 1 , - ) to the monomorphisms KA,B C);
in other words, the functor C(-):E*-&#x3E; E is faithful. It is useful to point
out that the converse is true.

PROPOSITION 2. I f E is a cartesian closed category, the following pro-

perties are equivalent :
( 1 ) C E I E I is an internal cogenerator;

( 2 ) the functor C (-) : E* -&#x3E; E is f ai th f ul.

We have already seen that ( 1 ) implies ( 2 ) . Conversely let us

assume that ( 2 ) is true and let us consider any morphism a : X - B A in

E ; we denote the corresponding morphism by a. : X X A -&#x3E; B . The following
composites correspond to each other by the bijections defining the car-
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tesian adjunction :

If a , B : X -&#x3E; BA are such that KA,B C o a, = KA,B C o B , then 0- C7 and thus
a=/3;so a=/3 and KA,B C is monic.
COROLLARY 1 . 1 f E is a cartesian closed category, any cogenerator o f
E is an internal cogenerator.

The following diagram is commutative :

and thus C (-) is faithful as soon as (-, C ) is faithful.

COROLLARY 2 . I f E is a cartesian category such that 1 is a generator,

the following conditions are equivalent :
( 1 ) C E | E I is a cogenerator.

( 2 ) C E | E I is an internal cogenerator.

( 1 , - ) is faithful and thus C (-) is faithful if and only if (-, C) is

faithful ( cf . diagram of corollary 1 ) .

2. Cogenerators in a topos.

In this section, E is a topos. We first prove the two properties
of 0 announced in the introduction.

THEOREM 1 . If E is any topos, the functor Q (-) : E* -&#x3E; E is faithful and

thus f2 is an internal cogenerator.
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If /:A - B is any morphism of E, the following diagram is com-
mutative (cf. [4 ):

So if f , g : A -&#x3E; B are such that Qf=Qg, then ( Q B )f = (QB)g and thus

In particular, if f*IB denotes the singleton morphism on B : 

and f = g because {*}B is monic.

We have proved that 0(-) is faithful; Q is an internal cogenera-

tor because of proposition 2 .

THEOREM 2 . Let E be a topos. 1 f the subobjects of 1 form a set of ge-
rators, f2 is a cogenerator.

Let f , g : A -&#x3E; B be two morphisms such that, for any cp : B -&#x3E; Q,
cp f = cp g . For any subobject e : E &#x3E;-&#x3E; 1 of 1 and any morphism k: E - B,

we consider the following pullback:

( recall that any morphism with domain E is necessarily monic ) . The

following equalities hold

and thus there exists a unique morphism a making the following diagram
commutative :
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But idE is the unique morphism from E to E ; thus a = idE and f k = g k .
Because this is the case for any E and any k and because the subob-

jects of 1 form a set of generators, f = g . So -0 is a cogenerator.

The assumption of theorem 2 (the subobjects of 1 form a set of

generators ) raises two questions :
1° when is this assumption realized? - some partial answers will be

given in section 3;
2° is this assumption necessary? - the two following examples show

that a non obvious part of the assumption is necessary.

EXAMPLE 1 . Let E be the tapos of set-valued presheaves over the ad-

ditive group Z2 . E is a boolean topos and its D-object is not a cogene-

tor.

Z2 is a groupoid and thus E is boolean (cf. [4] ). So fl is the
constant functor on ( 0 , 11 - We denote by p : {0, 1} -&#x3E; {0, 1} the map

such that p ( 0 ) = 1 and p ( 1 ) = 0 . Let F : Z2 -&#x3E; S be the following functor:

The two maps id {0, 1 }: F ( * ) -&#x3E; F (*) and p : F (*) -&#x3E; F ( * ) are two diffe-

rent natural trans formations from F to itself .

If y : {0,1} -&#x3E; {0,1} is any natural transformation from F to Q , the

naturality implies that y p = y and thus no such y is able to separate

id {0,1} and p . Therefore f2 is not a cogenerator.

