# CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

## FRANCIS BORCEUX When is $\Omega$ a cogenerator in a topos?

*Cahiers de topologie et géométrie différentielle catégoriques*, tome 16, nº 1 (1975), p. 3-15

<http://www.numdam.org/item?id=CTGDC\_1975\_\_16\_1\_3\_0>

© Andrée C. Ehresmann et les auteurs, 1975, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

#### WHEN IS $\Omega$ a cogenerator in a topos? (\*)

by Francis BORCEUX (\*\*)

Let  $\underline{E}$  be a topos such that the subobjects of 1 form a set of generators; then  $\Omega$  is a cogenerator in  $\underline{E}$ . This means that the composition map  $(A, B) \rightarrow ((B, \Omega), (A, \Omega))$  is a monomorphism in the category of sets, for any objects A and B of  $\underline{E}$ . Let us now consider the composition morphism  $B^A \rightarrow (\Omega^A)^{(\Omega^B)}$  in  $\underline{E}$ ; this morphism is monic in any topos, proving that  $\Omega$  is an internal cogenerator in any topos. In particular the functor  $\Omega^{(-)}: \underline{E}^* \rightarrow \underline{E}$  is faithful for any topos  $\underline{E}$ .

If the subobjects of 1 form a set of generators in the topos  $\underline{E}$ , the same property holds in any one of the following topoi: the topoi  $\underline{E}/X$ , where X is any object of  $\underline{E}$ ; the topoi of sheaves for any topology on  $\underline{E}$ and the topoi of  $\underline{E}$ -valued presheaves over any preordered object of  $\underline{E}$ . In all these topoi,  $\Omega$  is thus a cogenerator. We also give an example of a topos in which  $\Omega$  is not a cogenerator, and another example in which  $\Omega$  is a cogenerator but the subobjects of 1 do not form a set of generators.

### 1. Cogenerators in a cartesian closed category.

In this section,  $\underline{E}$  will be a cartesian closed category. All the results of this section remain true when  $\underline{E}$  is a symmetric monoidal closed category (cf. [1]-\$5). We first define the notion of an internal cogenerator.

In the category  $\underline{S}$  of sets, an object C is a cogenerator if the composition map

(\*\*) Partially supported by a N.A.T.O. fellowship.

<sup>(\*)</sup> This paper was written during a one year visit of the author to Columbia University: I thank Professor Eilenberg who organized this visit.

F. BORCEUX

$$\mathbf{K}_{C}^{A,B}:B^{A} \longrightarrow (C^{A})^{(C^{B})}$$

which sends f to  $C^{f}$  is monic for any sets A and B. If  $\underline{E}$  is cartesian closed, such a morphism exists in  $\underline{E}$  for any objects A, B, C; we recall its construction (cf. [2]):

$$B^{A} \times A \times C^{B} \xrightarrow{ev \times id} B \times C^{B} \xrightarrow{ev} C$$
$$B^{A} \times C^{B} \xrightarrow{ev} C^{A}$$
$$K^{A,B} : B^{A} \xrightarrow{ev} (C^{A})^{(C^{B})}.$$

DEFINITION 1. Let  $\underline{E}$  be a cartesian closed category. An object  $C \in |\underline{E}|$  is called an internal cogenerator if, for any objects A and B of  $\underline{E}$ , the composition morphism  $\mathbf{K}_{C}^{A,B}: B^{A} \to (C^{A})^{(C^{B})}$  is a monomorphism.

The notion of an internal generator is defined in an analogous way using the left composition morphisms

$$\mathbf{L}_{A,B}^{C}:B^{A}\longrightarrow (B^{C})^{(A^{C})}.$$

PROPOSITION 1. 1 is an internal generator in any cartesian closed category.

If C is an internal cogenerator in the cartesian closed category  $\underline{E}$ , the maps  $(A, B) \rightarrow (C^B, C^A)$  which send f to  $C^f$  are injective (apply the limit preserving functor  $(1, \cdot)$  to the monomorphisms  $\mathbf{K}_C^{A,B}$ ); in other words, the functor  $C^{(\cdot)}: \underline{E^*} \rightarrow \underline{E}$  is faithful. It is useful to point out that the converse is true.

