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CAHIERS DE TOPOLOGIE Vol. X1V-4
ET GEOMETRIE DIFFERENTIELLE

LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS*
by Peter HILTON

1. Introduction.

The theory of the P -localization of groups, where P is a family
of primes, appears to have been first discussed by Malcev and Lazard
[9,10 ].. In their work emphasis was placed on the explicit construction
of the localization and properties of the localization G, of the nilpotent
group G were deduced from the construction, utilizing nilpotent group the-
ory. Baumslag [ 1] has given a comprehensive treatment of the main pro-
perties of nilpotent groups as they relate to the problem of localization,
and has himself [ 2] explicitly shown how to construct Gp in the case of
an arbitrary nilpotent group G and an arbitrary family of primes P, thus
extending the generality of Malcev's original construction. Bousfield-Kan
[3] exploit this general Malcev construction in their study of completion
and localization. There is a very readable account of the theory of nilpo-
tent groups and a description of the localization construction in the notes
of Warfield [ 111].

In this paper we adopt a completely different approach. Starting
with the completely elementary theory of localization of abelian groups,
we show that a localizing functor L:N_—N_ may be built up inductively
with respect to ¢, where N_ is the category of nilpotent groups of nilpo-
tency class { c¢. Our tool in demonstrating this is the cohomology theory
of groups and, in particular, the interpretation of H?(Q;A), where A is
an abelian group (trivial Q-module), as the collection of equivalence clas-
ses of central extensions of Q by the abelian central kernel A. We incor-
porate into the inductive hypothesis the key fact that the natural (locali-
zing) homomorphism e:G—~Gp (where G, =LG) is a P -isomorphism,
meaning that ker e consists of elements of torsion prime to P and that, for

any y €Gp , there exists n prime to P with y” €ime.
* Conférence donnée au Colloque d'Amiens.
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2 P. HILTON

In our approach we do not have to construct G, explicitly; we sim-
ply prove that it exists and that the functor L and the natural transforma-
tion e have certain important properties. By using this approach we are
able to deduce various properties of nilpotent groups, some of which make
no explicit mention of localization.

The plan of the paper is as follows. In Section 2 we document the
facts we need about the localization of abelian groups — essentially to
start the induction. In Section 3 we describe the (co)homology theory of
groups, especially with regard to the second cohomology group, and we
recall the Lyndon-Hochschild-Serre spectral sequence. In Section 4 we
prove the main results, showing that the localization exists and has pro-
perties which we demand of it; as indicated, a key property is already built
into the inductive hypothesis. In Section 5 we make applications to the
theory of nilpotent groups; we emphasize that no sophisticated theory has
gone into these applications; we simply exploit the fact that localization
exists and has some nice properties.

Among the facts which immediately emerge is that if ¢:G—~H is
a P-isomorphism of nilpotent groups, then ¢P :Gp—~Hp is an isomor-
phism. To prove the converse of this appears to require deeper properties
of nilpotent groups than those exploited in Sections 2-5 —indeed, in those
sections we use nothing deeper than a group of nilpotency class c¢ is
naturally expressible as a central extension of a group of nilpotency class
c —1. However, in Section 6, we refer to Hall's theory of basic commuta-
tors [5] in order to prove a lemma which turns out to be crucial in esta-
blishing the converse. Once established, the converse then enables us to
develop a theory of P -isomorphisms of nilpotent groups which parallels
standard results on nilpotent groups.

In Section 7 we prove various results on the localization of nilpo-
tent groups which are particularly revelant to the study of nilpotent spaces
(6,7].

The author wishes to acknowledge very valuable conversations with
Guido Mislin, Joe Roitberg, and Urs Stammbach. A proof of a weaker form
of Theorem 6.1, perfectly adequate for the proof of Corollary 6.4, was com-

municated to the author by Bill Waterhouse.
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 3

2, Localization of abelian groups.

In this section we collect together the results we will need on the
P -localization e:A—Ap of an abelian group, with respect to a family of
primes P . We recall that A, =A®Zp, where Z, is the ring of integers
localized at P, that is, the subring of the rationals @, consisting of those
rationals k/ ! such that [ is prime to P; and e is the natural homomor-

phism @—~a®1. Note that a P -local group is just a Z, -module.
PROPOSITION 2.1, Localization is exact.
PROPOSITION 2.2. Localization commutes with direct limits.

PROPOSITION 2.3, Given

Al s A —> A"

R I

B'>———>B — > B"
with exact rows, then if any two of @', ¢, @" P -localize, so does the
third.
PROPOSITION 2.4,
e@l:A®B—~A, ®B, e®e:AQB—~A,®B,,

Tor(e,1):Tor(A, B)—'Tor(AP, B),

Tor(e,e): Tor(A, B)—‘Tor(AP, BP)
all P -localize.

PROOF. The first two assertions are obvious; we will be content to prove
the third. Let R~ F—-A be a free abelian presentation of A. Then

R, —F), —Ap is exact with Ry, Fp flat. Thus we have

Tor(A,B) >R ®B —>F®B—>A®B

N L

Tor(Ap, B)>—>R, ®B—>F,®B—>A, ®B
Two applications of Proposition 2.3 now show that Tor(e, 1) P -localizes.

~ ~ ~>
PROPOSITION 2.5. ﬁ*(e):H*(A)—’H*(AP) P -localizes, where Hx is
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4 P. HILTON

reduced homology with integer coefficients.

PROOF. Let F be the family of abelian groups for which the assertion
holds. First, we claim that Z/pkeF. For if A=Z/pk, peP, then
AP:A, e=1, and 1-7;(A) is P-local, so the assertion is clear. If
A=Z/pk, peP’, the complementary set of primes, then Ap=0, ﬁ;(A)
is P'-torsion, and the assertion is again clear.

Second, we claim that Z € . For ZP is torsion-free of rank I, se

that
H(Zp)=Zp, n=1, H (Z,)=0, n32.
Thus 1’7*(6)=H1 (e) and H;(e) plainly P -localizes.

We next argue that, if A, B€F so does A®B. This follows im-
mediately from the natural Kinneth formula for Hx (A@®B), together with
Propositions 2.3 and 2.4. Thus we have proved that if A is finitely gene-
rated, then A €.