E X A M P L E 2. Let E be a topos of set-val ued presheaves over the dia-

gram A below defining equalizers and coequalizers. The D-object of E
is a cogenerator but the subobjects of 1 do not form a set of generators.
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We denote by A the following category:

We first prove that the subobjects of 1 do not form a set of gene-

rators in E . Let us denote by p : { 0 , 1 } -&#x3E; {0 , 1 } the map such that

p ( 0 ) = 1 and p ( 1 ) = 0, We define two functors F, G:A -S by

I

and two natural transformations , by:

a and B are different and if E: A - S and y : E - F are such that

then aAoyA #BAo y A because cB° yB = B B ° yB . Thus E (A) # 0 ; we
choose x E E ( A ) . It is clear that yA ( x )#( p ° yA ) ( x ) and thus, because
T is a natural transformation, we have necessarily E ( a ) ( x ) # E ( b ) ( x ) .

So E ( B ) contains at least two different elements and E cannot be a

subobject of 1 , proving that the subobjects of 1 do not form a set of

generators in E .
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We now describe i2. Recall that Q( X) is the set of subfunctors

of ( X , - ) and that Q (x) : Q ( A ) -&#x3E; Q ( B ) sends a subfunctor A’ of ( A , - )

to the subobject B’ of ( B , - ) defined by the following pullback (cf. [6] ):

It is easy to see that f2 is characterized by the following relations :

with

with

0(a) and D ( b) are described by:

We finally prove that Q is a cogenerator of E . We take any two

functors F , G : A -&#x3E; S and any two natural transformations a, B : F =&#x3E; G
such that aA,8. We have to build a natural transformation ’y : G =&#x3E; Q
such that y a # y B . We consider two different cases:
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First case : 

We denote by x E F A an element such that a A ( x ) # BA ( x ) . We define
y by the following relations

Second case : a B f. f3 B 
We denote by x E F B an element such that aB ( x ) # BB ( x ) . We define
y by the following relations :

It is easy to see that in the two cases, y is a natural transformation such

that y a # y B . Thus Q is a cogenerator i n E. n

3. The weak axiom of choice.

By «weak axiom of choice » we mean, for a topos, the fact that the

subobjects of 1 form a set of generators; this terminology is due to W.

MITCHELL (cf. [6]) and makes sense because of the property we re-
call in proposition 4 below. In this section we give different conditions

under which a topos satisfies the weak axiom of choice. Recall that the

weak axiom of choice implies, for a topos, that D is a cogenerator (the-

orem 2 ) .

Proposition 3 generalizes proposition 3.12 of [4] .

PROPOSITION 3. Let E be a boolean topos. The following conditions
are equivalent : 

1) the subobjects of 1 form a set of generators;
2 ) the non-zero subobjects of 1 form a set of generators;
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3 ) an object X E |E| is non-zero if and only if there exists a non-zero

subobject E of 1 provided with a morphism E - X;

4 ) if an object Xe |E | is non-zero, there exists a non-zero subob-

iect of 1 provided with a morphism E - X 

( 1 ) =&#x3E; (2) is obvious.

(2) =&#x3E;(3). If Xe |E| is non-zero, the two morphisms tx (true

on X) and fx (false on X) from X to Q are different and thus there

exists a non-zero subobject E of 1 provided with a morphism E -&#x3E; x X

such that f x o x # tX o x: 

If there exists a non-zero subobject E of 1 provided with a mor-

phism E 2-.. X , X is a non-zero; indeed, if X were zero, E would

also be zero because 0 is initial strict (cf. [4]).
( 3 ) =&#x3E;(4) is obvious.

( 4 ) =&#x3E; ( 1 ) . Let f , g : X -&#x3E; Y be two different morphisms. We de-

note by K their equalizer and by K the complement of this equalizer in

X. Because f j=. g, K # X ; because K !! K = X , K # 0 . Thus there exists

a non-zero subobject E of 1 provided with a morphism x : E - K : 

f o ( k o x ) is different from g o ( k o x ) because the equality would imply
that i-o x factorizes through k and thus 0 # E C K n K ; this is impos-
sible because K n K = 0 . a

PROPOSITION 4. Let E be a ( boolean ) to pos. 1 f E satis fies the axiom

of choice, the subobjects of 1 form a set of generators.