**PROPOSITION 2.** If  $\underline{E}$  is a cartesian closed category, the following properties are equivalent:

- (1)  $C \in |\underline{E}|$  is an internal cogenerator;
- (2) the functor  $C^{(-)}: \underline{E}^* \to \underline{E}$  is faithful.

We have already seen that (1) implies (2). Conversely let us assume that (2) is true and let us consider any morphism  $\alpha: X \to B^A$  in  $\underline{E}$ ; we denote the corresponding morphism by  $\overline{\alpha}: X \times A \to B$ . The following composites correspond to each other by the bijections defining the cartesian adjunction :

$$X \xrightarrow{\alpha} B^{A} \xrightarrow{K_{C}^{A,B}} (C^{A})^{(C^{B})}$$

$$X \times C^{B} \xrightarrow{\alpha \times id} B^{A} \times C^{B} \xrightarrow{(C^{A})} C^{A}$$

$$X \times A \times C^{B} \xrightarrow{\alpha \times id \times id} B^{A} \times A \times C^{B} \xrightarrow{ev \times id} B \times C^{B} \xrightarrow{ev \times id} C^{A}$$

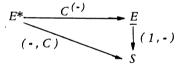
$$C^{B} \xrightarrow{C^{ev}} C^{(B^{A} \times A)} \xrightarrow{C^{a \times id}} C^{X \times A}$$

$$C^{B} \xrightarrow{C^{\overline{\alpha}}} C^{X \times A}.$$

If  $\alpha, \beta: X \to B^A$  are such that  $\mathbf{K}_C^{A,B} \circ \alpha = \mathbf{K}_C^{A,B} \circ \beta$ , then  $C^{\overline{\alpha}} = C^{\overline{\beta}}$  and thus  $\overline{\alpha} = \overline{\beta}$ ; so  $\alpha = \beta$  and  $\mathbf{K}_C^{A,B}$  is monic.

COROLLARY 1. If  $\underline{E}$  is a cartesian closed category, any cogenerator of  $\underline{E}$  is an internal cogenerator.

The following diagram is commutative :



and thus  $C^{(\cdot)}$  is faithful as soon as  $(\cdot, C)$  is faithful.

COROLLARY 2. If  $\underline{E}$  is a cartesian category such that 1 is a generator, the following conditions are equivalent:

(1)  $C \in |\underline{E}|$  is a cogenerator.

(2)  $C \in |\underline{E}|$  is an internal cogenerator.

(1, -) is faithful and thus  $C^{(-)}$  is faithful if and only if (-, C) is faithful (cf. diagram of corollary 1).

#### 2. Cogenerators in a topos.

In this section,  $\underline{E}$  is a topos. We first prove the two properties of  $\Omega$  announced in the introduction.

THEOREM 1. If <u>E</u> is any topos, the functor  $\Omega^{(-)}: E^* \to E$  is faithful and thus  $\Omega$  is an internal cogenerator.

If  $f: A \rightarrow B$  is any morphism of  $\underline{E}$ , the following diagram is commutative (cf. [4]):

So if  $f, g: A \to B$  are such that  $\Omega^f = \Omega^g$ , then  $(\Omega^B)^f = (\Omega^B)^g$  and thus  $(f, \Omega^B) = (1, (\Omega^B)^f) = (1, (\Omega^B)^g) = (g, \Omega^B).$ 

In particular, if  $\{*\}_B$  denotes the singleton morphism on B:

$$\{*\}_{B} \circ f = (f, \Omega^{B})(\{*\}_{B}) = (g, \Omega^{B})(\{*\}_{B}) = \{*\}_{B} \circ g$$

and f = g because  $\{*\}_B$  is monic.

We have proved that  $\Omega^{(-)}$  is faithful;  $\Omega$  is an internal cogenerator because of proposition 2.

