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GENERALIZED ADAMS COMPLETION

by

Aristide DELEANU, Armin FREI and Peter HILTON

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. X V -1

0. Introduction.

In [3] Deleanu and Hilton showed how, in the stable homotopy

category, localization and profinite completion, in the sense of Sullivan

[12], could be subsumed under a general categorical completion process

suggested by Adams. If e is the stable homotopy category and h a homolo-

gy theory on C, we consider the family S = S (h) of morphisms of ren-

dered invertible by h and form the category of fractions C [S-1] . Then
for a given object Y of C we define Yb to be that object, if such exists,

for which there exists a natural equivalence of contravariant functors from

e to Ens , the category of sets,

We call Yh the Adams completion or h-completion of Y. If h is reduced

homology with coefficients in Zp , the integers localized at the family of
primes P , then Yh exists and is just the (stable) P-localization of Y;

thus, Yh = Yp . If h is reduced homology with coefficients in Z/p, the

integers modulo the prime p , then, again, Yh exists and is the (stable)

p-prof ini te completion of Y; thus Yh = Yp .
In this paper we generalize our approach considerably. In the

first place, we no longer work stably. Moreover, we do not, in developing
the theory, even assume that we have a functor given on C, but merely
consider a family S of morphisms of with respect to which we cons-
truct the category of fractions e (S -1] . We then study conditions under
which, to a given object Y of C, we may associate Z in e such that

the analog of ( 0.1 ) holds,
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If Z exists, we call it the S-completion of Y . It turns out that the

theory is very different according to whether we ask that a given Y admit
such a Z (the local completion problem), or that every Y in e admit

such a Z (the global completion problem ) . We devote Section 1 to a con-

sideration of the local problem. Here we show that, provided S is satura-

ted and admits a calculus of left fractions [6] , then Z is the S-comple-
tion of Y if and only if there exists a morphism e : Y - Z in S with a cer-

tain co-universal property, generalizing part of Theorem 3.2 of [3-t . There
is also described a sufficient condition for S to admit a calculus of left

fractions, which is appl ied in Section 3. Section 1 closes with a descrip-
tion of the somewhat different situation which arises when S admits a

a calculus of right fractions.

Section 2 is concerned with the global problem. Here our results

consist largely of a collation of relevant facts drawn from [5,6], but
set in the context and language appropriate to our purposes. In this case

it turns out that, if the global S-completion exists, and S is saturated,

then S does admit a calculus of left fractions. Thus the hypotheses of our

main theorem in Section 1 are seen to be entirely reasonable, since the

question of the existence of a global S -completion is clearly central

to the continuing investigation. It is further proved in Section 2 that the

category of fractions (? [ S -1] is equivalent to the category of S-com-

plete objects, thus generalizing a theorem of Quillen [11] (see Example
3.2). We give two examples of global S -completions outside the con-

text of Adams completions, reserving examples of the (non-stable) Adams

completion to Section 3 . A further exampl e of global S-completion is to be

found on p. 73 of [61 , where S is the collection of anodyne extensions in
the homotopy category of pointed semi-simplicial complexes. We close

Section 2 with an example of the dual concept of a global S-cocompletion.
In Section 3 we specialize to the (non-stable) Adams completion,

We obtain a non-stable version of the Deleanu-Hilton result in [3] , iden-
tifying the Adams h-completion Yh with Yp, Yp respectively, in case

the homology theory h is reduced homology with coefficients in ZP ,
Z/p respectively, and C is the homotopy category of 1-connected based
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spaces of the homotopy type of a CW-complex. We note that Adams [14 1

and Deleanu [15] have proved independently that the Adams completion

Yh exists for any additive homology theory defined on the category
above (modulo a set-theoretical assumption which seems to be required
on foundational grounds). Here we merely prove the encouraging result

that, for any reasonable category to which one might want to apply a

homology theory h , the family S of morphisms rendered invertible by h
admits a calculus of left fractions.

