CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

Rodiani Voreadou

Some remarks on the subject of coherence

Cahiers de topologie et géométrie différentielle catégoriques, tome 15, no 4 (1974), p. 399-417
http://www.numdam.org/item?id=CTGDC_1974_15_4_399_0
© Andrée C. Ehresmann et les auteurs, 1974, tous droits réservés.
L'accès aux archives de la revue «Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

SOME REMARKS ON THE SUBJECT OF COHERENCE *

by Rodiani VOREADOU

Introduction

In the search for a passage from the result of [3] to a complete solution of the coherence problem for closed categories, we observed that a careful study of the proof of Proposition 7.8 of [3] suggests the very existence of a class π of allowable graphs (in the sense of [3]), which permits an improvement of the results of [3] and [4] by replacing the restriction to allowable natural transformations between proper shapes by the restriction to the allowable natural transformations with graphs not in π. The corresponding extensions of the results of [3] and [4] are given in $\$ 1$, with all the necessary details of proofs. In the case of closed categories, the present result (Theorem 2 of § 1) may be weaker than the theorem in [6], but it has the advantages of simplicity and of being obtained by a method which seems to be directly applicable to other situations, where a cut-elimination theorem (of the kind described in [2]) together with a Kelly-MacLane ([3], [4]) method of proof have been, or can be, used. For the latter situations, some conjectured coherence theorems as resulting from the application of the method of $\S 1$ are stated in paragraph 2.
§ 3 contains an observation on the possible relationship between coherence and some extensions of the notion of graph of a natural transformation.
§ 4 is a statement (without full proofs) of further results on closed categories, this time with respect to the non-commutativity of certain diagrams. The example given in [3] (and mentioned in § 3), of a non-commutative diagram in closed categories, is one of a whole class of pairs (b, b^{\prime}) of allowable (with respect to closed categories) natural transformations with $\Gamma b=\Gamma b^{\prime}$ and $b \neq b^{\prime}$. A class \mathcal{O}° of such pairs is

[^0]described in $\S 4$. By Theorem 2 of $\S 1$, such pairs must have graphs in π. It is indicated in $\S 4$ that, for every $\xi \in \mathbb{\Pi}$, there is a pair (b, b^{\prime}) of allowable natural transformations with $\Gamma b=\Gamma b^{\prime}=\xi$ and $b \neq b^{\prime}$. In this sense, Theorem 2 of $\S 1$ is the best coherence result for closed categories obtainable by using graphs only.

The terminology and notation of [3], [4] and [6] will be used.

1. An extension of the Kelly-MacLane theorems on coherence for closed categories and for closed naturalities.

Let π_{0} be the class of those allowable graphs which can be written in the form $\langle>$ in two ways:

$$
\begin{aligned}
& \xi: S \xrightarrow{x}([B, C] \otimes A) \otimes D \xrightarrow{\langle f\rangle \otimes 1} C \otimes D \xrightarrow{g} T \\
& \xi: S \xrightarrow{x^{\prime}}\left(\left[B^{\prime}, C^{\prime}\right] \otimes A^{\prime}\right) \otimes D^{\prime} \xrightarrow{\left\langle f^{\prime}\right\rangle \otimes 1} C^{\prime} \otimes D^{\prime} \xrightarrow{g^{\prime}} T
\end{aligned}
$$

with $1^{\circ} B$ and B^{\prime} non-constant,
$2^{\circ} f$ and f^{\prime} not of the form $\langle>$,
$3^{\circ}[B, C]$ associated with a prime factor of A^{0} via $x^{\prime} x^{-1}$,
$4^{0}\left[B^{\prime}, C^{\prime}\right]$ associated with a prime factor of A via $x\left(x^{\prime}\right)^{-1}$
but cannot be written in any of the forms «central», \otimes or π.
Let π be the smallest class of allowable graphs satisfying:
$\pi_{1} . \pi_{0}$ is contained in the class,
M2. if $f: T \rightarrow S$ is in the class and $u: T^{\prime} \rightarrow T, v: S \rightarrow S^{\prime}$ are central, then $v f u: T^{\prime} \rightarrow S^{\prime}$ is in the class,

M3. if at least one of allowable $f: A \rightarrow C$ and $g: B \rightarrow D$ is in the class then $f \otimes g: A \otimes B \rightarrow C \otimes D$ is in the class,

M4. if $f: A \otimes B \rightarrow C$ is in the class, so is $\pi(f): A \rightarrow[B, C]$,
Ms. if at least one of allowable $f: A \rightarrow B$ and $g: C \otimes D \rightarrow E$ is in the class, then $g(<f>\otimes 1):([B, C] \otimes A) \otimes D \rightarrow E$ is in the class.

Then, working as for Proposition 6.2 of [3], we prove that, for each $\xi \in \mathbb{M}$, at least one of the following is true:
(*1) $\xi \in \pi_{0}$,
(*2) $\xi=y(f \otimes g) x$, with x and y central, f and g allowable and non* trivial and at least one of f and g is in M,
(*3) $\xi=y \pi(f)$ with y central and $f \in \mathbb{M}$,
(*4) $\xi=g(<f\rangle \otimes 1) x$ with x central, f and g allowable and at least one of f and g is in π.

Now, using the above result that each element of Π is of at least one of the forms $\left({ }^{*} 1\right)-\left(*^{*}\right)$, we prove, by induction on rank, the following analog of Theorem 2.1 of [3]:

THEOREM 1. There is a finite test for deciding whether an allowable graph is in Π.

Theorem 2.4 of [3] can now be extended to :
THEOREM 2. If $b, b^{\prime} ; T \rightarrow S$ are allowable natural transformations and $\Gamma b=\Gamma b^{\prime} \notin \mathbb{M}$, then $b=b^{\prime}$.

To prove Theorem 2, follow [3] until the end of the Remark on p. 130; then add the three propositions below; using these, the proof of Theorem 2 is done by an induction similar to that of the proof of Theorem 2.4 in [3].

PROPOSITION A. Lemma 7.5 of [3] bolds with (a),(b) and (d) only. PROPOSITION B. Let $b: P \otimes Q \rightarrow M \otimes N$ be an allowable morphism in \underline{H}. Suppose that the graph Γb is of the form $\xi \otimes \eta$ for graphs $\xi: P \rightarrow M$ and $\eta: Q \rightarrow N$. Then there are allowable morphisms $p: P \rightarrow M, q: Q \rightarrow N$ such that $b=p \otimes q, \Gamma p=\xi, \Gamma q=\eta$.