THEOREM 2. Let  $\underline{E}$  be a topos. If the subobjects of 1 form a set of gerators,  $\Omega$  is a cogenerator.

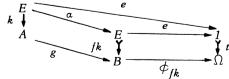
Let  $f, g: A \to B$  be two morphisms such that, for any  $\phi: B \to \Omega$ ,  $\phi f = \phi g$ . For any subobject  $e: E \rightarrow 1$  of 1 and any morphism  $k: E \to B$ , we consider the following pullback:

$$fk = \begin{bmatrix} e & & 1 \\ p.b. & & 1 \\ B & & \phi_{ik} \end{bmatrix}$$

(recall that any morphism with domain E is necessarily monic). The following equalities hold

$$\phi_{fk} \circ g \circ k = \phi_{fk} \circ f \circ k = t_E \quad (\text{ true on } E)$$

and thus there exists a unique morphism  $\alpha$  making the following diagram commutative:



But  $id_E$  is the unique morphism from E to E; thus  $\alpha = id_E$  and fk = gk. Because this is the case for any E and any k and because the subobjects of 1 form a set of generators, f = g. So  $\Omega$  is a cogenerator.

The assumption of theorem 2 (the subobjects of 1 form a set of generators) raises two questions:

1º when is this assumption realized? - some partial answers will be given in section 3;

2° is this assumption necessary? - the two following examples show that a non obvious part of the assumption is necessary.

EXAMPLE 1. Let  $\underline{E}$  be the topos of set-valued presheaves over the additive group  $\mathbf{Z}_2$ .  $\underline{E}$  is a boolean topos and its  $\Omega$ -object is not a cogenetor.

 $\mathbf{Z}_2$  is a groupoid and thus  $\underline{E}$  is boolean (cf. [4]). So  $\Omega$  is the constant functor on  $\{0,1\}$ . We denote by  $p:\{0,1\} \rightarrow \{0,1\}$  the map such that p(0)=1 and p(1)=0. Let  $F:\mathbf{Z}_2 \rightarrow \underline{S}$  be the following functor:

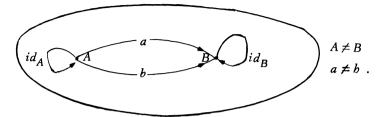
 $\begin{cases} F(*) = \{ 0, 1 \}, \\ F(0) = id \{ 0, 1 \}, \\ F(1) = p. \end{cases}$ 

The two maps  $id_{\{0,1\}}: F(*) \to F(*)$  and  $p:F(*) \to F(*)$  are two different natural transformations from F to itself.

. .

If  $\gamma: \{0, 1\} \rightarrow \{0, 1\}$  is any natural transformation from F to  $\Omega$ , the naturality implies that  $\gamma p = \gamma$  and thus no such  $\gamma$  is able to separate  $id_{\{0, 1\}}$  and p. Therefore  $\Omega$  is not a cogenerator.

EXAMPLE 2. Let  $\underline{E}$  be a topos of set-valued presheaves over the diagram  $\underline{A}$  below defining equalizers and coequalizers. The  $\Omega$ -object of  $\underline{E}$  is a cogenerator but the subobjects of 1 do not form a set of generators. We denote by  $\underline{A}$  the following category:



We first prove that the subobjects of 1 do not form a set of generators in <u>E</u>. Let us denote by  $p: \{0, 1\} \rightarrow \{0, 1\}$  the map such that p(0)=1 and p(1)=0. We define two functors  $F, G: \underline{A} \rightarrow \underline{S}$  by

$$\begin{cases}
F A = \{ 0, 1 \} \\
F B = \{ 0, 1 \} \\
F a = id \{ 0, 1 \} \\
F b = p
\end{cases}
\begin{cases}
G A = \{ 0, 1 \} \\
G B = \{ 0 \} \\
G a = c t_0 \\
G b = c t_0
\end{cases}$$

and two natural transformations  $\alpha$ ,  $\beta: F \implies G$  by:

$$\begin{cases} \alpha_A = id_{\{0,1\}} \\ \alpha_B = c t_0 \end{cases} \qquad \qquad \begin{cases} \beta_A = p \\ \beta_B = c t_0 \end{cases}.$$