Finally, we use a direct limit argument to show that every A €.
For A is the (directed) union of its finitely generated subgroups, Hx com-
mutes with direct limits, and Proposition 2.2 then enables us to complete

the argument.

DEFINITION. We say that ¢:A—B is a P -isomorphism if ker¢, cokerc-

are both P'-torsion groups.

PROPOSITION 2.6. ¢:A—B P -localizes if and only if B is P -local and

¢ is a P -isomorphism.

PROCF. We first show that e:A—Ap is a P -isomorphism. We may embed

e in the exact sequence

e

Tor(A,Z,/ L) >—>A A —=AQL, /L.

Thus we must show that Tor(A, ZP /Z) and A®ZP/ Z are P’-torsion

groups. Now

2,/2=,8%.2/p",

where Z/p* is the p-Priifer group. It is thus plain that Z,/Z isa
P'-torsion group, from which it readily follows that A®Z,/Z and
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 5

Tor(A,Z,/Z) are P’-torsion groups.
Conservely suppose that B is P-local and ¢:A—B is a P-iso-

morphism. We thus have a commutative diagram

and the proof of Proposition 2.6 is completed by means of the following two

lemmas.
LEMMA 2.7. If Ba and a are P -isomorphisms, so is [3.

LEMMA 2.8. If 8:C—D is a P -isomorphism and C, D are P -local, then

6 is an isomorphism.

PROOF of 2.7. It is trivial that if coker Sa is P’-torsion, so is coker 3.

From the exact sequence
ker a >—>ker 3o ——>ker S ——cokera

we deduce that if ker Sa and cokera are P'-torsion, so is ker[3.

PROOF of 2.8. It is trivial that if ker & is P'-torsion and C is P -local,
then ker =0. Now suppose coker@ is P'-torsion and let d€D . Then
nd=0c for some c€C, neP’. Since C is P-local, c=nc;, c; €C, so

n(d=68c;)=0.Since D is P-local, d=6c;=0, so coker0=0.

PROPOSITION 2.9. If B is P-local, then e*:Hom(AP,B)E'Hom(A,B),
e*.-Exz(AP,B)'EExt(A,B).

PROOF. The first isomorphism simply expresses the universal property of
e. As to the second, let B=I1—] be an injective presentation of B as
Z, -module. Since Z, is flat, it follows that B ~I—] is also an injec-
tive presentation of B as abelian group. Thus we have a commutative dia-

gram
Hom(AP,I)-——"*Hom(AP,])——>Ext(AP,B)

e* e* e*

Hom(A,l)——Hom(A,]) —>"Ext(A,B).

Since the first two vertical arrows are isomorphisms, so is the third.
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6 P. HILTON

3. Cohomology and central extensions.

In this section we recall the results we will need on the homology
and cohomology of groups. We will be concerned exclusively with cohomo-

logy groups Hk(Q;A), where A is a trivial Q-module.

PROPOSITION 3.1. There is a natural universal coefficient sequence

Ext(H,_;Q,A)>——=H*(Q;A) —>=Hom(H,Q, A).

We now study the interpretation of H2(Q,'A) as the group of equi-
valence classes of central extensions of the quotient group Q by the abe-

lian kernel A. Let £ €H?(Q;A) be represented by
"

(31) A>—-»G_»Q,

and let ¢:A—A;. Form the product A;XG and embed A by )
a=(-¢a,pa). Then A is central in A; XG and we may form the quotient
group G;; write an element of G; as {al,g}, the coset containing
(a;,g). There are evident maps pu;-4;—-G;, Y:G—=G;, given by
py(a;)={a;,1},y(g)={0,g} and

A >——M—"G
(3.2) ¢l l v

AL LG,
commutes. Moreover
PROPOSITION 3.2. In (3.2), pu; maps A, injectively to a central subgroup
of G; and cokerp; =0.

PROOF. It is trivial that u; is injective and that u; A; is central in G, .
Let ©,:G;~Q begiven by &;{a;,g}=eg. It is plain that &; is well-
defined and surjective. Moreover €;.;,=0, and, if &;{a;,g}=1, then

g=pa, so
{a; . gt={a,pat={a;+da, 1}=p,(a;+¢a).

Thus (3.2) enlarges to a map of central extensions

(*) Note that A is written additively, while G and Q are written multiplicatively.
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 7

£: At eG—" ey
(3.3) l l¢ ¥ “
§1 N AI, ”1 ‘GI 817 Q

and we know [8]:

PROPOSITION 3.3. Let qﬁ:A—'AI induce d)*:HZ(Q;A)—'HZ(Q;AI),
Then ¢*(§):§1

Now let 0:Q'—= Q. Form the pull-back of p and € (3.1); it is then

known that we obtain a map of central extensions

" e

f". A)-’J'_.).Gv__»Qr
(3.4) l l ’0 1/3
£ A—teic—"ump

and we know [8]:

PROPOSITION 3.4. Let p:Q'~Q induce p*:H’(Q;A)=H?(Q";A).
Then ,O*(f)=§'. Moreover

(3.5) Pxp*=p*Px.

PROPOSITION 3.5. Suppose given two central extensions
K1 €1 ) K2 €2
€141 —— Gy Q. 4= G) 2

and maps ¢:A;~A,, p:Q;=Q,. Then one may find 7:G;~G, yielding

a commutative diagram

n e
§1 ! A1 >—1—>G1 ——1>->Q1
(3.6) 1 L $ J . l p
Ko €
27 AZ >————->Gz—-—~>->Q2

if and only if $x(&;)=p*(&,). Moreover, if T exists, then T' also
yields a commutative diagram (3.6) if and only if

(3.7) T'(x)=7T(x)puyxe(x), x€Gy, for some k:Q;=A4,.

PROOF. The key observation is that any diagram of the type (3.3), with

common quotient group, must, in principle, have been constructed as (3.3)
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8 P. HILTON

was constructed, so that the existence of the diagram implies that
¢x(€)=£,; and, similarly, any diagram of the type (3.4), with common
. kernel, must, in principle, have been constructed as (3.4) was constructed,
so that the existence of the diagram implies that p*(£)=¢&".