PROPOSITION C. Let $b:([Q, M] \otimes P) \otimes N \rightarrow S$ be an allowable morphism in \underline{H}, with $[Q, M]$ non-constant. Suppose that $\Gamma b \notin \mathbb{M}$ and Γb is of the form $\eta(<\xi>\otimes 1)$ for graphs $\xi: P \rightarrow Q, \eta: M \otimes N \rightarrow S$. Suppose finally that ξ cannot be written in the form

$$
P \stackrel{\omega}{\rightarrow}([F, G] \otimes E) \otimes H \xrightarrow{\rho(\langle\sigma\rangle \otimes 1)} Q
$$

for any graphs ω, ρ, σ with ω central. Then there are allowable morphisms $p: P \rightarrow Q, q: M \otimes N \rightarrow S$ such that

$$
b=q(\langle p\rangle \otimes 1), \Gamma p=\xi, \Gamma q=\eta .
$$

PROOF OF PROPOSItion b. Proposition B is the analog of Proposition 7.6 of [3] and we follow a similar proof. Work as in the proof of Proposition 7.6 in [3], until case <>. If b is of type <>, with the notation of Proposition 6.2 of [3], we may suppose (as in [3]) that [B,C] is associated via x with a prime factor of P. Let A_{P} (resp. A_{Q}) be an iterated \otimes-product of the prime factors of A associated with prime factors of P (resp. Q) via x. There is a central $z: A \rightarrow A_{P} \otimes A_{Q}$. If $r\left(A_{Q}\right)=$ 0 , then (since none of the prime factors of Q is constant) $A_{Q}=I$ and all the prime factors of A are associated via x with prime factors of P and this case is done in [3]. If $r\left(A_{Q}\right)>0$, then, since the mate under Γb of any element of $v\left(A_{Q}\right)$ is in $v\left(A_{Q}\right)$ by the hypotheses and the form of b, the composite

has graph of the form $\sigma \otimes \tau$, so, by induction, $b^{-1} f z^{-1}$ is $s \otimes t$ for allowable $s: A_{P} \rightarrow B$ and $t: A_{Q} \rightarrow I$ with $\Gamma s=\sigma$ and $\Gamma t=\tau$. Then, with x^{\prime} being the composite of x with the obvious central

$$
\begin{gathered}
([B, C] \otimes A) \otimes D \rightarrow\left(\left([B, C] \otimes A_{P}\right) \otimes D\right) \otimes A_{Q} \\
b=b(g \otimes 1)((<s>\otimes 1) \otimes t) x^{\prime}=b(g(<s>\otimes l) \otimes t) x^{\prime},
\end{gathered}
$$

i.e. b is of the form \otimes and this case is already done.

PROOF OF PROPOSITION C. Proposition C is the analog of Proposition 7.8 of [3] and we follow a similar proof. As in [3], we may assume that P, N and S have no constant prime factors. Work as in the proof of Proposition 7.8 in [3], for the cases of b being central or of type π.

If b is of the form $y(f \otimes g) x$ for allowable $f: A \rightarrow C$ and $g: B \rightarrow D$ and central x and y, we may (as in [3]) suppose that $[Q, M]$ is associated via x with a prime factor of A. Let P_{A} (resp. P_{B}) be an iterated \otimes-product of the prime factors of P associated via x with prime factors of A (resp. B). There is a central $z: P \rightarrow P_{A} \otimes P_{B}$. If $r\left(P_{B}\right)=$ 0 , then (since P has no constant prime factors) $P_{B}=I$ and all the prime
factors of P are associated with prime factors of A via x; continue as in [3] for this case, observing that $\Gamma(f s) \notin M$ (in [3]). If $r\left(P_{B}\right)>0$, let ϕ be the composite

$$
b^{-1} b\left(\left(1 \otimes z^{-1}\right) \otimes 1\right) u^{-1}:\left(\left([Q, M] \otimes P_{A}\right) \otimes N\right) \otimes P_{B} \rightarrow S \otimes I
$$

where u is the obvious central

$$
\left([Q, M] \otimes\left(P_{A} \otimes P_{B}\right)\right) \otimes N \rightarrow\left(\left([Q, M] \otimes P_{A}\right) \otimes N\right) \otimes P_{B}
$$

The mate of an element of $v\left(P_{B}\right)$ under $\Gamma \phi$ is in $v(P)+v(Q)$ by hypothesis and in $v(B)+v(D)+v(S)$ by the form of b, so it must be in $v\left(P_{B}\right)$. So $\Gamma \phi$ is of the form $\sigma \otimes \tau$ where $\sigma:\left([Q, M] \otimes P_{A}\right) \otimes N \rightarrow S$ is the obvious restriction of Γh; by Proposition $\mathrm{B}, \phi=s \otimes t$ for allowable

$$
s:\left([Q, M] \otimes P_{A}\right) \otimes N \rightarrow S \text { and } t: P_{B} \rightarrow I
$$

$r\left(P_{B}\right)>0$ implies $r(s)<r(b) ; \sigma=\eta\left(\left\langle\xi^{\prime}\right\rangle \otimes 1\right)$, where $\xi^{\prime}: P_{A} \rightarrow Q$ is the obvious restriction of ξ, and $\sigma \notin \mathbb{M}$; so, by induction, $s=q\left(\left\langle p^{\prime}\right\rangle \otimes 1\right)$ for allowable $p^{\prime}: P_{A} \rightarrow Q$ and $q: M \otimes N \rightarrow S$. Take $p=b\left(p^{\prime} \otimes t\right) z: P \rightarrow Q$. Then

$$
\begin{aligned}
b & =b \phi u((1 \otimes z) \otimes 1)=b(s \otimes 1)(1 \otimes t) u((1 \otimes z) \otimes 1) \\
& =b(q \otimes 1)\left(\left(\left\langle p^{\prime}\right\rangle \otimes 1\right) \otimes 1\right)(1 \otimes t) u((1 \otimes z) \otimes 1) \\
& =q\left(\left\langle p^{\prime}\right\rangle \otimes 1\right) b(1 \otimes t) u((1 \otimes z) \times 1) \\
& =q\left(\left\langle p^{\prime}\right\rangle \otimes 1\right) b u((1 \otimes(1 \otimes t)) \otimes 1)((1 \otimes z) \otimes 1)=(\text { by Theorem 4.9 of } \\
{[3] } & =q\left(\left\langle p^{\prime}\right\rangle \otimes 1\right)((1 \otimes b) \otimes 1)((1 \otimes(1 \otimes t)) \otimes 1)((1 \otimes z) \otimes 1) \\
& =q\left(\left\langle p^{\prime}\right\rangle \otimes 1\right)((1 \otimes b(1 \otimes t) z) \otimes 1) \\
& =q\left(\left\langle b\left(p^{\prime} \otimes t\right) z\right\rangle \otimes 1\right)=q(\langle p\rangle \otimes 1)
\end{aligned}
$$

