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ON A MECHANISM OF DEFINING MORPHISMS

IN CONCRETE CATEGORIES

by L. KU010CERA and A. PULTR

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

vot. XIII - 4

A concrete category ( K, U ) (i.e., a category K together with a

faithful functor U: K - Set ) is fully described if we know, for every two

obj ects a and b , which mappings from the set U (a) into the set U (b)

are admissible (i.e., carry morphisms) and which of them are not. The

present paper deals with the question of a mechanism for picking up the

admissible mappings.
We shall show that every ( K, U ) satisfying certain conditions

( the condition ( E ) formulated in § 2 , satisfied e.g. in every ( K, U ) such

that for every cardinal m there is only a set of non-isomorphic objects a
with card U(a)=m and that

(R) every morphism a of K can be written as p o E with U (03BC) one-

to-one and U(E) onto)

can be looked upon in the following way:
A functor F : Set - Set is given, the objects of K are some couples ( X , r ) ,

where X is a set and r C F (X), and the admissible mappings from ( X , r )

into ( Y, s ) are exactly those f : X -&#x3E; Y for which F ( f ) ( r ) C s .
In particular, every concrete category resulting from a Bourbaki

structure construction ( [1] IV.2.1 ) and satisfying ( R ) above can be des-

cribed like that. For this case we show that the functors F may be cho-

sen such that cardinality of F(X) does not exceed the exp exp exp of

the cardinality of the last step in the structure construction on X.

This mechanism of choice of morphisms among mappings between

underlying sets has been already studied in several papers ([3], [4],
[5] ) and many everyday life concrete categories have been observed to

be subjected to it. The aim of this paper is to show its universality. In

fact, we prove that the mentioned condition (E) is necessary and suffi-

cient, the necessity being almost trivial, though.
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1. Preliminaries.

In this paragraph we recall some definitions from quoted papers
and prove simple lemmas. The category of sets and all mappings is deno-

ted by Set, the functors from Set into Set are referred to as set functors.

1.1. D E F IN I T IO N . Let F be a set functor. The category S (F) is defined

as follows :

- The objects are couples (X, r) with X a set and r C F (X), the mor-

phisms from (X, r) into ( Y, s ) are triples (( X , r ), f , ( Y, s )) such that

f: X - Y is a mapping with F(f)(r)C s,
-The composition is given by the formula

Throughout this paper, S ( F ) will be considered as a concrete ca-

tegory endowed with the functor sending ( X , r ) into X and ((X, r), f
( Y , s ) ) into f .

1.2. DE F IN ITION . Let (K, U), ( L , V ) be concrete categories. ( K, U )

is said to be w-realizable in ( L , V), if there is a full and faithful O: 

K - L such that Vo =U. Such a 4Y is called a w- realization o f ( K , U)

in (L, V).

If it is a full embedding (i.e. full and one-to-one), we speak about

realization and realizability.

RE MARK . The realizability of ( K, U) in ( L , V ) means that ( K, U ) is

equivalent to some ( L’, V / L’ ) , where L’ is a full subcategory of L .

If ( K, U ) is w-realizable in ( L, V ) and some mechanism is able to de-

termine the morphisms of ( L , V ) among the mappings of underlying sets,
it will do the job in ( K , U ), too.

1.3. D E F IN IT IO N . A concrete category ( K , U ) is said to have the pro-

perty ( I ) if
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1.4. REMARK . S( F) obviously has (I).

1.5. LEMMA . Let (D be a w-realization of (K, U) in (L, V), let (L, V)

have (I). Then 4) is a realization if and only if ( K , U ) has (I).

PROOF. If (D is one-to-one and U(a)=VoO(a)=1 for an isomorphism

a , we have O(a) = 1 and hence a = 1. If (D is not one-to-one, take ob-

jects a # b with O(a) = (b). Since O is full, there is an isomorphism
a: a-&#x3E;b with O(a)=1O(a). Thus, U(a)=VoO(a)=1.
1.6. LEMMA. For every concrete category (K,U) there is a w-realization

(D in ( L , V ) such that ( L , V ) has (I) and (D is onto.

PROOF: Write a,b if there is an isomorphism a : a -&#x3E; b with U (a) = 1.