Now suppose that 7 exists in (3.6). Pulling back by means of 0o,

we find a commutative diagram

£17 Ap—>G;—>0,;
‘ ¢l - ”
P*(fz)’ A2>.__->G _—»Ql

k)

§2: A, G "‘Qz

with 7,7; = 7. Thus, by the observation above, 0 *( §2)=¢*(§1 ).
Conversely, suppose that p*(£,)=¢«(£;). Then we have a dia-

gram
3K Ap——"G6—> ¢,

¢ 71 l

Px(&q): Ay>—>G —>=(0,

I

pP*(&,): Ay >—>G'—>>Q,

T P

£y Ay —>G, —>Q,

and we may take 7 =7,w 7,
The final statement of the proposition is almost immediate. Since
e,7=28,7T"', we find a function §:G; ~>A,, given by
Mo O(x)=T(x)"17'(x), x€G,.
Moreover, 0 is a homomorphism since &, is a central extension. Since
T =7'py, OGp;=0,

so 6 induces k:Q;~A, with ke;=0. Conservely, if 7' is given by
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 9

(3.7), then 7' is a homomorphism and preserves the commutativity of (3.6)

when used to replace 7.
PROPOSITION 3.6 (LYNDON-HOCHSCHILD-SERRE spectral sequence).
Given any extension of groups

M>— G —>0,

9
there exists a spectral sequence {Ef }, with EZqZHp(Q;HqM), con-
verging finitely to the graded group associated with H 4 G, suitably filtered.

4. Localization of nilpotent groups.

Let G be a group and let
Lcitlig)cice)c...
be the lower central series of G; thus
r''(6)=G and T*1(G)=[6,TiG)].
We say that G is nilpotent of class c if
recG)#£{1}, TItle)={1}.

We then write nilG=c.

DEFINITION. Let G be nilpotent. We say that G is P-local if x—x",
x€G, is bijective for all n€P’. A homomorphism e:G—G,, with G,
nilpotent, is said to P -localize G if G, is P-local and e has the univer-
sal property for homomorphisms of G into P -local nilpotent groups: that is,

if H is P -local, then e*:Hom(GP,H)EHom(G,H)_

DEFINITION. Let G, H be nilpotent groups. We say that ¢:G—H js a
P -isomorphism if:
(i) every element in ker¢ is a P’-torsion element;

(ii) for every y €H, there exist n€P', x€G, with ¢(x)=y".

It is immediately clear that this definition generalizes that given in
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10 P. HILTON

Section 2 for abelian groups (nilpotent groups G with nilG < 1). If ¢ sa-
tisfies (i) we call it P -injective, if ¢ satisfies (ii) we call it P -surjec-
tive.

Our main object in this section is to prove the following theorems.

THEOREM 4.1. With each nilpotent group G we may associate its P -loca-

lization e : G~Gp . Moreover nil Gy, < nilG.

THEOREM 4.2. A homomorphism ¢:G—H of nilpotent groups P -localizes
G if and only if H is P -local and ¢ is a P -isomorphism.

Let N be the category of nilpotent groups, and let N_ be the full
subcategory of N consisting of groups G with nilG < c. We will achieve

our objective by proving the following theorem by induction on c.

THEOREM 4.3. For each c¢> 1 we may find a functor L _:N_—N_ and a
natural transformation e .:1=L_ such that L_(G) is P -local and e (G),

G eN_, has the universal property in N_. We may choose L _, e_ sothat
Lc‘Nc—Ich-I' eC|NC_1=eC_1.

Further ¢:G—H P -localizes G in N_ if and only if H is P-local and ¢

is a P -isomorphism.

PROOF. The assertion is true for ¢ =1, for we constructed L; in Section

2 and proved Proposition 2.6. We now assume the assertion holds for c =1 ,

c> 2, and prove it for c. We write L for L __;, e for e

L G. Thus we have defined

c—1»and GP for

(4.1) L:N__;—N__;, e:1-L,
and wish to extend L to L:N_—N_, and to extend e correspondingly, to
have the universal property in N_. We draw some consequences from the
truth of Theorem 4.3 in the case ¢ - 1. First however we need to enunciate

two propositions abeut N.

I e .
PROPOSITION 4.4. Let G'>—>G—>>G" be a central extension in N.
Then if G', G" are P -local, sois G.

PROOF. Let x€G, n€P’'. Then ex=y"™=ey" for some y"€G", yeG.
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 11

Thus x =" u(y'), v' €G’. But y'=x"" for some x'€G’, so

=yt u(x" )" =(yu(x'))",
since u G’ is central in G.

Suppose now that x” =y”, x, y€G, n€P’, Then ex"=¢y" so
ex=ey, x=yu(x'), x'€G’.
Then %" =y" u(x™), since puG' is central in G, so x"=1,x'=1, x=y.
PROPOSITION 4.5. Let

¢l

c e

H' >—>H —>>["
be a map of central extensions in N. Then if ¢', ¢" are P -isomorphisms,
so is ¢.
PROOF. Let y €H. Since ¢ " is P-surjective, there exist x"€G", n€P’,
with €(y")=¢"(x"). Let x"=ex,, x,€G. Then
E(y")=8d(xy), so y'=¢d(x,)ul(y'), y'eH".
Since ¢' is P -surjective, there exist x'€G’, me€P’' with y™ =¢'(x"').
Then, since (H' is central in H,
Y =d(xg )u(y™)=¢(xT u(x')), mneP’,

so ¢ is P -surjective.

Let x€G with ¢x=1. Then ¢" e(x)=1 so, ¢" being P-injec-
tive, there exists n€P' with &(x")=1. Thus x"=pux', x'€G’', and
¢’'x'=1. Since ¢’ is P -injective, x"™ =1 for some m€e€P’, so x™" =1,

mn€P’, and ¢ is P -injective.

We are now ready to exploit the inductive hypothesis to prove a

series of propositions which will enable us to establish Theorem 4.3.

PROPOSITION 4.6. L:NC_I*NC_I is exact.

PROOF. We have the diagram, in N__j,
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12 P. HILTON

KEp
1 - i 14
Gp >Gp >Gp

with the top row short exact, and wish to prove the bottom row short exact.