1. Local S-completions.

We consider a category and suppose given a family S of mor-

phisms of e. Let C [S -1] be the category of fractions with respect

to S and let FS : C .... C[ S -1] be the canonical functor. We say that S

is saturated if f E S whenever FS (f) is invertible. Notice that a satura-

ted family always contains all invertible morphisms of S and is closed

under composition. We will call a family having these last two properties
closed, so that a saturated family is closed. The following proposition
is evident.

PROPOSITION 1. 1 . A farrlily S of morphisms of e is saturated if and

only if there exists a functor F:C-&#x3E;D such that S is the collection of

morphisms f such that F f is invertible.

Fix an object Y in We say that Y is S-completable if the

contravariant functor C [S-1] ( - , Y): C -&#x3E; Ens is representable. If Z

is the representing object, we call Z the completion of Y . Of course Z , if

it exists, is determined up to a canonical equivalence. If Z is canonically

equivalent to Y itself, we say that Y is S-compl ete. We prove (see [3]):

THEOREM 1.2. Let S be a saturated family of morphisms of e admit-
ting a calculus of left fractions. Then the object Z is the S-completion
of the object Y if and only if there exists e : Y -&#x3E; Z in S which is co-

universal : given s : Y - Z1 in S, there exists a unique t : Z1-&#x3E; Z such
that ts=e.
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Notice that, since S is saturated, t is automatically in S . We

may also express the co-universality of e by saying that e is terminal in

the category C(Y ; S) whose objects are morphisms of S with source Y,

and whose morphisms t: s1 -&#x3E; s2 are morphisms (of S ) with t s1 = s2 .

PROOF OF THEOREM 1.2. Assume that Z is the S-completion of Y , so

that there is a natural equivalence of functors

Set e = r (1Y) : Y -&#x3E; Z . Given s : Y -&#x3E; Z1 , we have the commutative dia-

gram (1)

Buts is invertible in C [s -1] , so that s t is bijective; so therefore

is s* , thus proving the co-universality of e .

It remains to show that e is in S . Since S is saturated, it suffi-

ces to show that FS ( e ) i s invertible. Define a e C [ S -1] (Z, Y) by

r(a) = 1Z ; we will show that cx is inverse to FS (e) . To this end, con-
sider the commutative diagram

Then Thus

(1) Here, and subsequently, we write ,
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so that

Finally we must show that FS ( e ) o a = 1Z ; it is at this point
that we require the hypothesis that S admits a calculus of left fractions.

For this hypothesis implies that a may be written as

We may thus construct the diagram

Define and let r()=h. Then

It follows that

Conversely, suppose given e : Y - Z in S which is co-universal.

Since e is in S,

so it remains to show that FS induces an equivalence

First, F,,* is surj ective; for if a e C [S -1] (X, Z), then we may repre-
sent a by

However, the co-universality of e readily implies (Proposition 3.4 of

[3] ) the existence of t in S , t : Z1-&#x3E;Z with t s = 1 . Thus
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Second, FS * is injective; for if Fs(fl )=Fs(f2), where f1,f2Ee(X,Y),
then, since S admits a calculus of left fractions, we infer the existence

of s in S with s f1 = s f2 . But, again, s : Z -&#x3E; Z1 admits a left inverse t ,

so that f1 = f2 , and the theorem is proved.

RE M A RKS. 1. In the course of the proof we constructed e : Y - Z out of

r: C [S -1] (-, Y) = C (-, Z), and T out of e . These two processes

are mutually inverse. That e -&#x3E; r -&#x3E; e is obvious. To show that r -&#x3E; e -&#x3E;r

observe that if T is the natural equivalence F-1 S* o e t determined by e

and if a is represented by

then r (a) = tg, where t : Z1 -&#x3E; Z is given by the co-universal property
to satisfy t s = e . Consider the diagram

Let Thus

so r (B) = t. Then

so that r = T, as required.
2 . In the course of the proof we saw that

This shows that an S-compl etion is S-compl ete, under the hypotheses of

the theorem.