Let X be a non-zero object of E . We denote by E the image of
of the morphism from X to 1 : 
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E is non-zero because X is non-zero and 0 is initial strict. The axiom

of choice implies the existence of a section j : E &#x3E;-&#x3E; X of p ; the result

follows thus from proposition 3 .

PROPOSITION 5. Let E be a topos. The following conditions are equi-
val ent : 

1 ) E satisfies the weak axiom of choice ;

2 ) for any X E |E | , E / X satisfies the weak axiom o f choice.

(2) =&#x3E; (1) : choose X = 1 ; E/ 1 = E.

( 1 ) =&#x3E; ( 2 ) . The terminal obj ect of E / X is the identity on X . 

If f , g : ( A , a ) -&#x3E; ( B , b ) are two different morphisms of E / X , we denote

by E a subobj ect of 1 in E and by u : E -&#x3E; A a morphism of E , such that

g u # f u . Because any morphism with domain E is monic,

au: (E, au)-&#x3E;(X, idX)
is monic in E / X and u : ( E , a u ) -&#x3E; ( A , a ) is a morphism of E / X such

that f u # g u . 

PROPOSITION 6. Let E be a topos. The following conditions are equi-
val en t : 

1 ) E satisfies the weak axiom of choice ;

2 ) for any preordered object P o f E , the topos Ep of E-valued pre-
sheaves over P satisfies the weak axiom of choice.

(2) =&#x3E; (1): choose P=1; E 1 = E.

( 1 ) =&#x3E; (2 ). First we fix the notations; q : Q &#x3E;-&#x3E; P x P denotes the
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relations, 8 : P &#x3E;-&#x3E; Q and a : Q x Q -&#x3E; Q express the reflexivity and the asso-

iativity of the relation.

We consider the following functor T : 

which can be made into a triple (T , e , 03BC, ) : E is the topos of T-alge-
bras ( cf. [3] and [6] ).

We choose two T-algebras (x, cp) and ( y, y ) and two morphisms
§, n : (x, cp) -&#x3E; (y, y) of T-algebras which are supposed to be different.
We denote bye,’ E &#x3E;-&#x3E; 1 a subobject of 1 and by y E - A a morphism
such that § o y # n o y ;
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Recall that the terminal object of Ep is the algebra ( id p , q1 ) . We have
to find a subalgebra ( t, r) of ( idp , q1 ) and a morphism of algebras
8:(t,T) -&#x3E; (x,cp) such that § o 8 # n o 8. 

Recall that any morphism with domain E is monic. ( t, r) is defined as

beeing the free T-algebra on x y : 

t is monic : indeed if a, B : X -&#x3E; P’ are such that t a = t B, then

pl o q o i o a = p 1 oqoi o,8 because ta=tB,

p 2 o q o i o a = p2 o q o i o B because any two morphisms with target
E are equal;

thus q o i o a = q o i o B and OL=/3 because q and i are monic. y : x y - x

is a morphism of E / P and thus

is a morphism of T-algebras. We define 8 to be the composite cp o Ty ;

because cp : ( T x , 03BCx ) -&#x3E; ( x , cp ) is a morphism of T-algebras,

is also a morphism of T-algebras and thus y can be extended to E be-

cause A is a sheaf:
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Our assumption implies that ay = By and thus ay = /3y . Because this

is true for any E and any y and because the subobjects of 1 form a set

of generators in E , a=B. So ShE ( j ) has the required property.
COROLLARY. 1 f T is any topological space, the topos o f sheaves over

T satisfies the weak axiom of choice and thus its f2-object is a cogene-
rator.

It is a consequence of proposition 4 and corollary of proposition
3. 
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