We use the fact that e is a P -isomorphism.

First, €, is surjective. For let y" €Gp . Then, for some n€P’,
y™=ex", x"€G". Let x"=¢x. Then y"™ =eex=¢€,ex. Thus €, is
P -surjective, and one proves, just as in the proof of lemma 2.8, that a
P -surjection of P -local groups is a surjection.

Second, up is injective. For let up y'=1, y"€G}, . Then, for some

neP', y"=ex', x'€G’, so

eux'=ppex'=upym=1.
Thus px"™ =1 for some meP’' Thus x'™ =1, y"™"=1,and mn€P’, so
y'=1 since G;, is P -local.

Third, up is the kemel of €, . Of course €, up =0 so we must
prove that ker €, Cimup . Let e,y=1, y€G. Then, for some n€P’,
y"=ex, x€G, so

eex=E€pex= Spy"=1_
Thus ex™ =1 for some m€P’'. Thus x™=ux’', x'€G’, so that y""=
=ppex',and mn€P'. Again one argues just as in the proof of Lemma 2.8

that, since y™"” €impu, and Gp, G, are P-local, therefore y€impy, .

PROPOSITION 4.7. If, in the commutative diagram, in Nc-l'

£
G'> £ > G it Chd
e le l e
kp €p
S -
Gp> -G -G,

the top extension is central, so is the bottom.
PROOF. Let x"€G", y€G, . Then y"=ex, x€G, for some n€P'. Thus
(/J,x')_lx(,ux’):x, so (ppex')—ly"(/.LPex'):y"_

Since Gp has unique nth roots, (,U,Pex')_l y(/J,Pex'):y, so ppex’
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 13

belongs to the center of G, .

Now let y' €Gp, . Then y™=ex', x'€G', for some meP'. Thus,
for any y EGP )

Y M ppy )™y =(ppy )"

Since G has unique m®™ roots, y_l(p,P y')y=ppy', so upy' belongs

to the center of G, . Thus up Gp is central in Gp .

THEOREM 4.8. Let GE€N;, igc~1. Then ﬁ*(e):ﬁ*(G)-'?f*(GP)

P -localizes.

PROOF. We argue by induction on 7, the theorem being true for i =1 (Pro-
position 2.5). Suppose the theorem true for all groups K with nil KL i—1,
i>2, and let nilGKi. Let Z be the center of G. Then nilZ=1,
nilG/ ZL i~ 1, and, by Proposition 4.6 and 4.7, we have a map of central

extensions

Zp—>Gp,—>(G/ Z),

(4.3)

Then (4.3) induces a map of spectral sequences {Efq}—'{g?:q }, where
(Proposition 3.6)
B =H (G/z;H,Z) B =H ((G/2),iH.Z,),
P q ’ 2 P P’ "q™P

the coefficients being trivial in both cases. It now follows from the induc-
tive hypothesis, together with Propositions 2.3, 2.4, taken in conjonction
with the natural universal coefficient sequence in homology, that (4.3) in-
duces e,: qu*'Ezq which is P -localization unless (p,q)=(0,0). By
Proposition 2.1 we now readily infer that e Ei —'Eiq is also P -locali-

- zation unless (p, g)=(0,0).

Since, for any n, H G (H Gp) bhas a finite filtration whose

associated graded group is

ba ~pra )
E_ (E_'), with p+tgq=n,

it follows from Proposition 2.3 that H (e):H G—H G, P-localizes

for ny 1.
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14 P. HILTON

COROLLARY 4.9. Let GeN__; and let A be a P-local abelian group.
Then e:G~ G, induces e*:H*(Gp JA)SH* (G A).
PROOF. The case n=0 being trivial, we show that
e*:H" (G A)ZH"(G:A), nxl.

Consider the diagram

Ext(H, _;Gp, A)=>H"(Gp;A)—>Hom(H, Gp.,A)

e’ e* e

Ext(H _;G,A)>—>H"(G;A)—>Hom(H G,A)
induced by e. It follows immediately from Theorem 4.8 and Proposition 2.9
that e” is an isomorphism. If =1 this completes the argument; if n > 2

it follows immediately from Theorem 4.8 and Proposition 2.9 that e’ is an

isomorphism. Thus e* is an isomorphism.
We are now ready to carry out the inductive step establishing Theorem
4.3 and hence Theorems 4.1, 4.2,

PROOF OF THEOREM 4.3. Assume G nilpotent with 7nilG < c. We then

have a central extension
(4.4) re—c—>=G/I'e, I'e=re(q),
with nil['€< 1,2ilG/T' < c—1.Let (4.4) represent £ eH?(G/T'¢;T°).

Then ex feHZ(G/I_"’;I_'f,) and, by Corollary 4.9, there exists a unique
element £, €H2((G/T€),;TS) such that

(4.5) *fp=ex .

Let the central extension

(4.6) Fp—>Gp,—>(G6/I"°),
represent &, . Then by Proposition 3.5, we have a commutative diagram
r c >__p’_.>.G _.._e....p G/ I"C
(4.7) le l e l e
Fp €p

Fg——G;—>(6/T°),

We first remark that, since (4.6) is a central extension and
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 15

nil(G/I"'¢), L c =1, then G is nilpotent and 7il/Gp,  c . We next remark
Athat, by Proposition 4.4, Gp is P-lacal. We also remark that if, in fact,
nilG c—1, then

re={1}, re={1}, G/I'e=¢G

and we naturally take G, =(G/ I_'C)P , preserving the same P -localization
if we define L G=G[ , as we propose to do.

Now, by Proposition 4.5, e:G—~Gp in (4.7) is a P -isomorphism. It
follows, by a trivial modification of the argument of Lemma 2.8 (we restate
the result in Lemma 4.11) that e:G =G, is thus an isomorphism if G is
P -local. Then the universal property of e will follow directly from the fact,
still to be proved, that e is a natural transformation of functors. For we

then readily infer that
e*.'Hom(GP ,H)>Hom(G,H)

is surjective if H is P-local in N_, and the fact that e* is injective fol-
lows immediately from the fact that e is P -surjective and H is P -local.