Theorem 1.2 suggests that we should seek useful criteria for S to

admit a calculus of left fractions. The following yields a condition veri-

fied in applications to general homology theories.
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T H E O R E M 1. 3. Let S be a closed family of morphisms of e satisfying,’

(i) if uvES and v ES, then uES;

(ii) every diagram

with s E S, may be embedded in a weak push-out diagram

with teS. 

Then S admits a calculus of left fractions.

Notice that a saturated family automatically satisfies ( i ) .

PR O 0F . Since S is closed, we have only to verify that, given

with s E S, f s = g s , we can find t E S with tf = tg .
Form a weak push-out

with U E S. Since (1.1) is a weak push-out, we may find v with vu = 1 ,

v h = f . Again, since fs=gs, we may find w with wu = 1, w h = g . By
(i) we know that v and w are in S . Now form a commutative square

with p ( and hence q ) in S . Then
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We turn our attention now to families S admitting a calculus of

right fractions. The result corresponding to theorem 1.2 then takes a some-
what different form.

TH E OR EM 1.4 . Let S be a saturated family of morphisms of (? admitting
a calculus of right fractions. Then the object Y is the S-completion of
the object Z i f and onl y if there exists e:Y-Z in S and C(s , Z) is

bijective for every s in S.

Notice that the conclusion certainly implies that e is co-univer-

sal. We may express the fact that C(s, Z) is bijective for every s in

S by saying that Z is lef t-closed for S ( see p. 19 of [6]).

PROOF. Assume that Z is the S-completion of Y . Then we refer to the

proof of the corresponding part of Theorem 1.2 and observe, first, that a

very slight generalization of the argument shows s* =C(s, Z) to be bi-

jective and, second, that we again find a FS (e) = 1 . Thus it remains to

prove that FS (e) a = 1. Now since S admits a calculus of right fractions
we may write a = FS (g) FS (s)-1 , 

and form the commutative diagram

Then But

Thus e g = s , whence
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We now prove the converse. Again, it is a matter of proving that

is an equivalence.
-To show that F S* is surjective, represent a e C [S -1 ] (X , Z) by

Since s*: C (X , Z) -&#x3E; C (Z1 , Z) is bijective, we find a unique h : X -&#x3E; Z,

such that h s = g . Then a. is also represented by h (since FS (h) =
F S ( g ) F S ( s ) -1 = a) so that FS*(h)= a.
- Finally we show that FS* is inj ective. If FS (f1) - FS (f2), where

f1 ’ f2 : X -&#x3E; Z , then, since S admits a calculus of right fractions, we infer
the existence of s :W-X in S with f1 s = f2 s. But since s*:C(X , Z)-
-&#x3E; (W , Z) is bijective, this impl ies that f1 = f2 , completing the proof of
the theorem.

It is convenient to exhibit the contrast between the situation when

S admits a calculus of left fractions and that in which S admits a calcu-

lus of right fractions in the following way. Consider the following three

statements about the object Y in C.
A: Z is the S-completion of Y;

B : there exists e : Y - Z in S and Z is left-closed for S ;

C : there exists e : Y- Z in S terminal in C( Y ; S ) .
Then we have proved

THEOREM 1. 5 . ( i ) 1 f S is saturated and admits a calculus of left frac-
tions, then A =&#x3E; B =&#x3E; C ;

( ii ) i f S is saturated and admits a calculus of right frac-
tions then A =&#x3E; B =&#x3E; C .

The following theorem makes no explicit mention of a calculus

of fractions but is concerned with statement C above.