and $\Gamma p=\xi, \Gamma q=\eta$.
If b is of type <>, we distinguish cases (i), (ii), (iii) as in [3], and use the notation of [3]. We may assume that f is not of the form <> and $[B, C]$ is not constant (see the proof of Theorem 2.4 in [3]) in subcase I of case (ii) below. Case (i). [Q, M] is associated with $[B, C]$ via x. Then, as in [3], $B=Q, M=C$ and b is
with $f: A \rightarrow Q$. Let P_{A} (resp. P_{D}, resp. N_{A}, resp. N_{D}) be an iterated \otimes-product of the prime factors of P (resp. P, resp. N, resp. N) associated with prime factors of A (resp. D, resp. A, resp. D) via x. There are central $z: P \rightarrow P_{A} \otimes P_{D}$ and $w: N \rightarrow N_{A} \otimes N_{D}$. The mate of an element of $v\left(P_{D}\right)$ under Γh is in $v(P)+v(Q)$ by hypothesis and by the form of b, in $v(M)+v(D)+v(S)$, so it must be in $v\left(P_{D}\right)$. The mate of an element of $v\left(N_{A}\right)$ under Γb is in $v(M)+v(N)+v(S)$ by hypothesis and in $v(A)+v(Q)$ by the form of b, so it must bein $v\left(N_{A}\right)$.
Subcase I: $r\left(P_{D} \otimes N_{A}\right)=0$. Then (since no prime factor of P or N is constant) $P_{D}=I, N_{A}=I$ and all prime factors of P (resp. N) are associated with prime factors of A (resp. D) via x; continue as in [3] for this case.
Subcase II: $r\left(P_{D}\right)>0$ and $r\left(N_{A}\right)>0$. Let ϕ be the composite

$$
\begin{gathered}
a b^{-1} b^{-1} b\left(\left(1 \otimes z^{-1}\right) \otimes w^{-1}\right) u^{-1}: \\
\left(\left([Q, M] \otimes P_{A}\right) \otimes N_{D}\right) \otimes\left(P_{D} \otimes N_{A}\right) \rightarrow S \otimes(I \otimes I)
\end{gathered}
$$

where u is the obvious central
$\left([Q, M] \otimes\left(P_{A} \otimes P_{D}\right)\right) \otimes\left(N_{A} \otimes N_{D}\right) \rightarrow\left(\left([Q, M] \otimes P_{A}\right) \otimes N_{D}\right) \otimes\left(P_{D} \otimes N_{A}\right)$.
$\Gamma \phi$ is of the form $\sigma \otimes \tau$ where $\sigma:\left([Q, M] \otimes P_{A}\right) \otimes N_{D} \rightarrow S$ is the obvious restriction of Γh; by Proposition $\mathrm{B}, \phi=s \otimes t$ for allowable

$$
s:\left([Q, M] \otimes P_{A}\right) \otimes N_{D} \rightarrow S \text { and } t: P_{D} \otimes N_{A} \rightarrow I \otimes I
$$

Also by Proposition $\mathrm{B}, t=t_{1} \otimes t_{2}$ for allowable $t_{1}: P_{D} \rightarrow I$ and $t_{2}: N_{A} \rightarrow I$. $r\left(P_{D} \otimes N_{A}\right)>0$ implies $r(s)<r(b) ; \sigma=\eta^{\prime}\left(\left\langle\xi^{\prime}\right\rangle \otimes 1\right)$, where $\xi^{\prime}:$ $P_{A} \rightarrow Q$ and $\eta^{\prime}: M \otimes N_{D} \rightarrow S$ are the obvious restrictions of ξ and η, and $\sigma \notin \Pi$; so, by induction, $s=q^{\prime}\left(\left\langle p^{\prime}\right\rangle \otimes 1\right)$ for allowable $p^{\prime}: P_{A} \rightarrow Q$ and $q^{\prime}: M \otimes N_{D} \rightarrow S$. Take

$$
p=b\left(p^{\prime} \otimes t_{1}\right) z: P \rightarrow Q \text { and } q=b\left(q^{\prime} \otimes t_{2}\right) a^{-1}(1 \otimes c w): M \otimes N \rightarrow S
$$

Then

$$
b=b b a^{-1} \phi u((1 \otimes z) \otimes w)
$$

$$
\begin{aligned}
&= b b a^{-1}(s \otimes 1)\left(1 \otimes\left(t_{1} \otimes 1\right)\right)\left(1 \otimes\left(1 \otimes t_{2}\right)\right) u((1 \otimes z) \otimes w) \\
&= b b a^{-1}\left(q^{\prime} \otimes 1\right)\left(\left(<p^{\prime}>\otimes 1\right) \otimes 1\right)\left(1 \otimes\left(t_{1} \otimes 1\right)\right)\left(1 \otimes\left(1 \otimes t_{2}\right)\right) u((1 \otimes z) \otimes w) \\
&= b b a^{-1}\left(q^{\prime} \otimes\left(1 \otimes t_{2}\right)\right)\left(\left(<p^{\prime}>\otimes 1\right) \otimes 1\right)\left(1 \otimes\left(t_{1} \otimes 1\right)\right) u((1 \otimes z) \otimes w) \\
&(\text { using Theorem } 4.9 \text { of }[3]) \\
&= b\left(q^{\prime} \otimes t_{2}\right)(1 \otimes b c)\left(\left(<p^{\prime}>\otimes 1\right) \otimes 1\right)\left(1 \otimes\left(t_{1} \otimes 1\right)\right) u((1 \otimes z) \otimes w) \\
&= b\left(q^{\prime} \otimes t_{2}\right)(1 \otimes b c)\left(\left(<p^{\prime}>\otimes 1\right) \otimes\left(t_{1} \otimes 1\right)\right) u((1 \otimes z) \otimes w) \\
&(\text { using Theorem } 4.9 \text { of }[3]) \\
&= b\left(q^{\prime} \otimes t_{2}\right)(1 \otimes b c)\left(1 \otimes c b^{-1}\right) a^{-1}(1 \otimes c)\left(<b\left(p^{\prime} \otimes t_{1}\right)>\otimes 1\right)((1 \otimes z) \otimes w) \\
&= b\left(q^{\prime} \otimes t_{2}\right) a^{-1}(1 \otimes c w)\left(<b\left(p^{\prime} \otimes t_{1}\right) z>\otimes 1\right)=q(<p>\otimes 1) \\
& \text { and } \Gamma p=\xi, \Gamma q=\eta .
\end{aligned}
$$

Subcase III: $r\left(P_{D}\right)>0$ and $r\left(N_{A}\right)=0$. Then (since N has no constant prime factors) $N_{A}=I$ and all prime factors of N are associated with prime factors of D via x. Let ϕ be the composite

$$
b^{-1} b\left(\left(1 \otimes z^{-1}\right) \otimes 1\right) v^{-1}:\left(\left([Q, M] \otimes P_{A}\right) \otimes N\right) \otimes P_{D} \rightarrow S \otimes I
$$

where v is the obvious central

$$
\left([Q, M] \otimes\left(P_{A} \otimes P_{D}\right)\right) \otimes N \rightarrow\left(\left([Q, M] \otimes P_{A}\right) \otimes N\right) \otimes P_{D}
$$