 $\alpha$  and  $\beta$  are different and if  $E:\underline{A} \rightarrow \underline{S}$  and  $\gamma:E \Longrightarrow F$  are such that  $\alpha \gamma \neq \beta \gamma$ 

$$E(A) \xrightarrow{\gamma_{A}} \{0, 1\} \xrightarrow{id} \{0, 1\}$$

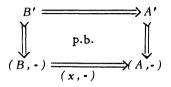
$$E(a) \downarrow E(b) \qquad id \downarrow p \qquad ct_{0} \downarrow ct_{0}$$

$$E(B) \xrightarrow{\gamma_{B}} \{0, 1\} \xrightarrow{ct_{0}} \{0\}$$

then  $\alpha_A \circ \gamma_A \neq \beta_A \circ \gamma_A$  because  $\alpha_B \circ \gamma_B = \beta_B \circ \gamma_B$ . Thus  $E(A) \neq \emptyset$ ; we choose  $x \in E(A)$ . It is clear that  $\gamma_A(x) \neq (p \circ \gamma_A)(x)$  and thus, because  $\gamma$  is a natural transformation, we have necessarily  $E(a)(x) \neq E(b)(x)$ . So E(B) contains at least two different elements and E cannot be a subobject of 1, proving that the subobjects of 1 do not form a set of generators in E.

6

We now describe  $\Omega$ . Recall that  $\Omega(X)$  is the set of subfunctors of  $(X, \cdot)$  and that  $\Omega(x): \Omega(A) \to \Omega(B)$  sends a subfunctor A' of  $(A, \cdot)$ to the subobject B' of  $(B, \cdot)$  defined by the following pullback (cf. [6]):



It is easy to see that  $\Omega$  is characterized by the following relations:

$$\Omega(A) = \{A_1, A_2, A_3, A_4, A_5\} \text{ with}$$

$$\begin{cases}A_1(A) = \emptyset \\A_1(B) = \emptyset\end{cases} \begin{cases}A_2(A) = \emptyset \\A_2(B) = \{a\}\end{cases} \begin{cases}A_3(A) = \emptyset \\A_3(B) = \{b\}\end{cases}$$

$$\begin{cases}A_4(A) = \emptyset \\A_4(B) = \{a, b\}\end{cases} \begin{cases}A_5(A) = \{id_A\} \\A_5(B) = \{a, b\}\end{cases},$$

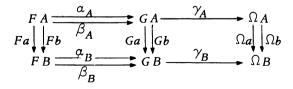
 $\Omega(B) = \{B_1, B_2\}$  with

$$\begin{cases} B_1(A) = \emptyset \\ B_1(B) = \emptyset \end{cases} \qquad \begin{cases} B_2(A) = \emptyset \\ B_2(B) = \{id_B\} \end{cases},$$

 $\Omega(a)$  and  $\Omega(b)$  are described by:

$$\Omega(a) \begin{cases} A_1 & B_1 \\ A_2 & B_2 \\ A_3 & B_1 \\ A_4 & B_2 \\ A_5 & B_2 \end{cases} \qquad \Omega(b) \begin{cases} A_1 & B_1 \\ A_2 & B_1 \\ A_3 & B_2 \\ A_4 & B_2 \\ A_5 & B_2 \end{cases}$$

We finally prove that  $\Omega$  is a cogenerator of  $\underline{E}$ . We take any two functors  $F, G: \underline{A} \rightarrow \underline{S}$  and any two natural transformations  $\alpha, \beta: F \Longrightarrow G$ such that  $\alpha \neq \beta$ . We have to build a natural transformation  $\gamma: G \Longrightarrow \Omega$ such that  $\gamma \alpha \neq \gamma \beta$ . We consider two different cases:



F. BORCEUX

First case:  $\alpha_A \neq \beta_A$ .