The relation - is obviously an equivalence. For every equivalence class

C choose a representant ac and put O (b) = aC for b E C . Let L be the.

full subcategory of K generated by the objects O (b), put V = U I L . De-
note by aa the isomorphism aa : a -&#x3E;O (a) with U (aa) = 1 and put

We see easily that O is a w-realization.

2. The condition (E) and others.

2. 1. D E F IN IT IO N . Let ( K, U ) be a concrete category. For an object a E K

and a one-to-one mapping m : X -&#x3E; U(a) denote by S (m, a) (more exactly,

S(m, a, K, U)) the class

A U-image of a morphism O: a -&#x3E; b is an S(m, b) such that U (O) = m o p
for some surjective p .

2. 2. LEMMA. For a one-to-one mapping f , 

PROO F . Follows immediately by definition.

2. 3. LEMMA. For a one-to-one mapping f,
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PROOF . This is an immediate consequence of 2.2.

2.4. DEFINITION. N4orphisms a and /3 are said to be parallel (notation

all f3 ) if they have a common U-image.

2.5. LEMMA. Identities 1 a and 1b are parallel iff a is isomorphic to b.

PROOF . If there is an isomorphism a: a -&#x3E; b, we see easily that

On the other hand, let be a common U-image of 1 a and

1 b . There are surj ection s p and q such that

But then necessarily also p o m and q o n are identities. We have

S ( m , a ) and hence (a, p) E S (n, b), so that there is an a : a - b with

Similarly there is a with Thus

Hence, a is an isomorphism.

2.6. LEMMA. // is an equivalence relation.

PROOF. Let S (m, a) = S ( m’, b) be a common U-image of a:a’-a, B:
b’-b, S (n,b)=S(n’,c) a common image of /3 and y: c’..... c. We find

easily an invertible mapping i with m’ = n o i . By 2.3 , hence,

which is a U-image of y . Thus, // is transitive. The reflexivity and sym-

metry is evident. 

2.7. LEMMA. Let a//B, let S(m, a) be a U-image of a, m:X’-&#x3E;U(a),

S (n, b) a U-image of B, n : Y -&#x3E; U (b). Then there exists an invertible

f: X -&#x3E; Y such that

PROOF. Let S (m’, a ) = S (n’, b) be a common U-im age of a. and B. We
find easily invertible i and j with m’oi = m, n o j = n’ . Put /=/ox. By
2.3.

Thus , the statement follows by 2.2.
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2.8. D E F INI T IO N . Let m be a cardinal number, ( K, U ) a concrete cate-

gory. Denote by 0 m ( K, U) the class of all obj ects a of K with card U (a) 
m, by Mm ( K, U ) the class of all morphisms a : a -&#x3E; b of K such that

car d U (a) ( U (a)) m . ( K, U ) is said to have the property:

(S) if there is a class of objects of K such that for every object
of K there is an isomorphic one in A , and that A n O m (K, U )
is a set for every m .

( E ) if there is a class A of morphisms of K such that for every mor-

phism of K there is a parallel one in A , and that A n mrn (K, U )
is a set for every m .

2.9. RE MA R K . By 2.5 we see easily that (E) implies (S).

2.10. LEMMA. Let (D be a w-realization o f (K,U) in (L, V), let O map

K onto L. If (K, U) has the pro perty (S) ((E) resp. ), then (L,V) has

(S) ((E) resp. ).

PROOF. It suffices to take the image of the class A under (D

2. 11. D E F IN IT I O N . ( K , U ) is said to have the property:

( R ) If for every O: a -&#x3E; b in K there are .8: a .... c and 03BC : c -&#x3E; b such

that U ( 6) is onto, U (03BC) one-to-one and O = 03BC o E.
( P ) If for every : a - b in K and for any two mappings f : U (a) -&#x3E; X ,

g:X-&#x3E;U(b) with U(O)=g o f there are morphisms a:a-c and

B: c -&#x3E; b such th at U (a) = f and U (B) = g .
(M) If {a I U(a)=X} is a set for every set X.

RE M AR K . Obviously, (R) and ( P ) are preserved under a w-realization

from 2.10. 