Thus it remains to define L on morphisms of N_ as a functor, and
to prove the naturality of e. Let ¢:G—~G in N_, and let ' =I"°(G).
Then we have

f_' ]—'C>.__._I.L_>G ———»G/rc

R

F;»———-»c ——»(G/FC)

P’

P
(4.8) ¢ l¢ B lqs"
E:  Ter—tej e:»E/FC
e y e | e ”
\_l PEpN\t i
§P rf))—-»GP——»(G/I“C)P

and our object is to define ¢, : G, _'EP to make (4.8) commutative. It is
b

clear that any ¢, yielding $p e=ey isuniquely determined so the func-

toriality of L is automatic once a suitable ¢P is defined.

In (4.8) @', ¢" are induced by ¢, and
e*-f:e*fp, e*f—ze*gp-
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16 P. HILTON

Thus
et =pm el =p™enEzend™E (3.5)
=ex 4 & (Prop. 3.5) :¢é*e*§=¢,§*e*§p:€*¢é*§p-
But
*:H2((G/T¢),;Tg)=H(6/T;TS),
by Corollary 4.9, so ¢g*&, =¢jx &, . Thus (Prop. 3.5) we may find
7:Gp =Gy so that '
(4.9) Thp=ipPp.  EpT=dfop.

Consider the diagram
(4.10) W vy

Here
Vimedr=die,  Yrmepr=dje.

It is thus clear that (4.10) commutes if Y=e¢ or Y=Te, so that Propo-

sition 3.5 implies that there is 8:G/ '¢=T'€  such that

eqﬁ(x):Te(x).ﬁP@e(x), x€G.
Let 0,:(G/T¢),~T'§ be given by Ope=0, and define
bp(y)=T(y).Bp Opep(y), yeGp.
Again by Proposition 3.5 we have, from (4.9),
tprp=Bpdp, EpPp=dgep,
and also
qﬁpe(x):'re(x).ﬁp stpe(x)='7'e(x).'ﬁp Be(x)=ed(x), x€G.
We are now left merely with the final assertion of Theorem 4.3. We
know that e:G— G, is a P-isomorphism and Gp is P-local. We prove the

converse just as for Proposition 2.6. We state the appropriate lemmas again,

explicitly.
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 17

LEMMA 4.10. If, in N, Sa and a are P -isomorphisms, so is [3.

PROOF. It is trivial that Ba is P-surjective, so is (3. Now consider
a B
G;—>G,—> G; and let x, €G,, Bxy=1.
Since a is P -surjective, there exists n prime to P with x)=ax;, x; €G;.
Then Sax;=1, so, Ba being P -injective, there exists m prime to P

with x7=1. Then x5"=1, mn prime to P, so B is P -injective.

LEMMA 4.11. In N a P -isomorphism between P -local groups is an iso-

morphism.

PROOF. We make a trivial modification of the proof of Lemma 2.8.

Now that the proof of Theorems 4.1, 4.2 is complete, we may, of
course, restate Propositions 4.6, 4.7, Theorem 4.8 and Corollary 4.9 without
any reference to the inductive parameter c. We ask the reader to assume

those restatements made.

5. Applications.

In this section we show how the existence of a P -localization
e: GGy, together with the characterization of e as a P-isomorphism to

a P -local group, may be used to infer facts about nilpotent groups.
THEOREM 5.1. Let Il be a family of primes. Then if G is nilpotent it has
a Il-torsion subgroup Ty.

PROOF. Let P=II". Localize at P by e:G—~G, . Since e is a P -iso-
morphism, every element in kere is a Il-torsion element. Since GP is

P -local, every [l-torsion element is in ker e. Thus kere= Ty.

THEOREM 5.2. Suppose G is nilpotent and has no [I-torsion. Then if
x" =y", x, yell, it follows that x=1y.

PROOF. Localize at P =II". Then e:G~Gp is injective and e(x)"=

=e(y)". Since GP is P-local, e(x)=e(y), so x=y.
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18 P. HILTON

COROLLARY 5.3. The nilpotent group G is P -local if and only if it has

no P’-torsion and x> x™, x €G, is surjective for all n€P’.
THEOREM 5.4. Let G'>G—G" be a short exact sequence of nilpotent
groups. Then if any two of G', G, G" are P -local, so is the third.

PROOF. Since P-localization is exact, we obtain a map of short exact

sequences

G r—a>G —>»G"

L

G;))—»GP ——-»-»GI';

The hypothesis implies that two of the vertical arrows are isomorphisms. So

therefore is the third, and the theorem is proved.

We now turn to results which make explicit mention of P -locali-

zation.

THEOREM 5.5. Let ,
e

¢

"
G'—>G —>G"

e I
m €

H')-Iu*H >> Hn

be a map of short exact sequences of nilpotent groups. Then if any two of

@', ¢, ¢" P-localize, so does the third.

PROOF. By Theorem 5.4, we infer that H', H, H" are all P -local. By

P -localizing the top row, we obtain

n €
G'>r————>G —>G"
e e l e
G > i > SP‘ <
P > Gp T Gp

N

H'»——>H ~———» "

where Y'e=¢', Yye=¢, Yy "e=¢". Moreover, the commutativity relations
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LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 19

By =Yp,, 8=y "e, follow from the universal property of e. But the
hypothesis implies that two of Y*, , Y " are isomorphisms. So therefore

is the third, and the theorem is proved.

THEOREM 5.6. Let G be nilpotent and let ¢:G—K P -localize G. Then
Fi¢.TiG-T" K P-localizes TG, forall iy 1.

PROOF. It follows from Theorem 5.5 that it is sufficient to prove that the
homomorphism ¢, G/ N'‘G-K/T*K, induced by ¢, P-localizes. We
argue by induction on 7, the assertion being trivial for =1 and following
from Theorem 4.8 for i =2. Thus we assume that ¢, P -localizes, i3 2

2 »

and prove that ¢i+1 P -localizes. A second application of Theorem 5.5

shows that it is sufficient to prove that the homomorphism
$:Tig/ritlg-Tig/ritlg,

induced by ¢, P-localizes. We apply the S5-term exact sequence in the

homology of groups to the diagram
G—>G/TiG
P
K—>Kk/T'K
to obtain
HyG—=H,y(G/T'G)—T'G/T* G—G,, —~(G/T'"G),—0
l bx lqs,-* qu l " lqs,.a,,
HyK—=Hy(K/T*K)—=Ti K/ K—=K_  —=(K/TK) ,—=0

Then ¢x, ¢ab P -localize by Theorem 4.8 and ¢i*’ ¢iab P -localize by
the inductive hypothesis and Theorem 4.8. It is now evident, by a mild

extension of Proposition 2.3, that @ P-localizes.