We denote by  $x \in FA$  an element such that  $\alpha_A(x) \neq \beta_A(x)$ . We define  $\gamma$  by the following relations

$$\gamma_A (\alpha_A (x)) = A_4$$
  

$$\gamma_A (y) = A_5 \text{ if } y \neq \alpha_A (x)$$
  

$$\gamma_B (z) = B_2 \text{ for any } z \in GB$$

Second case:  $a_B \neq \beta_B$ .

We denote by  $x \in FB$  an element such that  $\alpha_B(x) \neq \beta_B(x)$ . We define  $\gamma$  by the following relations:

$$\begin{split} \gamma_B(\alpha_B(x)) &= B_1 \\ \gamma_B(z) &= B_2 \text{ if } z \neq \alpha_B(x) \\ \gamma_A(y) &= A_1 \text{ if } (Ga)(y) = \alpha_B(x) \text{ and } (Gb)(y) = \alpha_B(x) \\ \gamma_A(y) &= A_3 \text{ if } (Ga)(y) = \alpha_B(x) \text{ and } (Gb)(y) \neq \alpha_B(x) \\ \gamma_A(y) &= A_2 \text{ if } (Ga)(y) \neq \alpha_B(x) \text{ and } (Gb)(y) = \alpha_B(x) \\ \gamma_A(y) &= A_4 \text{ if } (Ga)(y) \neq \alpha_B(x) \text{ and } (Gb)(y) \neq \alpha_B(x) \end{split}$$

It is easy to see that in the two cases,  $\gamma$  is a natural transformation such that  $\gamma \alpha \neq \gamma \beta$ . Thus  $\Omega$  is a cogenerator in  $\underline{E}$ .

#### 3. The weak axiom of choice.

By «weak axiom of choice» we mean, for a topos, the fact that the subobjects of 1 form a set of generators; this terminology is due to W. MITCHELL (cf. [6]) and makes sense because of the property we recall in proposition 4 below. In this section we give different conditions under which a topos satisfies the weak axiom of choice. Recall that the weak axiom of choice implies, for a topos, that  $\Omega$  is a cogenerator (theorem 2).

Proposition 3 generalizes proposition 3.12 of [4].

**PROPOSITION 3.** Let  $\underline{E}$  be a boolean topos. The following conditions are equivalent:

- 1) the subobjects of 1 form a set of generators;
- 2) the non-zero subobjects of 1 form a set of generators;

3) an object  $X \in |\underline{E}|$  is non-zero if and only if there exists a non-zero subobject E of 1 provided with a morphism  $E \rightarrow X$ ;

4) if an object  $X \in |\underline{E}|$  is non-zero, there exists a non-zero subobject of 1 provided with a morphism  $E \to X$ .

 $(1) \Longrightarrow (2)$  is obvious.

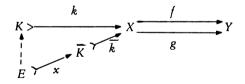
(2)  $\Longrightarrow$  (3). If  $X \in |\underline{E}|$  is non-zero, the two morphisms  $t_X$  (true on X) and  $f_X$  (false on X) from X to  $\Omega$  are different and thus there exists a non-zero subobject E of 1 provided with a morphism  $E \xrightarrow{x} X$  such that  $f_X \circ x \neq t_X \circ x$ :

$$E \xrightarrow{x} X \xrightarrow{f_X} \Omega$$

If there exists a non-zero subobject E of 1 provided with a morphism  $E \xrightarrow{x} X$ , X is a non-zero; indeed, if X were zero, E would also be zero because 0 is initial strict (cf. [4]).

 $(3) \Longrightarrow (4)$  is obvious.

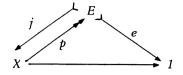
(4)  $\Longrightarrow$  (1). Let  $f, g: X \to Y$  be two different morphisms. We denote by K their equalizer and by  $\overline{K}$  the complement of this equalizer in X. Because  $f \neq g, K \neq X$ ; because  $K \coprod \overline{K} = X, \overline{K} \neq 0$ . Thus there exists a non-zero subobject E of 1 provided with a morphism  $x: E \to \overline{K}$ :



 $f \circ (\overline{k} \circ x)$  is different from  $g \circ (\overline{k} \circ x)$  because the equality would imply that  $\overline{k} \circ x$  factorizes through k and thus  $0 \neq E \subset K \cap \overline{K}$ ; this is impossible because  $K \cap \overline{K} = 0$ .