$\Gamma \phi$ is of the form $\sigma \otimes \tau$ where $\sigma:\left([Q, M] \otimes P_{A}\right) \otimes N \rightarrow S$ is the obvious restriction of Γb; by Proposition $\mathrm{B}, \phi=s \otimes t$ for allowable $t: P_{D} \rightarrow I$ and $s:\left([Q, M] \otimes P_{A}\right) \otimes N \rightarrow S . \quad r\left(P_{D}\right)>0$ implies $r(s)<r(b)$;

$$
\sigma=\eta\left(<\xi^{\prime}>\otimes 1\right)
$$

where $\xi^{\prime}: P_{A} \rightarrow Q$ is the obvious restriction of ξ, and $\sigma \notin \mathbb{M}$; so, by induction, $s=q\left(\left\langle p^{\prime}\right\rangle \otimes 1\right)$ for allowable $p^{\prime}: P_{A} \rightarrow Q$ and $q: M \otimes N \rightarrow S$. Take $p=b\left(p^{\prime} \otimes t\right) z: P \rightarrow Q$. Then

$$
\begin{aligned}
b & =b \phi v((1 \otimes z) \otimes 1)=b(1 \otimes t)(s \otimes 1) v((1 \otimes z) \otimes 1) \\
& =b(1 \otimes t)(q \otimes 1)\left(\left(<p^{\prime}>\otimes 1\right) \otimes 1\right) v((1 \otimes z) \otimes 1) \\
& =b(q \otimes 1)\left(\left(\left\langle p^{\prime}\right\rangle \otimes 1\right) \otimes t\right) v((1 \otimes z) \otimes 1) \\
& =q b((e \otimes 1) \otimes 1)\left(\left(\left(1 \otimes p^{\prime}\right) \otimes 1\right) \otimes t\right) v((1 \otimes z) \otimes 1)
\end{aligned}
$$

```
=qb((e\otimes1)\otimes1)v((1\otimes( p}\otimes\otimest))\otimes1)((1\otimesz)\otimes1
=q(e\otimes1)bv((1\otimes( p}\otimes|t))\otimes1)((1\otimesz)\otimes1
    (by Theorem 4.9 of [3])
=q(e\otimes1)((1\otimesb)\otimes1)((I\otimes( p}\otimes|t))\otimes1)((1\otimesz)\otimes1)=q(<p>\otimes1
```

and $\Gamma p=\xi, \Gamma q=\eta$.

Subcase IV: $r\left(P_{D}\right)=0$ and $r\left(N_{A}\right)>0$. Then (since P has no constant prime factors) $P_{D}=I$ and all prime factors of P are associated with prime factors of A via x. Let ϕ be the composite

$$
b^{-1} b\left(1 \otimes w^{-1} c\right) a:\left(([Q, M] \otimes P) \otimes N_{D}\right) \otimes N_{A} \rightarrow S \otimes I
$$

$\Gamma \phi$ is of the form $\sigma \otimes \tau$ where $\sigma:([Q, M] \otimes P) \otimes N_{D} \rightarrow S$ is the obvious restriction of $\Gamma b ;$ by Proposition $B, \phi=s \otimes t$ for allowable $t: N_{A} \rightarrow I$ and $s:([Q, M] \otimes P) \otimes N_{D} \rightarrow S . \quad r\left(N_{A}\right)>0$ implies $r(s)<r(b) ; \sigma=$ $\left.\eta^{\prime}(<\xi\rangle \otimes 1\right)$, where $\eta^{\prime}: M \otimes N_{D} \rightarrow S$ is the obvious restriction of η, and $\sigma \notin \Pi$; so, by induction, $s=q^{\prime}(\langle p\rangle \otimes 1)$ for allowable $p: P \rightarrow Q$ and q^{\prime} : $M \otimes N_{D} \rightarrow S$. Take $q=b\left(q^{\prime} \otimes t\right) a^{-1}(1 \otimes c w): M \otimes N \rightarrow S$. Then

$$
\begin{aligned}
b & =b \not \subset a^{-1}(1 \otimes c w)=b(1 \otimes t)(s \otimes 1) a^{-1}(1 \otimes c w) \\
& =b(1 \otimes t)\left(q^{\prime} \otimes 1\right)\left((\langle p>\otimes 1) \otimes 1) a^{-1}(1 \otimes c w)\right. \\
& =b\left(q^{\prime} \otimes 1\right)(1 \otimes t)((<p>\otimes 1) \otimes 1) a^{-1}(1 \otimes c w) \\
& =b\left(q^{\prime} \otimes t\right) a^{-1}(1 \otimes c w)(<p>\otimes 1)=q(<p>\otimes 1)
\end{aligned}
$$

and $\Gamma p=\xi, \Gamma q=\eta$.
Case (ii). [Q,M] is associated with a prime factor of A via x.
Subcase I: $[B, C]$ associated with a prime factor of P via x. Then we may assume that f is not of type $\langle>$ and $[B, C]$ is not constant (see the proof of Theorem 2.4 in [3]). Suppose that Γf can be written in the form $\langle>$ as $\Gamma f=\zeta(\langle\lambda\rangle \otimes 1) \tau$ for a central graph

$$
\tau: A \rightarrow([X, Y] \otimes Z) \otimes W
$$

and allowable graphs

$$
\lambda: Z \rightarrow X \quad \text { and } \quad \zeta: Y \otimes W \rightarrow B .
$$

We may assume $[X, Y]$ is non-constant and λ cannot be written in the
form $\langle>$ as above. Let t be the central morphism in \underline{H} with $\Gamma t=\tau$. Then $\Gamma\left(f t^{-1}\right) \in \mathbb{M}$ since $\Gamma f \in \mathbb{K}$,

$$
r\left(f t^{-1}\right)=r(f)<r(b)
$$

and

$$
\Gamma\left(f t^{-1}\right):([X, Y] \otimes Z) \otimes W \rightarrow B
$$

is of the form $\zeta(\langle\lambda\rangle \otimes 1)$: by induction, there are allowable morphisms $l: Z \rightarrow X, z: Y \otimes W \rightarrow B$ such that

$$
f t^{-1}=z(\langle l\rangle \otimes 1), \quad \Gamma l=\lambda, \quad \Gamma z=\zeta .
$$

Then $f=z(<l\rangle \otimes 1) t$, contrary to our assumption. So Γf cannot be written in the form $\langle>$. This implies that Q is non-constant. Also, the hypothesis that ξ cannot be written in the form \rangle implies that B is nonconstant. Then $\Gamma b \notin \Pi$ implies that Γb is (also) of one of the types π, \otimes and «central». Γb cannot be central because, by the form of b and Γb, the mates of variables in B and Q (B and Q being non-constant) cannot be in $v(S)$. If Γb is of type \otimes, then, by Proposition B, b is also of type \otimes and this case is done. If Γb is of type π, then $S=[K, L]$ and

$$
\pi^{-1}(\Gamma b)=\Gamma\left(\pi^{-1}(b)\right):(([Q, M] \otimes P) \otimes N) \otimes K \rightarrow L
$$

is of type \rangle, not in \mathbb{N} and with rank lower than $r(b)$; so, by induction, $\pi^{-1}(b)=\hat{q}(\langle p\rangle \otimes 1)$ for allowable $p: P \rightarrow Q$. and $q:(M \otimes N) \otimes K \rightarrow L$. Then

$$
b=\pi(\hat{q}(\langle p>\otimes 1))=\pi(\hat{q})(\langle p\rangle \otimes 1)=q(\langle p\rangle \otimes 1)
$$