Our next theorem appeared explicitly in [6]; we include it here

for completeness.

THEOREM 5.7. Let ¢: G—K be a homomorphism of nilpotent groups. Then
¢ P -localizes if and only if 'I?l’*(cﬁ)."[-\l'*(G)—"ﬁ*(K) P -localizes.
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20 P. HILTON

PROOF. Theorem 4.8 asserts that ﬁ*(ﬁﬁ) P -localizes if ¢ P -localizes.
We next prove that if He(K) is P -local, then K is P -local. For let
e:K=K, P-localize. Then Hx(e):Hx(K)=He(K,) P-localizes; but
Hy (K) 1is P-local, so Hx(e) is an isomorphism. It follows from the
Stallings-Stammbach Theorem that e is an isomorphism.

Now let 1-7*(¢>) P -localize. Then Hx(K) is P-local, so K is

P -local. Thus ¢ factors as G = Gp— K and

~ He(d) o~

He(G) : ~ e (K)

'Ff*(e\ﬁ*(w
He(Gp)

But since ’i\i‘*(qb), ﬁ*(e) both P -localize, ﬁ*(k[!) is an isomorphism.
Thus the Stallings-Stammbach Theorem again implies that i/ is an isomor-

phism, so that ¢ P -localizes.

We turn now to a consideration of the upper central series of a
nilpotent group:
Z(G6)=z(G6)Cc Z?(G)C...C 2°(G)=G,

where Z(G) is the center of G. We then easily prove

PROPOSITION 5.8. If G is P-local, so is Zi(G), i> 1. Moreover,
e:G—'GP sends Z*(G) to Z’(GP).
PROOF. Ta prove Z(G) P-local, we only have to show that if x €G
and x" €Z(G), n€P’ then x €Z(G).Butif x" €Z(G), then y x"y=x"
for all y €G. Taking nth roots, ynlxy:x, so x€Z(G). An easy induc-
tion, involving two applications of Theorem 5.4, now shows that Z(G)
is P-local, i> 1.

It was proved in Proposition 4.7 that e:G—G, sends Z(G) to

Z(Gp). Thus, again, an easy induction shows that e sends Z1(G) to
Z'(Gp), ipl.

Let us write Zi(e).'Zi(G)—'Zi(GP) for the restriction of e:

G—Gp . Then we may prove
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THEOREM 5.9. If G is finitely generated nilpotent and e:G—~G, P -lo-
calizes G, then the restriction Z’(e):Z’(G)"Z'(GP) P -localizes
Z'(G).

PROOF. This was proved in [6] for i=1, but we will repeat the proof
in order to demonstrate that only facts about nilpotent groups explicitly
mentioned in this paper are required. It is plain, in view of Proposition
5.8 and Theorem 4.2, that we only have to prove that Z(e) is P -surjec-

tive. We proceed by a series of lemmas.

LEMMA 5.10. Let G be a group, x, y€G and the commutator [x,y ] el'?,
Then [x,y" 1= [(x,y]" mod i1

PROOF. This is immediately evident from the commutator identity

[, 7791 =[xy, 1 [y;, [%, 9,11 [%,95,1,
where [x,y]=xyx 1y7 1.
LEMMA 5.11. Let G be nilpotent and [x,y] €T, the Il-torsion sub-
group of G (Theorem 5.1). Then [x,y" ] =1 for some n€ll.
PROOF. First observe (by passing to the quotient group G/ T 1) that if
[x,y] €Ty, then [x,y"] €Ty for all r. Now, since G is nilpotent, it
suffices to show that, for each 7, there exists nien with [x, y"i] et
n. .
For =2 take n;=1, and proceed by induction on 7. For if [x,y '] el?,
n. n. m.
n, €ll, then, since [x,y '] €Ty, there exists m, €ll with [x,y ] *=

=1, and, by Lemma 5.10,
nimi .+1
[x,y ] e+ nimien.
LEMMA 5.12. Let G be finitely generated nilpotent, and let e(y)eZ(GP).
Then there exists n €P' with y" €Z(G).

PROOF. Let G=(x;,%,,...,%;). For each x; we have e [x].,y]=1,
n:

so that [xl.,y] €Tpe. Thus there exists n].GP', with [xi,y I1=1, by

Lemma 5.11. Set n=n;n,...n, . Then

neP'  and  [x,y"1=1, j=1,2,.,k

so that y* €Z(G).
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22 P. HILTON

We now prove that Z(e):Z(G)=Z(G,) is P-surjective. Let
b€Z(Gp). Then there exists m€P' with 4™ =e(y), y€G. By Lemma
5.12, there exists n €P' with y" €Z(G) and e(y®)=b"", mn€P'. Thus
Z(e) is P -surjective and Theorem 5.9 is proved for i=1.

The argument is now completed by an easy induction. Assume 7 > 2,
and that Z' "I (e) P -localizes. Then the induced map

e;:G/Z"71(6)~G,/z"71(G,)

also P -localizes, by Theorem 5.5. Moreover, G/ Z:"1(G) is finitely
generated, so that

Z(e;):21(G)/ 2771(6)=2(Gp )/ Z271(G,)
P -localizes. Finally, a second application of Theorem 5.5 establishes

that Zi(e) P-localizes.

6. P -isomorphisms.

It is trivial to prove that a composite of P -isomorphisms is a P -iso-

morphism. It thus readily follows from Lemmas 4.10, 4.11 that if, in the

diagram
¢
G —H
6.1) l e e
¢p
Gp—>H,

in N, ¢ is a P-isomorphism, then ¢, is an isomorphism. Our main objec-
tive in this section is to prove the converse of this, and thereby to be able
to obtain consequences about the properties of P -isomorphisms of nilpotent
groups. However, the converse appears to require deeper properties of nil-
potent groups than those so far exploited. We will use Philip Hall's theory
of basic commutators [ 5] to prove the following result, which we have

not succeeded in finding in the literature.