**PROPOSITION 4.** Let  $\underline{E}$  be a (boolean) topos. If  $\underline{E}$  satisfies the axiom of choice, the subobjects of 1 form a set of generators.

Let X be a non-zero object of  $\underline{E}$ . We denote by E the image of of the morphism from X to 1:



*E* is non-zero because *X* is non-zero and *0* is initial strict. The axiom of choice implies the existence of a section j: E > X of *p*; the result follows thus from proposition 3.

**PROPOSITION 5.** Let  $\underline{E}$  be a topos. The following conditions are equivalent:

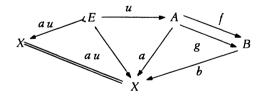
- 1)  $\underline{E}$  satisfies the weak axiom of choice;
- 2) for any  $X \in |\underline{E}|$ ,  $\underline{E}/X$  satisfies the weak axiom of choice.

(2)  $\Longrightarrow$  (1) : choose X = 1;  $E / 1 \simeq E$ .

(1)  $\Longrightarrow$  (2). The terminal object of  $\underline{E} / X$  is the identity on X. If  $f, g: (A, a) \rightarrow (B, b)$  are two different morphisms of  $\underline{E} / X$ , we denote by E a subobject of 1 in  $\underline{E}$  and by  $u: E \rightarrow A$  a morphism of  $\underline{E}$ , such that  $gu \neq fu$ . Because any morphism with domain E is monic,

 $au:(E, au) \longrightarrow (X, id_X)$ 

is monic in  $\underline{E}/X$  and  $u:(E, au) \rightarrow (A, a)$  is a morphism of  $\underline{E}/X$  such that  $fu \neq gu$ .



**PROPOSITION 6.** Let  $\underline{E}$  be a topos. The following conditions are equivalent:

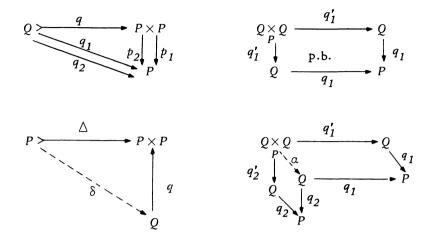
1)  $\underline{E}$  satisfies the weak axiom of choice;

2) for any preordered object P of  $\underline{E}$ , the topos  $\underline{E}^{P}$  of  $\underline{E}$ -valued presheaves over P satisfies the weak axiom of choice.

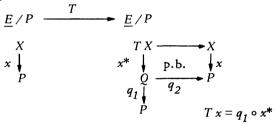
(2)  $\Longrightarrow$  (1): choose P = 1;  $\underline{E}^1 \simeq \underline{E}$ .

(1)  $\Longrightarrow$  (2). First we fix the notations;  $q: Q \rightarrow P \times P$  denotes the

relation,  $\delta: P \rightarrow Q$  and  $\alpha: Q \underset{P}{\times} Q \rightarrow Q$  express the reflexivity and the associativity of the relation.

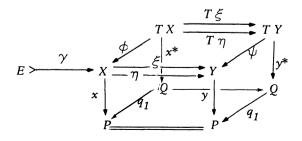


We consider the following functor T:

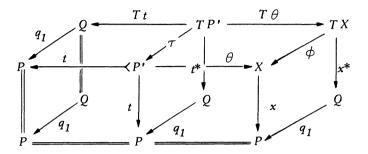


which can be made into a triple  $(T, \varepsilon, \mu)$ :  $\underline{E}^{P}$  is the topos of T-algebras (cf. [3] and [6]).