for $q=\pi(\hat{q}): M \otimes N \rightarrow S$, and $\Gamma p=\xi, \Gamma q=\eta$.
Subcase II: $[B, C]$ associated with a prime factor of N via x. Let P_{A} (resp. P_{D}) be an iterated \otimes-product of the prime factors of P associated with prime factors of A (resp. D) via x. There is a central $z: P \rightarrow P_{A} \otimes P_{D}$. If $r\left(P_{D}\right)=0$, then (since P has no constant prime factors) $P_{D}=I$ and every prime factor of P is associated with a prime factor of A via x; continue as in [3] for this case, observing that $\Gamma(f t) \notin \mathbb{M}$ (in [3]). If $r\left(P_{D}\right)>0$, let ϕ be the composite

$$
b^{-1} b\left(\left(1 \otimes z^{-1}\right) \otimes 1\right) u:\left(\left([Q, M] \otimes P_{A}\right) \otimes N\right) \otimes P_{D} \rightarrow S \otimes I,
$$

where u is the obvious central

$$
\left(\left([Q, M] \otimes P_{A}\right) \otimes N\right) \otimes P_{D} \rightarrow\left([Q, M] \otimes\left(P_{A} \otimes P_{D}\right)\right) \otimes N
$$

The mate of an element of $v\left(P_{D}\right)$ under $\Gamma \phi$ is in $v(P)+v(Q)$ by hypothesis and in $v(C)+v(D)+v(S)$ by the form of b, so it must be in $\nu\left(P_{D}\right)$. So $\Gamma \phi$ is of the form $\sigma \otimes \tau$ where $\sigma:\left([Q, M] \otimes P_{A}\right) \otimes N \rightarrow S$ is the obvious restriction of Γh; by Proposition $B, \phi=s \otimes t$ for allowable $s:\left([Q, M] \otimes P_{A}\right) \otimes N \rightarrow S$ and $t: P_{D} \rightarrow I$. Then

$$
b=b \notin u^{-1}((1 \otimes z) \otimes 1)=y^{\prime}(s \otimes t) x^{\prime}
$$

with x^{\prime} and y^{\prime} central, i.e. b is of type \otimes and this case is done.
Case (iii). [$Q, M]$ is associated with a prime factor of D via x.
Subcase I: $[B, C]$ associated with a prime factor of P via x. Let N_{A} (resp. N_{D}) be an iterated \otimes-product of the prime factors of N associated with prime factors of A (resp. D) via x. There is a central w : $N \rightarrow N_{A} \otimes N_{D}$. If $r\left(N_{A}\right)=0$, then (since N has no constant prime factors) $N_{A}=I$ and every prime factor of N is associated via x with a prime factor of D, i.e. every prime factor of A is associated with a prime factor of P via x; as in [3], this case is excluded, since it implies that ξ is of the form $\rho(\langle\sigma\rangle \otimes 1) \omega$ with ω central. If $\left.r\left(N_{A}\right)\right\rangle 0$, let ϕ be the composite

$$
b^{-1} b\left(1 \otimes w^{-1} c\right) a:\left(([Q, M] \otimes P) \otimes N_{D}\right) \otimes N_{A} \rightarrow S \otimes I
$$

The mate of an element of $v\left(N_{A}\right)$ under $\Gamma \phi$ is in $v\left(m_{1}+v(N)+v(S)\right.$ by hypothesis and in $v(A)+v(B)$ by the form of b, so it must be in $v\left(N_{A}\right)$. So $\Gamma \phi$ is of the form $\sigma \otimes \tau$ where $\sigma:([Q, M] \otimes P) \otimes N_{D} \rightarrow S$ is the obvious restriction of Γh; by Proposition $B, \phi=s \otimes t$ for allowable $s:([Q, M] \otimes P) \otimes N_{D} \rightarrow S$ and $t: N_{A} \rightarrow I$. Then

$$
b=b \phi a^{-1}(1 \otimes c w)=y^{\prime}(s \otimes t) x^{\prime}
$$

with x^{\prime} and y^{\prime} central, i.e. b is of the type \otimes and this case is done. Subcase II: $[B, C]$ associated with a prime factor of N via x. Let P_{A} and P_{D} be as in case (ii). If $r\left(P_{A}\right)=0$, then (since P has no constant prime factors) every prime factor of P is associated via x with
a prime factor of D; continue as in [3] for this case, observing that $\zeta \notin \Pi$ (in [3]). If $r\left(P_{A}\right)>0$, let ϕ be the composite

$$
\left(\left([Q, M] \otimes P_{D}\right) \otimes N\right) \otimes P_{A} \xrightarrow{v}([Q, M] \otimes P) \otimes N \xrightarrow{b} S \xrightarrow{b^{-1}} S \otimes I
$$

where v is the obvious central. The mate of an element of $v\left(P_{A}\right)$ under $\Gamma \phi$ is in $v(P)+v(Q)$ by hypothesis and in $v(A)+v(B)$ by the form of b, so it must be in $v\left(P_{A}\right)$. So $\Gamma \phi$ is of the form $\sigma \otimes \tau$, where $\sigma:\left([Q, M] \otimes P_{D}\right) \otimes N \rightarrow S$ is the obvious restriction of Γb; by Propoposition $3, \phi=s \otimes t$ for allowable

$$
s:\left([Q, M] \otimes P_{D}\right) \otimes N \rightarrow S \quad \text { and } \quad t: P_{A} \rightarrow I
$$

Then $b=b \phi v^{-1}=y^{\prime}(s \otimes t) x^{\prime}$ with x^{\prime} and y^{\prime} central, i.e. b is of type \otimes and this case is done.

If we replace graphs by N-graphs in defining π_{0}, we define a class π_{0} of N-allowable N-graphs. (Note that the fact that ξ, in this definition of $\pi_{o_{N}}$, is of the form <>, excludes the possibility of its being of type «unblocked string».) Then, by modifying definitions and propositions above in the way the analogous part of [3] is modified in [4], we obtain the definition of a class π_{N} of N-allowable N-graphs (which is essentially π) and the following extension of Theorem 2.4_{N} of [4]:

THEOREM 1_{N}. There is a finite test for deciding whether a N-allowable N-graph is in π_{N}.
THEOREM 2_{N}. If W is any naturality and $f, f^{\prime}:|T|_{W} \rightarrow|S|_{W}$ are N-allowable natural transformations with $\Gamma_{N} f=\Gamma_{N} f^{\prime} \notin \Pi_{N}$, then $f=f^{\prime}$.