TH E OR E M 1 . 6. Let S be saturated and let PY: C ( Y ; S ) -&#x3E; C be the func-
tor given by PY(s)=Z1, for s: Y - Z1 in S, Py ( t) - t for
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in C (Y ; S) . Then C (Y ; S) admits a terminal object i f and only i f :

Moreover, if e : Y -&#x3E; Z is terminal and e th en

P RO OF . Of course if a category 7 admits a terminal object e , then, for

for any functor F : I-&#x3E;D , lim F exists and is f Fe ; FOs}, where Os : 
s - e in I is the morphism to e . Thus if C(Y ; S) admits a terminal ob-

ject e : Y - Z , then

Now suppose that

Since C(Y ; S) has an initial obj ect 1Y , and since FS PYt is invertible,

-it follows that FS X, is invertible for each s, so that As is in S . Let

À 1 y =e, where e: Y-·Z. Then

We infer that ke ks = ks for all s, so that, Xs I being a colimit,

ke = 1Z. Thus, if ts = e, t = ks, so that e is terminal in C ( Y; S) .
We will revert to this theorem in Section 2 . It is plainly signifi-

cant for the S-completability of Y if S admits a calculus of left (or right)
fractions, in view of Theorem 1.5.

Remarks analogous to the two which followed Theorem 1.2 are

valid in the context of families S admitting a calculus of right fractions.
The analog of Theorem 1.3 follows immediately by duality:

T H E O R E M 1. 3 * . Let S be a cl osed f ami l y o f morphisms of e satis f ying:
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(i) if vuES and vES, then uES;

( ii ) every diagram

with s E S , may be embedded in a weak pull-back diagram

with t e S. 

Then S admits a calculus of right fractions.

As we shall see in the next two sections, saturated families S ad-

mitting a calculus of left fractions arise naturally in the context of the

Adams completion with respect to a homology theory. We close this section

by describing an interesting family S which is seen to admit a calculus

of right fractions by fulfilling the hypotheses of Theorem 1.3*.

EXAMPLE 1.7 Let 31 be the category of nilpotent groups, and let P be

a family of primes. Describe a homomorphism 0: G - H in R as a P-iso-

morphism if ( i ) the kernel of 0 consists of elements of finite order prime
to P , and ( ii ) for each y e H, there exists n prime to P such that y n E

eimO. It is easy to see that the family S of P-isomorphisms is closed.

To show that it satisfies condition (i) of Theorem 1.3*, we must invoke

the following fact about nilpotent groups (see Corollary 6.2 of [8] ):

LEMMA 1.8 , 1 f G is nilpotent o f class c, and a, b E G with bn = 1,

then (a b)n =anc. 
u v 

For suppose we have G ---&#x3E; H --&#x3E; K in n, with v u and v

P-isomorphisms. We prove that u is a P-isomorphism. First keruckervu,
so condition ( i ) on a P-isomorphism is satisfied. Second, let y E H .
Then, since v u is a P-isomorphism, there exists n prime to P with

v (yn) = vu (x) , x E G . Since v is a P-isomorphism, we infer that y n =
= u (x) z , z E ker v , so that zm=1 with m prime to P. By Lemma 1.8,

c c

y m n = u (x m) , where nil H = c , and mcn is prime to P . Thus u is a

P-isomorphism.



72

We now verify condition (ii) of Theorem 1.3*. We suppose given

in )1, where s is a P-isomorphism. We form the pull-back in the category
of groups,

Now G is a subgroup of G1XG2’ . Since Gl,G2 are nilpotent, so is

Gi X G2 and so therefore is G. Thus ( 1.2 ) is certainly a pull-back in R,
so it remains to show that t is a P-isomorphism. Since ker t = ker s , con-

dition (i) on a P-isomorphism is certainly satisfied. Now let y e G1 . 
Since s is a P-isomorphism, there exists n prime to P such that

But then (yn , x) e G and t (yn , x) = yn , so that t is a P-isomorphism.
In fact ( see Section 6 of [8]), the P-isomorphisms of n are pre-

cisely the homomorphisms whose P-localizations ( see Example 2.10) are

isomorphisms. Thus we may, in fact, treat this example by the general

theory of Section 2 , to infer that S also admits a calculus of left frac-

tions.