2.12. LEMMA. (S) and (I ) imply (M).

PROOF . Let (K, U) have (S) and (I) and let {a l U(a) =X} be a pro-

per class. Thus, there is an object b and an N C {al (a)=X} such
that card N &#x3E; card Xx and that for every a E N there is an isomorphism

a (a) : a -&#x3E; b. Hence, for some distinct all a2’ U (a (a1)) = U(a (a2)),
so that U (a (a2)- 1 o a (a1)) = 1, which is a contradiction.
2.13. LEMMA. Let a be isomorphic to b E Om(K, U). Then aE Om(K, U).
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Let a be parallel to BE Mm ( K, U). Then a E Mm (K, U).
PROOF is trivial.

2.14. LEMMA. Let ( K , U ) be w-realizabl e in ( L , V ), let ( L , V) have

(S) (resp. (E)). Then (K, U) has (S) (resp. (E)).

PROOF. The statement on (S) is evident. Let us prove the other one. Let

0 : K - L be a w-realization, let A be the class of morphisms of L from

(E). For every a E A choose an a.’ in K with O (a’) // a, if there is

any. Denote by A’ the class of thus obtained morphisms. A’ n Mm ( K , U )
is always a set, by 2.13. Let O(O)//O(Y), O:a-&#x3E;b, Y:c-&#x3E;d; let

S(m,O(b),L,V)=S(n,O(d), L,V) be their common image. Let p , q

be surjections such that

Thus, U(O) =mop, U(Y)=no q. We see easily that

and similarly for n, d, so that S(m, b, K, U ) = S( n, d, K, U). Thus,

O//Y. Now, take a general O and find an a, E A parallel to O (O), take

the a’ E A’ with O (a’) //a. By 2.6, O (O) //O (a’) and hence O//a’.

2.15. LEMMA. S(F) has ( E ) for every set functor F .

P RO O F . Define A as the class of all 1(m, s ) such that m is a cardinal.

Thus,

is a set. Let ((X, r), f, (Y, s)) be a morphism of S(F). Put Z = f(X),

t = F (j) -1 (s), where / is the embedding of Z into Y . We have

so that S( j, (Y, s))=S(1Z, (Z, t)). Thus ((X, r), f, (Y, s))//1(Z,t) ’
Take, now, an object ( m , u ) isomorphic to ( Z , t ) . We obtain

by 2.5 and 2.6.
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3. Main Theorem.

3.1. LEMM A. Every ( K, U ) having the property (E) is realizable in a

category with prop erti es (S) and (R).

PROOF. For ( K, U ) define a concrete category ( K, U ) as follows :

-The objects are triples (X, m, a) where X is a set, a an object of K

and m : X -&#x3E; U (a) a one-to-one mapping such that there is a O: b - a with

U-image S ( m , a).

-The morphisms from ( X , m , a ) into ( Y , n , b ) are triples ( ( X , m , a ), f ,

( Y , n , b ) such that f: X -&#x3E; Y is a mapping satisfying the implication:

-’The morphisms are composed in the obvious way.

For an object a of K put O (a) = ( U (a), 1, a); for a morphism ct put
O (O )=(O (a), U(O), O(b)). VIe see easily that we define a one-to-one

functor V : K - K with UoO=U. If (O(a), f,O(b)) is a morphism of K,
we have a O: a -&#x3E; b such that U(O)= 1o f o1 = f, since (a, 1) E S( 1, a).

Thus, (D is a realization. Let ( ( X , m, a ), f , ( Y, n , b ) ) be in K . Decom-

pose f into f1 o f2 with f1: Z -&#x3E; Y one-to-one and f2 onto. (Z,nof1,h) is
an object ’of K , since there is a 0: c - a and p : U (c) -&#x3E; X surjective
such that U (O) = m o p and hence there is a Y : c -&#x3E; b with

By 2.2, (c,g) E S(no f1, b) iff (c, f1o g) E S(n, b), so that ((Z, no f1, b),

f1, (Y, n, b)) is a morphism.
If (c,h) ES (m,a), then

and hence, again by 2.2 , (c, f2oh) E S(n. f1, b). Hence, also ((X, m, a),

f2, ( Z, no fl , b)) is a morphism. Thus, ( K, U) has (R). Now, let ( K, U )
have ( E ) . Take the class of morphisms A from (E) and construct a class

A’ of objects of K taking for every a E A an (X , m , a) such that S ( m, a )

is the U-image of a.. By 2.7 and the definition of U, A’ has the proper-

ties required in (S).
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3. 2. LEMMA. Let (K, U) have the properties (S ) and ( R ) . Then it is

realizable in a category with the properties ( S) and ( P ).