2. Conjectures, based on the idea behind the class π of $\S 1$.

a) The result of $[5]$ (with the notation of [5] and with Πr being the obvious analog of Π for D-graphs) may be improved to: Let $b, b^{\prime}: T \rightarrow S$ be two morphisms in N, such that $\Gamma b=\Gamma b^{\prime} \notin \Pi$ and $\Delta b=\Delta b^{\prime} \notin \Pi^{\prime}$. Then $b=h^{\prime}$.
b) The result of [1] (with the terminology of [1]) may be improved
to: We bave for L the coberence result that $f, g: P \rightarrow Q$ are equal if $\Gamma f=$ $\Gamma g \notin \mathbb{R}$.
c) In the case of biclosed categories (i.e. monoidal categories in which $-\otimes B$ has a right adjoint $[B,-]$ with d and e the unit and counit of the adjunction, and $B \otimes$ - has a right adjoint $\langle B,-\rangle$ with d^{\prime} and e^{\prime} the unit and counit of the adjunction), write

$$
\begin{aligned}
& \pi(f) \text { for the composite } A \xrightarrow{d}[B, A \otimes B] \xrightarrow{[1, f]}[B, C], \\
& \pi^{\prime}(g) \text { for the composite } A \xrightarrow{d^{\prime}}\langle B, B \otimes A>\xrightarrow{\langle 1, g\rangle}\langle B, C>, \\
& \bar{f} \text { for the composite }[B, C] \otimes A \xrightarrow{1 \otimes f}[B, C] \otimes B^{e} C, \\
& \hat{g} \text { for the composite } A \otimes<B, C>\xrightarrow{g \otimes 1} B \otimes<B, C>\stackrel{e}{ }_{\rightarrow}^{\rightarrow} C,
\end{aligned}
$$

Proceeding as in [3] (see also [2]) we define allowable natural transformations and graphs and we find that, for each allowable $b: T \rightarrow S$, at least one of the following is true :
(** 1) b is central,
$\left({ }^{* *} 2\right) b$ is $\quad T^{x} A \otimes B \xrightarrow{f \otimes g} C \otimes D \xrightarrow{y} S$ with f, g allowable and nontrivial and x, y central,
$(* * 3) b$ is $T \xrightarrow{\pi(f)}[B, C] \xrightarrow{y} S$ with f allowable and y central,
(**4) b is $T \xrightarrow{\pi^{\prime}(f)}<B, C>\stackrel{y}{\rightarrow} S$ with f allowable and y central,
(**5) b is

$$
T \xrightarrow{x} F \otimes(([B, C] \otimes A) \otimes D) \xrightarrow{1 \otimes(\bar{f} \otimes 1)} F \otimes(C \otimes D)^{g} S
$$

with f, g allowable and x central.
(**6) b is

$$
T \xrightarrow{x}(D \otimes(A \otimes<B, C>)) \otimes F \xrightarrow{(1 \otimes \hat{f}) \otimes 1}(D \otimes C) \otimes F \xrightarrow{g} S
$$

with f, g allowable and x central.
Take π_{0}^{*} to be the class of those allowable graphs which can be written in the forms (**5) and (**6):

$$
\begin{aligned}
& \xi: T \xrightarrow{x} F \otimes(([B, C] \otimes A) \otimes D) \xrightarrow{1 \otimes(\bar{f} \otimes 1)} F \otimes(C \otimes D)^{g} S, \\
& \left.\xi: T^{x^{\prime}}\left(D^{\prime} \otimes\left(A^{\prime} \otimes<B^{\prime}, C^{\prime}\right\rangle\right)\right) \otimes F^{\prime} \xrightarrow{\left(1 \otimes \hat{f}^{\prime}\right) \otimes 1}\left(D^{\prime} \otimes C^{\prime}\right) \otimes F^{\prime} \xrightarrow{g^{\prime}} S,
\end{aligned}
$$

with

1) B and B^{\prime} non-constant,
2) f not of the form (${ }^{*} 5$) and f^{\prime} not of the form (**6),
3) $[B, C]$ associated with a prime factor of A^{\prime} via $x^{\prime} x^{-1}$,
4) $\left\langle B^{\prime}, C^{\prime}\right\rangle$ associated with a prime factor of A via $x\left(x^{\prime}\right)^{-1}$, but cannot be written in any of the forms (**1)-(**4). If $\pi^{* *}$ is the class of allowable graphs generated by π_{0}^{*} (and $\otimes,[],,<,>$ and composition), we may have the following theorem: If $b, b^{\prime}: S \rightarrow T$ are allowable natural transformations and $\Gamma b=\Gamma b^{\prime} \notin \pi *$, then $b=b^{\prime}$.

3. On the possible relationship between coherence and extensions of the notion of graph of a natural transformation.

There are evidences that, in a general theory of coherence, the notion of graph between shapes (in the sense of linkages between variables) may be replaced by an appropriate use of something broader (call it "superextended graph" here, informally) involving linkages between variables (as in graphs), between constants and between names of functors, with the possibility of certain things being linked with themselves. Examples:
I. In the case of closed categories, graphs do not suffice for deciding equality of natural transformations, as the example of [3] shows: if k_{A} is the composite (the familiar map to double dual)

$$
\begin{array}{r}
\stackrel{d}{\rightarrow}[[A, I], A \otimes[A, I]] \xrightarrow{[1, c]}[[A, I],[A, I] \otimes A] \\
\downarrow[1, e]
\end{array}
$$

then

$$
k[A, I]\left[k_{A}, I\right] \neq 1:[[[A, I], I], I] \rightarrow[[[A, I], I], I]
$$

although $\Gamma 1=\Gamma\left(k[A, I]\left[k_{A}, I\right]\right)$. In this case, taking extended graphs* ([6]) (ie. graphs together with appropriate linkages between $I ' s)$ we have $G 1 \neq G\left(k[A, I]\left[k_{A}, I\right]\right)$, since

and

$$
G\left(k_{[A, I]}\left[k_{A}, I\right]\right) \text { is }[[[A, I], I], I] \rightarrow[[[A, I], I], I] \text {. }
$$

Proper use of extended graphs can give additional information (which was inaccessible with graphs) on coherence (see [6] and $\$ 4$ below).
II. In the case of an adjunction $F^{-1} G$, the triangle

is not commutative, although $\Gamma 1=\Gamma\left(F \eta_{a} \varepsilon_{F a}\right)$; taking the obvious superextended graphs, we have $G^{*} 1 \neq G^{*}\left(F \eta_{a} \varepsilon_{F a}\right)$, since

and

$$
G^{*}\left(F \eta_{a} \varepsilon_{F a}\right) \text { is } F G \underset{\sim}{F} \underbrace{G F a} .
$$

III. Taking the functor Δ together with Γ in [5] can be considered as an application of the idea of superextended graphs (with all I's linked with themselves).
4. Non-commutative diagrams in closed categories -or, why Theorem 2 of § 1 is the best coherence result for closed categories obtainable by using graphs only.

This paragraph is a preliminary note on the subject and, as such,

[^1]mostly descriptive; missing technical details and proofs will appear in [7].

Let W_{0} be the class of those pairs (b, b^{\prime}) of allowable natural transformations which satisfy the following conditions:
b and b^{\prime} have the same domain, the same codomain and the same graph, and they can be written in the form <> as

$$
\begin{aligned}
b & : S^{x}([B, C] \otimes A) \otimes D \xrightarrow{\langle f\rangle \otimes 1} C \otimes D \xrightarrow{g} T \\
b^{\prime}: & S^{\dot{x}^{\prime}}\left(\left[B^{\prime}, C^{\prime}\right] \otimes A^{\prime}\right) \otimes D^{\prime} \xrightarrow{\left\langle f^{\prime}\right\rangle \otimes 1} C^{\prime} \otimes D^{\prime} \xrightarrow{g^{\prime}} T
\end{aligned}
$$

with 1) B and B^{\prime} non-constant,
2) Γf and Γf^{\prime} not of the form \rangle,
3) $[B, C]$ associated with a prime factor of A^{\prime} via $x^{\prime} x^{-1}$,
4) $\left[B^{\prime}, C^{\prime}\right]$ associated with a prime factor of A via $x\left(x^{\prime}\right)^{-1}$, but neither b nor b^{\prime} can be written in any of the forms "central», \otimes or π.