2. Global S-completions.

In this section we consider, as before, a family S of morphisms
of a category ; now, however, assume that every object Y in C admits
an S-completion Z . The situation is now considerably simplified, due

to the following observations.

PROPOSITION 2.1. (Proposition 10 of [5]). Let F:C-&#x3E;D be a functor
and suppose that, for each Y in T, there exists Z in e such that

(2.1 ) C (X , Z) = T (F X, Y), naturally in X .
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Then Y -&#x3E; Z determines a functor G: D-&#x3E; C such that ( 2. 1 ) expresses an

adjunction F -l G .

COROLLARY 2.2. Every object Y in e admits an S-completion i f and

only i f Fs: C-&#x3E;C [S-1] possesses a right adjoint Gs; and the S-com-

pletion o f Y is then GS ( Y ) .

PROPOSITION 2.3. 1 f FS: C-&#x3E;C [S-1] has a right adjoint Gs, then

GS i s full and faithful.

PROOF. This is essentially contained in Proposition 1.3 of [6] , except
that Gabriel-Zisman assume S to be saturated. On the other hand, it is

plain that this assumption is not necessary for the conclusion. For let S

be the saturation of S , that is, S is the family ofmorphisms f of (? such

that FS (f) is invertible. Then there is clearly an equivalence of catego-
ries D:C [S-1] =C ( S-1] such that D FS = FS.
PROPOSITION 2.4. 1 f F: C -&#x3E; D, G: D -&#x3E; C, F -l G, and G is full and

faithful, then the unit e : 1 -&#x3E; G F of the adjunction belongs to S , where

S is the family of morphisms of e rendered invertible by F .

PROOF. This is to be found on p. 8 of [6], but we will give the easy

proof. Since G is full and faithful, the co-unit 6 : F G -&#x3E; 1 of the adjunc-

tion is an equivalence. But 6 F o F e = 1, so F e is an equivalence.

P RO P O SITION 2. 5 . If F : C -.T, G: D-&#x3E;C, F -l G, and G is full and faith-

ful, then S admits a calculus of left fractions, where S is the family of

morphisms of e rendered invertible by F . Moreover, the unit e : Y -&#x3E; G FY

is th en terminal in C ( Y ; S ) .

P RO O F . The first part is to be found on p. 15 of [6] , but we again give
the easy proof. Of course, S is saturated so we have only to prove pro-

perties (a), (b) below. Notice that, by Proposition 2.4, e is in S .

Property ( a ) states that may be embedded in

with t E S . Now let v’ be adj oint to F (s)-1 . Then v’s = e ,
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so we may take

Property (b) states that if f s = g s , s e S, then there exists t E S

with tf=tg. But, since F s is invertible, F f = F g, so that e f = e g .
To prove the final statement of the proposition, observe that we ha-

ve a commutative di agram

and that, since F admits a fully faithful right adjoint G, it follows from

Proposition 1.3 of [6] that H is an equivalence of categories. Thus

G H is right adjoint to Fs , with unit e : I - G F = GS FS , where Gs = G H .
Thus the statement follows from Corollary 2.2 and Theorem 1.2 , since we

know that S admits a calculus of left fractions.

THEOREM 2.6. Let S be a saturated family o f morphisms of e and sup-
pose that every object of e has an S-completion. Then S admits a cal-

culus of left fractions.

PROOF. By Corollary 2.2, Fs has a right adjoint GS , which is full and

faithful by Proposition 2.3. We now apply Proposition 2.5 with

noting that, since S is saturated, S is indeed the family of morphisms of

e rendered invertible by Fs 
Theorem 1.2 retains little of its potency in this global context,

since we have utilized the conclusion (Proposition 2.4) that e belongs
to S to prove that S admits a calculus of left fractions; notice however

that the unit of the adjunction Fs -l GS is, in fact, the co-universal mor-

phism of Theorem 1.2.