THEOREM 6.1. Let G be a group, x, y €G with y*=1. Then

(xy)"' =57 modlit1l(G).
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PROOF. We may assume without loss of generality that G is generated by
x,y.Then ['(G)/ ritli(G) is generated by the cosets of certain i-fold
basic commutators. Moreover, an i-fold commutator is linear in each of its
arguments, modulo I'**1(G). Since an i-fold basic commutator, > 2,

must involve y as an argument, it follows that, for any such commutator c,

" €l_'i+1(G), so that, for any element
gel’i(G), i>2, Felitl(G).
We now proceed to prove the theorem by induction on 7. If =1,
then
(xy)"® = x'fy” mod "2 = x".
Now suppose that (xy)”i=x"iq, for some i> 1, with qeriH. Then

d
' elNit2 5o

it+1 itl

i+ 1 ] . .
(xy)"z :(x"l q)n = 4n qn mod l"'1+2 = " modl"‘l+2’

and the theorem is proved.
COROLLARY 6.2. Let G be a nilpotent group with nilG< c. Then if x,
y€G, with y"=1,
c
(xy)”czx’2 .
e B
PROPOSITION 6.3. Given G;—>G, —>G; in N, then if Sa and 3
are P -isomorphisms, so is a.

PROOF. It is trivial that @ is P-injective if Ba is P -injective. Now let
y €G,. Since Ba is P -surjective, B(y™)=Ba(x), for some x€Gy,
m €P' . Then, since [3 is P -injective, y" =a(x)b,with b€G, and =1,

n €P'_ By Corollary 6.2,
c
y’”"c=a(x" ) where nilG,< c.

Since mn® €P’, it follows that a is P -surjective.

COROLLARY 6.4. In the diagram (6.1) in N, ¢ is a P -isomorphism if and

only if C]SP is an isomorphism.

It now follows (see [4]) that the P -isomorphisms of N are pre-
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cisely those morphisms of N which are rendered invertible by the locali-
zation functor; we are thus led to the general theory of completions as in
[3,4], but we do not take that direction here. Instead, we draw some

immediate consequences.

THEOREM 6.5. Let
G r—— G — > G"
¢l

¢ P"

H'>——>H —>>H"

be a map of short exact sequences of nilpotent groups. Then if any two of

@', b, d" are P-isomorphisms, so is the third.
PROOF. We P -localize. Since P -localization is exact and two of ¢1; ,

¢P s ¢};' are isomorphisms, so is the third. The theorem thus follows from
Corollary 6.4.

THEOREM 6.6. Let ¢:G—~K be a P -isomorphism of nilpotent groups.
Then T8I G=T"iK is a P-isomorphism.

PROOF. We P -localize. Since ¢, is an isomorphism I_'i(¢P) is an iso-
morphism. But, by Theorem 5.6, I—'i(¢P )=(Fi<75)P . Thus, by Corollary
6.4, '’ is a P -isomorphism.

THEOREM 6.7. Let ¢:G—~K be a homomorphism of nilpotent groups. Then
¢ is a P -isomorphism if and only if ?f*(qﬁ): ﬁ*(G)—'ﬁ*(K) is a P -iso-

morphism.
PROOF. We P -localize. Then:

~

¢ is a P-isomorphism <=> ¢, is an isomorphism <=> Hx{p) is
~o ~

an isomorphism <> H*(dD)P is an isomorphism <=> Hx(¢®) isa

P -isomorphism.

Here the first equivalence uses Corollary 6.4; the second uses the Stallings-
Stammbach Theorem; the third uses Theorem 5.7; and the fourth again uses
Corollary 6.4.

THEOREM 6.8. The following assertions about the nilpotent groups G , K
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are equivalent (see [4]):
(i) Gp and Kp are isomorphic,
(ii) there exists a nilpotent group L and P -isomorphisms a:G=L,
18 "K-L ;
(iii) there exists a nilpotent group M and P -isomorphisms y:M—G,

8 :M-K.

PROOF. It is plain from Corollary 6.4 that (ii) => (i), (iii) = (i).

Also, since e is a P-isomorphism, the diagram
we e

G AKP‘ K where w: GP

I

113

Kp,

shows that (i) = (ii). That (i1) => (iii) now follows from

PROPOSITION 6.9, Let

be a pull-back in the category of groups, and let G, K, L be nilpotent.

Then M is nilpotent and & is a P -isomorphism if & is a P -isomorphism.

PROOF. M is a subgroup of GXK and thus certainly nilpotent. Since
kera=rker § it is plain that & is P-injective if and only if @ is P -injec-
tive. Now let a be P -surjective and let x €K. Then there exists y€G ,

n€P’ with a(y)=/B(x"). But then
(y,x")eM and S(y,x")=x",

so 0 is P -surjective. This proves Proposition 6.9 and, with it, Theorem 6.8.

Let us call G, K P -isomorphic if any of conditions (i), (ii),
(iii) of Theorem 6.8 hold.

THEOREM 6.10. Let G , K be finitely generated P -isomorphic nilpotent
groups. Then Zi(G), Z'(K) are P -isomorphic for all i3 1.

PROOF. Apply Theorem 5.9.

REMARK. In fact, in the category of nilpotent groups, the four implications
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26 P. HILTON

@ P-inj <> ¢p inj, P P-surj <> ¢p surj
are all valid, refining Corollary 6.4. Of these, the implication
$p sutj => ¢ P -surj
alone requires Corollary 6.2, the others being elementary. Using these

implications, one may obtain the following variant of the Stallings-Stamm-

bach Theorem:

THEOREM 6.11. Let ¢:G—=K be a homomorphism of nilpotent groups.
Then @ is a P -isomorphism if and only if ¢,, is a P -isomorphism and
H,(¢) is a P -surjection.

7. Localization of finitely generated nilpotent groups.

In this section we prove three theorems which are useful in ap-

plications of localization to homotopy theory. We begin with some lemmas.