THEOREM 3. For every $\left(b, b^{\prime}\right) \in \mathcal{O}_{0}, b \neq b^{\prime}$.
To prove Theorem 3, we give a closed category \mathcal{K} in which, for every $\left(b, b^{\prime}\right) \in \mathcal{O}_{0}, b$ and b^{\prime} have different components. A brief description of K is given in the last part of this paragraph.

THEOREM 4. For every $\xi \in \mathbb{M}$, there is a pair $\left(b, b^{\prime}\right)$ of allowable natural transformations such that $\Gamma b=\Gamma b^{\prime}=\xi$ and $b \neq b^{\prime}$.

PROOF. We do induction on rank. Suppose the theorem is true for all smaller values, if any, of $r(\xi)$. Using $\S 1$, we distinguish cases according as ξ is of the form $\left({ }^{*} 1\right),\left({ }^{*} 2\right),\left(*_{3}\right)$ or (*4). If ξ is of the form (*1), i.e. $\xi \in \pi_{0}$, then, by Theorem 2.3 of [3], there is $\left(b, b^{\prime}\right) \in \mathcal{O}_{0}$ with $\Gamma b=\Gamma b^{\prime}=\xi$ and, by Theorem 3, $b \neq b^{\prime}$. If ξ is of the form (*2), $\xi=m\left(\zeta_{1} \otimes \zeta_{2}\right) n$ with m and n central, ζ_{i} allowable non-trivial and at least one of them in Π; by Theorem 4.9 of [3], there are central natural transformations x, y with $\Gamma x=n, \Gamma y=m$; using the induction hypothesis or Theorem 2.3 of [3] according as $\zeta_{i} \in \Pi$ or $\zeta_{i} \notin \Pi$, we find
pairs of allowable natural transformations (k_{i}, k_{i}^{\prime}) with $\Gamma k_{i}=\Gamma k_{i}^{\prime}=\zeta_{i}$ and $k_{i} \neq k_{i}^{\prime}$ or $k_{i}=k_{i}^{\prime}$ according as $\zeta_{i} \in \mathbb{N}$ or $\zeta_{i} \notin \mathbb{\Pi}$; since at least one of ζ_{1}, ζ_{2} is in \mathbb{M}, we have

$$
b=y\left(k_{1} \otimes k_{2}\right) x \neq y\left(k_{1}^{\prime} \otimes k_{2}^{\prime}\right) x=b^{\prime} \quad \text { and } \quad \Gamma b=\Gamma b^{\prime}=\xi .
$$

The remaining cases are done in a similar way, since

$$
f \neq f^{\prime} \text { implies } y \pi(f) \neq y \pi\left(f^{\prime}\right)
$$

and
$f \neq f^{\prime}$ and $/$ or $g \neq g^{\prime}$ implies $g(\langle f\rangle \otimes 1) x \neq g^{\prime}\left(\left\langle f^{\prime}\right\rangle \otimes 1\right) x$, for central x, y and the appropriate domains and codomains.

Let \mathcal{W} be the smallest class of pairs of allowable natural transformations satisfying :
(9) 1. 20.0 is contained in the class,

W2. If $\left(f, f^{\prime}: T \rightarrow S\right)$ is in the class and $u: T^{\prime} \rightarrow T, v: S \rightarrow S^{\prime}$ are central, then ($\left.v f u, v f^{\prime} u: T^{\prime} \rightarrow S^{\prime}\right)$ is in the class,

28 3. If at least one of ($\left.f_{1}, f_{1}^{\prime}: A \rightarrow C\right)$ and ($\left.f_{2}, f_{2}^{\prime}: B \rightarrow D\right)$ is in the class and $f_{i}=f_{i}^{\prime}$ in case $\left(f_{i}, f_{i}^{\prime}\right)$ is not in the class, then

$$
\left(f_{1} \otimes f_{2}, f_{1}^{\prime} \otimes f_{2}^{\prime}: A \otimes B \rightarrow C \otimes D\right) \text { is in the class. }
$$

244. If ($f, f^{\prime}: A \otimes B \rightarrow C$) is in the class, then

$$
\left(\pi(f), \pi\left(f^{\prime}\right): A \rightarrow[B, C]\right) \text { is in the class. }
$$

285. If at least one of $\left(f_{1}, f_{1}^{\prime}: A \rightarrow B\right)$ and ($\left.f_{2}, f_{2}^{\prime}: C \otimes D \rightarrow E\right)$ is in the class and $f_{i}=f_{i}^{\prime}$ in case $\left(f_{i}, f_{i}^{\prime}\right)$ is not in the class, then

$$
\left.\left.\left(f_{2}\left(<f_{1}\right\rangle \otimes 1\right), f_{2}^{\prime}\left(<f_{1}^{\prime}\right\rangle \otimes 1\right):([B, C] \otimes A) \otimes D \rightarrow E\right) \text { is in the class. }
$$ THEOREM 5. For every $\left(b, b^{\prime}\right) \in \mathbb{O}, b \neq b^{\prime}$.

We now turn to a description of the category K which is used in the proof of Theorem 3. The construction and the good properties (with respect to our purpose) of K are based on facts about «E-graphs»and «simple graphs" (see [6]) and, in order to make the present exposition readable, we start by (non-rigourously) reminding the reader of these notions.

The E-graphs (extended graphs) are ordinary graphs together with linkages between I's, with the possibility of I's linked with themselves allowed. The E-graph of any component of a, b, c, d, e has linkages between I's as if the I's were variables, except in the case of b, where the last I of the domain is linked with itself. E-graphs are composed like graphs. The rules AM1-AMS of [3] (pP . 105-106) applied to E-graphs (with a, a^{-1}, b, c, d, e now being the E-graphs of the natural transformations with these names, and with b^{-1} replaced by b^{-1}, the obvious E-graph of b^{-1}, since b is not an isomorphism in the category of E-graphs) define the class of allowable E-graphs.

A shape S is simple if either $S=I$ or else any I that appears in S is alone in an inside right place of [,]. For any shape S there is a (well defined) natural isomorphism $l_{S}: S \rightarrow S_{0}$ with S_{0} simple; we denote by λ_{S} the E-graph of l_{S}. For any E-graph $\xi: T \rightarrow S, \xi_{0}: T_{0} \rightarrow S_{0}$ is the composite $\lambda_{S} \xi \lambda_{T}^{-1}$.