Suppose now that, as in Theorem 2.6 , the functor FS : C -&#x3E; e [S-1]
has a right adjoint Gs . Let CS be the full subcategory of e generated by
the objects GS Y = GS FS Y for all Y in C . We call es the category of
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S-com plete objects of C or o f S -compl etions.

PROPOSITION 2.7. CS is a full reflective subcategory of e, equivaclent
to C [S-1].

P R O O F . The functor G S factors as C[S-1] -&#x3E;Q CS -&#x3E; e C, where E

is the embedding. Q is full and faithful (since Gs is) and surjective
on objects; hence it is an equivalence.

Now Q has a « quasi-inverse » R:CS -&#x3E;C [S-1] which is a two-

sided adjoint to Q . Denote Q FS by L . Then L: C -&#x3E; Cs, and S is pre-

cisely the family of morphisms of e rendered invertible by L; moreover,

so that

Then the S-completion of Y is E L Y = GS FS Y; we write YS for

E L Y.

In the following statement we attempt a comprehensive picture
of global S-completions.

THEOREM 2.8. Let S be a saturated family of morphisms of C and let

FS be the family of functors F with domain C such that S is precisely
the collection of morphisms rendered invertible by F. Then the following

four statements are equival ent :
( i ) Every object Y in e admits an S-completion;
(ii) FS has a right adjoint GS ;
(iii) YS contains a re flector L : C-&#x3E; es’ , left adjoint to a full embed-

d ing E : :esç e,.
(iv) There is an F in YS admitting a fully faithful right adjoint G.

Moreover, any of the above implies
(v) There are uni que equivalences H , Q such that the diagram
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commutes;

( vi ) Any functor of the form V F s’ with V an equivalence, belongs
to 5:S and has a fully faithful right adjoint;

( vii ) S admits a calculus of left fractions.

PROOF. (i)===&#x3E;(ii) by Corollary 2.2;

( ii ) ==&#x3E; ( iii ) by the immediately preceding argument;
( iii ) ===&#x3E; (iv) trivially ;

( iv ) =&#x3E; (ii) by the argument proving the last part of Proposition 2.5 ;

( ii ) =&#x3E; ( v ) again by the argument of the last part of Prop . 2.5 , since
F and L have fully faithful right adjoints (see Proposition 1.3 of [6] );
( ii ) ===&#x3E; (vi) obviously, since V and FS both have fully faithful right

adjoints;
( ii ) ==&#x3E; ( vii ) Theorem 2.6.

Now let Fs be the subfamily of YS consisting of those F admit-

ting a fully faithful right adjoint. Then each of the first four statements

of Theorem 2.8 is equivalent to the assertion that TS is not empty. More-

over, the argument of the last part of Proposition 2.5 may again be invo-

ked to point out that, when T - s is not empty, it consists precisely of the

functors V FS of (vi), where V is an equivalence. Of course, L is then

a member of FS . Proposition 2.5 asserts effectively that S-completions

may be obtained using any F in 9=s’
The following result shows the dual role played by S-completion.

TH EOREM 2.9. Let S be a saturated family of morphisms of C, and let

every object of C admit an S-completion. Then the unit e : Y - YS belongs
to S and is universal for morphisms to S-complete objects and co-univer-

sal for morphisms in S.

PROOF, e is in S by Proposition 2.4; it is universal since it is the

unit of L -1 E, and co-universal by Theorems 1.2 and 2.6 .