LEMMA 7.1. [ 5] A subgroup of a finitely generated nilpotent group is
[initely generated.

PROOF. From the Hall theory of basic commutators and an easy induction
we readily infer that if G is finitely generated nilpotent, so are the terms
['?G of the lower central series. We now prove the lemma by induction on
nil G, since it is true if nilG=1,

Let H be a subgroup of G. Then H N "2 G is a subgroup of ['2G
and 7il["2 G < nil G, so, by the inductive hypothesis, H N "2 G is finitely

generated. We have the short exact sequence
HNT2G6 —>H—=HT?(G)/T2(G),

but H['2(G)/ FZ(G)_(; G, and hence is finitely generated. Thus H

is itself finitely generated.

Let P;, >0, be the complement of the set {pl.p2....,pl}

consisting of the first [ primes.
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LEMMA 7.2. If G is finitely generated nilpotent, then there exists I such

that G, =G, is injective, where G is the rationalization of G.
)

PROOF. Since G is finitely generated, so is its torsion subgroup T . Since
T is then easily seen to be finite, T has p-torsion for only finitely many
primes p . Thus, for / sufficiently large, GPI is torsion free and Gpl-*GO
is injective.

THEOREM 7.3. Let G, K be finitely generated, nilpotent groups and let
qﬁ:G-*KO be a bomomorphism. Then there exists | such that ¢ hasa

unique lift into KPI,

PROOF. We first choose [ so that Kp K, is injective. Let
(x7,%5,...,%,) generate G, let e:K—=K, rationalize K, and then find
y; €K, m; €N, such that
m.
e(y)=¢(x)™,  i=1,2, . n.

Now subject [ to the further condition that

m; P}, i=1, 2, ..., n,
and factorize e as
81 22
K —KPI/ >K,, e=eye;.
Since K, is P;-local, we have
el(yi)=zi , so (;b(xi) :22(7‘1') ,

d)(xi):ez(zi)v i:11 27 ey 72,

and ¢ lifts uniquely into Kpl.

Let us say that the nilpotent group G has property A if G is the
pull-back of its localizations G over its rationalization G, . Then it has
been observed (e.g. in [6]) that a finitely generated abelian group has

property A.

€
PROPOSITION 7.4. Let G’ > > G—>=G" be a short exact sequence
of nilpotent groups. Then if G', G" have property A, so has G.

PROOF. Write e, G- G

b for the localization, r, - G, #G, for the rationa-

2 4
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lization. We want to prove that, given & EGP , with T8 = 80> for all p,

there exists a unique g€G with €, 8= 8y Now

8 €0y and 778 8,7 g

for all p. Since G” has property A, there exists a unique g" €G"” with
"g"=e g - Let g"=¢%. Then &, g, = 8pepg, so that g, = (e g)gp ,
where gp EG' , and we regard L, Kps Mo as inclusions.  Moreover
gO:(rE)(rp gp) for all p, where 7:G= G, is the rationalization, so that
the elements g;) have a common rationalization. Since G’ has property A,
there exists a unique g'€G’ with e;,g'zg; . Then gp=ep(§g').

It remains to prove uniqueness. We suppose g€G with epg:I,
for all p. Then e;' eg=1, for all p, so €g=1, by uniqueness, and

g €G'. But then e;’ g=1, for all g, so g=1 by uniqueness.

THEOREM 7.5. A finitely generated nilpotent group has property A.

PROOF. We argue by induction on the nilpotency class of the group G,
since the theorem is true if nilG=1. We suppose 7nilG=c > 2, and that
the theorem has been proved for finitely generated nilpotent groups of class

£ c¢— 1. But then (see Lemma 7.1)
r'2(G)>—>=G—=G/T?(G)

is a short exact sequence of finitely generated nilpotent groups with
nill’2G<nilG, nilG/T?G=

Thus '?2G and G/T?G have property A and so, by Proposition 7.4,
has G.

THEOREM 7.6. Let ¢: G~ H be a homomorphism of nilpotent groups. Then

¢ is an isomorphism if and only if dDP is an isomorphism for all p.

PROOF. We assume ¢p an isomorphism for all p, that is, @ is a p-iso-
morphism for all p. Since ker¢ is a torsion group, and all primes are for-
bidden, kerp={1}. Now let y€H . Then, for each p, we have x(P)eG
n, prime to p, and y = ¢x([)) Since gcd(n )=1, we may find integers
a, , almost all zero, such that ) a,n,=1.Set x=II x(p) It is then plain
that y=c¢hx.

368



LOCALIZATION AND COHOMOLOGY OF NILPOTENT GROUPS 29

Bibliography.

10.

11.

G. BAUMSLAG, Lecture Notes on Nilpotent Groups, A.M.S. Regional Con-
ference Series No. 2 (1971).

G. BAUMSLAG, Some rematks on nilpotent groups with roots, Proc.Amer.
Math, Soc. 12 (1961), 262-267.

A. K. BOUSFIELD and D. M. KAN, Homotopy limits, completions and locali-
zations, Lecture Notes in Mathematics 304, Spinger Verlag (1972).

A. DELEANU, A. FREI and P. HILTON, Generalized Adams completion (to
appear).

P. HALL, Edmonton notes on nilpotent groups, Queen Mary College Mathema-
tical Notes (1969).

P. HILTON, G. MISLIN and J. ROITBERG, Homotopical localization, Proc.
Lond. Math. Soc. 26 (1973) (to appear).

P. HILTON, G. MISLIN and J. ROITBERG, Topological localization and nil-
potent groups, Bull, A.M.S. (1973) (to appear).

P. HILTON and U. STAMMBACH, A Course in Homological Algebra, Gradua-
te Texts in Mathematics, No. 4, Springer Verlag (1971).

A. G. KUROSH, The Theory of Groups, Vol. 2, Chelsea Publishing Company
(1960).
M. LAZARD, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci.

Ecole Norm. Sup. 71 (1954), 101-190.

R. B. WARFIELD, Jr., Localization of nilpotent groups, University of
Washington (1972) (mimeographed).

Battelle Seattle Research Center

Case Western Reserve University

University of Washington

369