We choose two T-algebras  $(x, \phi)$  and  $(y, \psi)$  and two morphisms  $\xi, \eta:(x, \phi) \rightarrow (y, \psi)$  of T-algebras which are supposed to be different. We denote by  $e: E \rightarrow 1$  a subobject of 1 and by  $\gamma: E \rightarrow A$  a morphism such that  $\xi \circ \gamma \neq \eta \circ \gamma$ :



Recall that the terminal object of  $\underline{E}^P$  is the algebra  $(id_P, q_1)$ . We have to find a subalgebra  $(t, \tau)$  of  $(id_P, q_1)$  and a morphism of algebras  $\theta:(t, \tau) \rightarrow (x, \phi)$  such that  $\xi \circ \theta \neq \eta \circ \theta$ .



Recall that any morphism with domain E is monic.  $(t, \tau)$  is defined as beeing the free T-algebra on  $x\gamma$ :

$$i = (x\gamma)^{*} \bigvee_{Q}^{P'} \xrightarrow{q_{2}}_{P \text{ b. }} \bigvee_{X\gamma} \qquad t = q_{1} \circ i$$

$$q_{1} \bigvee_{P} \qquad P \qquad \tau = \mu_{x\gamma} : T^{2}(x\gamma) \to T(x\gamma)$$

$$P' = T(x\gamma) .$$

t is monic: indeed if  $\alpha, \beta: X \rightarrow P'$  are such that  $t\alpha = t\beta$ , then

 $p_1 \circ q \circ i \circ \alpha = p_1 \circ q \circ i \circ \beta$  because  $t \alpha = t \beta$ ,

 $p_2 \circ q \circ i \circ \alpha = p_2 \circ q \circ i \circ \beta$  because any two morphisms with target E are equal;

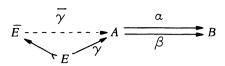
thus  $q \circ i \circ \alpha = q \circ i \circ \beta$  and  $\alpha = \beta$  because q and i are monic.  $\gamma : x \gamma \to x$ is a morphism of  $\underline{E} / P$  and thus

$$T\gamma:(t,\tau)=(T(x\gamma),\mu_{x\gamma})\rightarrow(Tx,\mu_{x})$$

is a morphism of T-algebras. We define  $\theta$  to be the composite  $\phi \circ T\gamma$ ; because  $\phi:(Tx, \mu_x) \to (x, \phi)$  is a morphism of T-algebras,

$$\theta:(t,\tau) \longrightarrow (x,\phi)$$

is also a morphism of T-algebras and thus  $\gamma$  can be extended to E because A is a sheaf:



Our assumption implies that  $\alpha \overline{\gamma} = \beta \overline{\gamma}$  and thus  $\alpha \gamma = \beta \gamma$ . Because this is true for any E and any  $\gamma$  and because the subobjects of 1 form a set of generators in  $\underline{E}$ ,  $\alpha = \beta$ . So  $Sh_{\underline{E}}(j)$  has the required property. COROLLARY. If T is any topological space, the topos of sheaves over T satisfies the weak axiom of choice and thus its  $\Omega$ -object is a cogene-

It is a consequence of proposition 4 and corollary of proposition 3.

#### Bibliography

rator.

- F. BORCEUX and G. M. KELLY, A notion of limit for enriched categories, Bul. Austr. Math. Soc. 12 (1975), 49-72.
- [2] S. EILENBERG and G.M. KELLY, Closed categories, Proc. Conf. on Cat. Alg., La Jolla (1965).
- [3] S. EILENBERG and J.C. MOORE, Adjoint functors and triples, *Ill. J. of Math.* V-2 (1965), 381-398.
- [4] P. FREYD, Some aspects of topoi, Bull. of the Austr. Math. Soc. 7-1 (1972), 1-76.
- [5] W. MITCHELL, Boolean topoi and the theory of sets, J. Pure and App. Alg. (Oct. 1972).
- [6] M. TIERNEY, Sheaf theory and the continuum hypothesis, Proc. of the Halifax Conf. on Category theory, intuitionistic Logic and Algebraic Geometry, Springer, Lect. Notes in Math. 274 (1973).

Institut Mathématique 2 chemin du Cyclotron 1348 Louvain-la-Neuve BELGIUM.