We now «globalizes Theorem 1.6 . The theorem takes the following
form :

THEOREM 2.10. Let S be a saturated family of morphisms of e. Then
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the following three statements are equivalent :
( i ) Every object Y in e admits an S-completion;

( ii ) S admits a calculus of left fractions, lim PY exists for all Y, 

where P Y : C (Y ; S) -&#x3E; C, and FS commutes with lim PY;
( iii ) S admits a calculus of left fractions, lim PY exists for all Y

and FS commutes with all colimits in e.

PROOF, ( i ) ==&#x3E; ( iii ) : By Theorem 2.8 , S admits a calculus of left frac-

tions and FS admits a right adjoint. Thus, by Theorem 1.5 (i), e( Y ; S)
admits a terminal object for all Y in C and so, by Theorem 1.6, h PY
exists for all Y ; and FS , admitting a right adjoint, commutes with all

colimits in e.

( iii ) ==&#x3E;( ii ) : Trivial.

( ii ) ==&#x3E; (i) : Theorem 1.6 and Theorem 1.5 ( i ) .

Of course, we may combine Theorem 2.8, 2.10 to obtain an enlar-

ged set of conditions equivalent to the existence of global S-completions.
We will be giving several examples of global S-completions in the

next section, in connection with our study of Adams completions. Here

we give two examples outside the context of topological homology theory.

E X A M P L E 2.9 [3,7]. Let A be an abelian category with sufficient in-

jectives and let C+(A) be the category of positive cochain complexes
over A and homotopy classes of cochain maps. Let S be the family of

morphisms of C+(A) inducing cohomology isomorphisms. Then with each
object C of C+(A) we may associate an object CS of C+(A), whose
constituents are injective objects of A , and a morphism e : C-&#x3E;Cs in S .

Indeed, CS is the S-completion of C, since one may verify the co-univer-

sal property.

EXAMPLE 2.10. We take up again Example 1.7. Then we call a nilpotent

group G P-local [9] if the function x - x n , x E G, is a bijection for all

n prime to P . It may be shown ( see, e.g., [8] ) that every nilpotent group
G admits a P-localization e : G - Gp and, in fact, that Gp is the S-com-

pletion of G , where S is the family of P-isomorphisms of 31. Thus S

admits a calculus of left fractions; of course, here one knows that S is
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saturated because it is precisely the family of morphisms rendered inver-

tible by the P-localization functor.

Although, in this example, S admits a calculus of left fractions,

it is by no means clear that it fulfills condition (ii) of Theorem 1.3.

Finally, we give an example of what may be regarded as the dual

situation. We would say that the S-cocompletion of Y in e is an object
Z which represents the functor

It is plain how to formulate statements and results for cocompletions cor-

responding to those given for completions.

E X A M P L E 2. 11 . Let be the category of based path-connected topolo-

gical spaces and based homotopy classes of continuous maps, and let S

be the family of morphisms of C inducing homotopy isomorphisms. Then
each object Y of C admits an S-cocompletion YS ; namely, YS is the

geometrical realization of the singular complex of Y . The canonical map

e : YS -&#x3E; Y is classical ( see, e.g.,[13]).
Of course, Example 2.9 may be dualized to provide an example of

global S-cocompletion .

3. Adams Completions.
Let T be a full subcategory of the category of based topological

spaces and based continuous maps. 1e suppose that 5 contains single-
tons and also that it contains entire based homotopy types. Let f : X-&#x3E;Y
be in 5 and let i j embed X in M j , the mapping cylinder of f ; then it

follows that i f is also in T. Given a diagram

in 5 we form the push-out of g and i in the category of all spaces,
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and we call ? admissible if (3.2) is also in 5. Note that, since 5 con-

tains singletons, it contains all contractible spaces and hence all cones.