We write «instance» for both ordinary and expanded instance.
If $k: S \rightarrow T$ is a natural transformation, $k_{\text {const }}$ denotes a component of k in which every variable in S and T has been replaced by some constant shape.
[const, const] denotes a shape $[A, B]$ with A and B constant.

A string of E-graphs is a finite sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of E-graphs such that $\partial_{1} x_{i}=\partial_{0} x_{i+1}$ for $i=1,2, \ldots, n-1$; the string is allowable if every x_{i} is an instance of one of $a, a^{-1}, b, b^{-1}, c, d, e, l$; we say that a shape S is involved in the string if S appears as a subshape (proper or not) of the domain or codomain of some x_{i}; we say that the string involves y if $x_{i}=y$ for some i.

For shapes S and T, let $X\left(S_{0}, T_{0}\right)$ be the class of all allowable E-graphs $\xi: S_{0} \rightarrow T_{0}$ such that $\xi=\xi_{n}, . \xi_{1}$, where $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is an allowable string of E-graphs not involving any instance of $c_{\text {const }}$ nor any shape [const, const]. Let X be the category whose objects are the simple shapes and in which, for any simple shapes S and T,

$$
\operatorname{Hom} X(S, T)=X(S, T) .
$$

In $X\left(S_{0}, T_{0}\right)$, define a relation $R_{0}\left(S_{0}, T_{0}\right)$ by: $(\xi, \eta) \in R_{0}\left(S_{0}, T_{0}\right)$ iff there are allowable strings of E-graphs

$$
\left\{\xi_{1}, \ldots, \xi_{n}\right\},\left\{\eta_{1}, \ldots, \eta_{m}\right\},\left\{\xi_{1}^{\prime}, \ldots, \xi_{k}^{\prime}\right\},\left\{\eta_{1}^{\prime}, \ldots, \eta_{l}^{\prime}\right\}
$$

such that

1) $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{m}\right\}$ do not involve any [const, const],
2) $\left\{\xi_{1}, \ldots, \xi_{k}{ }^{\prime}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{l}{ }^{\prime}\right\}$ are gotten from $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{m}\right\}$, respectively, by the replacement of each instance of $c_{\text {const }}$ by a string of instances of elements of $\left\{a_{\text {const }}, a_{\text {const }}^{-1}, 1_{\text {const }}\right\}$ between domain and codomain of the replaced instance of $c_{\text {const }}$,
3) $\xi_{n} \ldots \xi_{1}=\eta_{m} \ldots \eta_{1} \in X\left(S_{0}, T_{0}\right)$,
4) $\xi=\xi_{k}^{\prime} \ldots \xi_{1}^{\prime}$ and $\eta=\eta_{l}^{\prime} \ldots \eta_{1}^{\prime}$.

Let $R\left(S_{0}, T_{0}\right)$ be the equivalence relation in $X\left(S_{0}, T_{0}\right)$ generated by $R_{0}\left(S_{0}, T_{0}\right)$.

In $A_{r r} X$, let R be the equivalence relation defined by:

$$
\begin{gathered}
\xi R \eta \text { iff } \partial_{0} \xi=\partial_{0} \eta=S\left(=S_{0}\right), \partial_{1} \xi=\partial_{1} \eta=T\left(=T_{0}\right) \\
\text { and }(\xi, \eta) \in R(S, T) .
\end{gathered}
$$

R is compatible with composition of E-graphs. Denote the R-equivalence class of z by $(z)_{R}$.
\mathcal{K} is the category whose objects are shapes and, for any shapes S and $T, \operatorname{Hom} K(S, T)=X\left(S_{0}, T_{0}\right) / R$. Composition in K is (well) defined by $(\eta)_{R} \circ(\xi)_{R}=(\eta \circ \xi)_{R}$.

Functors $\tilde{\otimes}: \mathcal{K} \times \mathbb{K} \rightarrow \mathcal{K}$ and $\tilde{[}, \tilde{]}: \mathcal{K}$ op $\times \mathcal{K} \rightarrow \mathcal{K}$ are (well) defined by :
on objects, $S \tilde{\otimes} T=S \otimes T$ and $\tilde{[} S, T \tilde{]}=[S, T]$,
on arrows,
$(\xi)_{R} \tilde{\otimes}(\eta)_{R}=\left((\xi \otimes \eta)_{0}\right)_{R}$ and $\left[(\xi)_{R},(\eta)_{R} \tilde{]}=\left(([\xi, \eta])_{0}\right)_{R}\right.$.
Natural transformations $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}, \tilde{e}$ satisfying the axioms for a closed category exist, with components

$$
\begin{gathered}
\tilde{a}_{A B C}=\left(\left(a_{A B C}\right)_{0}\right)_{R}:(A \tilde{\otimes} B) \tilde{\otimes} C \rightarrow A \tilde{\otimes}(B \tilde{\otimes} C), \\
\tilde{b}_{A}=\left(\left(b_{A}\right)_{0}\right)_{R}: A \tilde{\otimes} I \rightarrow I,
\end{gathered}
$$

$$
\begin{aligned}
& \tilde{c}_{A B}=\left\{\begin{array}{l}
\left(\left(c_{A B}\right)_{0}\right)_{R}: A \tilde{\otimes} B \rightarrow B \tilde{\otimes} A, \text { if at most one of } A \text { and } B \text { is cons- } \\
\operatorname{tant}, \\
\left(1_{I}=1_{\left.(A \otimes B)_{0}\right)_{R}: A \tilde{\otimes} B \rightarrow B \tilde{\otimes} A, \text { if both } A \text { and } B \text { are constant, }}\right.
\end{array}\right. \\
& \tilde{d}_{A B}=\left(\left(d_{A B}\right)_{0}\right)_{R}: A \rightarrow[B, A \tilde{\otimes} B \tilde{]}, \\
& \tilde{e}_{A B}=\left(\left(e_{A B}\right)_{0}\right)_{R}: \tilde{[} A, B \tilde{]} \tilde{\theta} A \rightarrow B \text {. }
\end{aligned}
$$

REFERENCES

[1] R. BLACKWELL, Coherence for V-natural transformations, Abstracts of the Sydney Category Theory Seminar 1972 (the University of New South Wales), 56-57.
[2] G.M. KELLY, A Cut Elimination Theorem, Lecture Notes in Math. 281 Springer (1972), 196-213.
[3] G.M. KELLY and S. MACLANE, Coherence in Closed Categories, J. Pure and Applied Algebra 1 (1971), 97-140.
[4] G.M. KELLY and S. MACLANE, Closed Coherence for a Natural Transformation, Lecture Notes in Math. 281, Springer (1972), 1-28.
[5] G. LEWIS, Coherence for a Closed Functor, Lecture Notes in Math. 281 Springer (1972), 148-195.
[6] R. VOREADOU, A Coherence Theorem for Closed Categories, Ph. D. Thesis, The University of Chicago, 1972 .
[7] R. VOREADOU, Non-commutative diagrams in closed categories (to appear).
P.O. Box 1335, Omonia

ATHENES
GRECE

[^0]: * Conférence donnée au Colloque d'Amiens (1973)

[^1]: * (G means *extended graph of ${ }^{\text {) }}$