PROOF. For ( K, U) define a concrete category (K’, U’) as follows :

-The objects are triples ( X , a, p ), where X is a set, a an object of

K and p a mapping of a subset X’ C X onto U ( a ) (we shall use the

symbols D ( p ) for X’ and j ( p, X ) for the embedding of D ( p ) into X).

- The morphisms from ( X , a, p ) into (Y, h, q) are triples ((X, a, p),

f, (Y, b, q)) such that f : X -&#x3E; Y is a mapping for which there are f’ :

D(p)-D(q) and 03BC: a-&#x3E;b with

The morphisms are composed in the obvious way.

Define O: K -&#x3E; K’ by

We see easily that O is a one-to-one functor with U’ o O= U . Let (O (a),

f, O (b)) be a morphism. Thus, there are f’ and 03BC: a -&#x3E; b such that

so that (O (a), f, O (b))=O(03BC). Hence, O is a realization. Now, let

( K , U) satisfy (R). Let ((X, a, p), f , (Y, b, q ) ) be a morphism of K’,

let g : X - Z and h:Z- Y be such that f =hog; let f’:D(p)-D(q) and

03BC: a -&#x3E; b satisfy

Put Z’ = g (D (p)) and denote by j the embedding of Z’ into Z. The

formulas g’(x) = g (x), h(x)=h(x) evidently define mappings g’ :

D(p)-&#x3E;Z’, h’: Z’-&#x3E;D(q) with

g’ being onto. By ( R ) there are morphisms a : a - c, /3 : c - b such that

U(a) is onto, U(B) one-to-one and 03BC = f3 0 a . If g’ (x) = g’ (y), we have



405

and hence U(a)p(x)= U (a) p (y) . Thus, there is a surjective r:Z’-U(c)

such th at U (a) o p = r o g’ . Further,

so that U(B)or=qoh’, since g’ is onto. Thus, ((X, a, p), g, (Z, c, r)),

((Z , c , r ), f, (Y, b , q ) ) are morphisms required in ( P ) .

Finally if ( K , U ) has ( S ) , so has (K’, U’ ) : take the class A of objects
of K from (S) and define a class A’ of objects of K’ as the class of

all ( m, a, p ), where a E A and m is a cardinal.

3.3. T H E O R E M . The following statements are equival ent :
( a ) ( K , U ) has the prop ert y (E).

(b) (K, U ) is realizable in a category with ( S) and (R).

( c ) ( K, U ) is real izabl e in a category with ( S ) and ( P ) .

( d ) There exists a set functor F such that ( K , U) is w-realizable

in S(F).

PROOF,

(c)=&#x3E; ( d ) : If ( K , U ) is realizable in a category with (S) and ( P ) ,

it is, by 1.6 and 2.10, w-realizable in a category with (S), ( P ) and (I).

Thus, by 2.12, it suffices to show that a category ( K, U) with ( M) and

( P ) is w-realizable in S ( F ) . Thus, let ( K , U ) have (M) and ( P ) . For

a set X put

for a m app i n g define

(it is really an element of F ( Y ) : If bEF (f) (A), take an a E A and

with for a we have

f, B O :-&#x3E;b’).
Evidently, F (1X) (A)9 A. On the other hand, a E F (1X) (A) means

that there is an a’E A and a:a’-&#x3E;a with U(a)-1X. Then, however,

a E A. Thus, F(1X )= 1F(X). 
Let f : X -&#x3E; Y and g:Y-&#x3E;Z be mappings. If c E F (g o f )(A) there is an

a E A and O: a -&#x3E; c with U(O)=go f. By (P) there are b, a: a-&#x3E; b and
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with and Thus, an d,,

so that Since ob-

viously we have

Thus, F is a set functor. 