It then follows that, if 5 is admissible, it contains all mapping cones. For

the mapping cone of g is precisely the space W of (3.2) when Y is a

singleton.
Let 5 be an admissible category in the above sense and let

be the homotopy category derived from 5. Let h be a (generalized) ho-

mology theory defined on 5 (or T), so that hn:T-&#x3E;ab,-oo  n  +oo
and let S = S (h) be the family of morphisms of T rendered invertible by

h . If Y is in T and if Y admits an S-completion Yb , we call Yh the

Adams completion or h-completion of Y . At this level of generality we do

not attempt to enunciate precise conditions for the Adams completion to

exist. However, we show that we are, in fact, in a position to apply The-

orem 1. 2 .

THEOREM 3.1. Let ? be an admissible category and let h be a homolo-

gy theory defined on 5. Let S= S ( h ) be the family o f morphisms o f the

homotopy category T rendered invertible by h . Then S is saturated and

admits a calculus of left fractions.

PROOF. It is obvious ( see Proposition 1.1) that S is saturated. To prove

that S admits a calculus of left fractions, we invoke Theorem 1.3. Thus

we must embed the diagram

11

in 3B with cr in S , in a weak push-out diagram

in 5 , with p in S .

Let f , g be in the classes (k , 0- respectively. We may then form

the push-out diagram (3.2)
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in 5 , together with maps v : Mf -&#x3E; Y, w : Y - M j such that

Since (3.2) is a push-out in 5 (indeed, in the category of all spaces),
and since i f is a cofibration, it follows that u is a cofibration and the

diagram (3.2) may be enlarged to

where C is the cokernel of ij and of u , and l , m are the projections.

Moreover, C is the mapping cone of f and hence in 5 , each horizontal
row of (3.3) gives rise to an exact homology sequence, and the vertical

maps (g, k, 1) induce a homomorphism of one homology sequence to the

other. Since g e o e S, it follows that g induces homology isomorphisms
(in the theory h ) . Thus, by the 5-lemma, so does k .

SetY = class (u), p= class ( k w ) . Since w is a homotopy equiva-

lence, k w induces homology isomorphisms, so p is in S . Also

so the diagram

commutes in 5-. It remains to show that it has the weak push-out proper-

ty. But this was proved in [4] for the category of all spaces.

Theorem 3 .1 not only leaves us free to apply Theorem 1.2; it also

renders plausible, in the light of Theorem 2.6 , the conjecture that the

global Adams completion may exist for a fairly broad class of categories 5
and theories h . We give some examples.
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E X A M P L E 3.2. Let ? be the category of based spaces of the based ho-

motopy type of 1-connected CW-complexes, and let h be reduced ( ordi-

nary) homology with coefficients in Zp, the integers localized at the

family of primes P. Then Theorem 1.1 of [3] shows that the global Adams

completion exists and Yh is just Yp , the P-localization of Y in 5, in
the sense of Sullivan [12] . The category Th of h-complete objects of 5

consists of those CW-complexes for which TT* ( Y) is a Zp-module. In this
particular case, Proposition 2.7 yields a theorem of Quillen (Theorem

6.1b of [11] ), and the adjunction L-l E, where

generalizes a statement given by Mislin in [10] , who discussed the ca-
ses P={p} , P=O .

We may generalize this example to the case of nilpotent CW-com-

plexes (see [1] ).

E X A M P L E 3.3. Let T be as in Example 3.2, Iet 50 be the subcategory
of 5 consisting of those Y whose homotopy groups are finitely genera-

ted, and let h be reduced homology with coefficients in Z/p. Then the

Adams completion exists globally on 5o , and Yh is precisely the p-

profinite completion Yp of Y in the sense of Sullivan [121 - An object
Y is h-complete if

is an isomorphism, where Zp denotes the p-adic integers [12].
E X AM P L E 3.4. Generalizing the previous two examples, let 5 now be

the category of based spaces of the based homotopy type of connected

CW-complexes and let h be reduced homology with coefficients in a solid

ring R [2J. Then, if Y is R-good [2] , the h-completion of Y is Y
the R-completion of Y in the sense of Bousfield-Kan [2]. We recover the

earlier examples by taking R - Zp , R = Z/p , respectively.
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