Now, construct a functor O: K -&#x3E; S (F) as follows:

For an object a E K denote M(a)= {A E F(U(a)) la E A} and put

(O really maps into S (F) : If O: a -&#x3E; b and A E M (a), we have a E A and

b E F( U(O))(A), so that F( U(O))(A) E M(b)). O is faithful, since

U is. Thus, in order to prove that it is a w-realization, it remains to show

that it is full. Let F( f)(M(a))C M(b) for an f : U(a)-&#x3E; U(b). In particu-
lar,

so th at

Hence, there are a:a-&#x3E;a’, O:a’ -&#x3E; b with Thus,

follows immediately by 2.14 and 2.15.

3.4. TH E OR E M. The following statements are equivalent :
( a ) ( K , U ) has the properties (E) and (1).

(b) ( K, U ) is realizable in a category with (S), (R) and (I).

( c ) ( K, U ) is realizable in a category with (S), ( P ) and ( I ) .

( d ) There exists a set functor F such that ( K , U) is re al iz abl e in

S(F).

PROOF. This is an immediate consequence of 3.3. and 1.5.

RE M A R K . The property ( E ) is in general not easy to check. In concrete

cases we can decide mostly rather after the statements ( b ) of 3.3 or 3.4.

It would be useful to find some more sufficient conditions of the kind of

(S) and (R). (S) alone does not work, which can be shown on the fol-

lowing example : Take the subcategory K of Set consisting of all the in-

vertible mappings and all the constants between sets of equal cardinality,
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let U be the embedding of K into Set . ( K, U) has obviously the proper-

ty (S). But it has not the property ( E ) : Really, if in a concrete category

a: a’ - a and B: b’ -&#x3E; b are parallel, there is a y: a’-&#x3E; b ( let S ( m, a )=

S (n, b) be the common U-im age, let U(a) = mop. Hence (a’, p) E S (m, a)

= S(n,b) and th erefore there is a y : a’ -&#x3E; b with U ( y ) = n o p ) . Thus, in

the case of our category ( K, U ) the cardinalities of ranges of parallel

morphisms have to be equal, and hence a class A , containing for every

morphism of K a parallel one, has to contain for every cardinal m a cons-

tant

wi th card .

But then A n M1 ( K, U) is a proper class.

Thus, this ( K, U) has (S), obviously (I) and (M) ( moreover,

card f a I U ( aX I = 1 for every X ) , but it is realizable in no S ( F ) .

3.6. R E MAR K, SO f ar, we h ave spoken explicitly about realizability in

S(F) with a covariant F . By [6J, however, a concrete category is rea-

lizable in S(F) with a covariant F iff it is realizable in S(F) with a

contravariant F .

3.7. NOTATION . If ( K , U) is a concrete category, we denote by iso (K,U)

the category of all isomorphisms of K endowed with the restriction of U .

3.8. TH EOREM. Let iso ( K, U) be w-realizable in iso S(F). Let (’K, U)

have the property ( R ) . Then ( K, U) is w-realizable in an S(G) with G

such that

G ( X ) is f inite i f F ( X ) is f inite,
card G (X)  exp exp exp card F (X) for in f inite X .

If ( K, U ) has the property ( P ), the functor G may be chosen with

PROOF. We see immediately that iso (M, W) has (S) iff (Ai, W) has.

Thus, ( K, U ) has ( S ) and ( R ) , so that we can do the constructions from

the proofs of 3.2 and 3.3. Assuming, without loss of generality, th at (K , U )

has ( I ) ( see 1.6 and 1.5 ) , we see that there is at most exp card F ( X )

objects a of K with U (a) = X. Thus, if ( K, U ) has (P), we obtain from
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the construction of the functor in 3.3 that

If ( K, U ) has only (R) we have to construct first the ( K, U ) from 3.2.

Replacing this by a category ( K, U ) with (I) by 1.6, we see easily that

there is a finite number of objects a with U (a) = X finite and at most

exp exp card F ( X ) objects with U (a) = X infinite.

3.9. D E F IN IT IO N . A Bourbaki-Ebresmann structure schema (shortly,

BESS) 6 is a system

( m (G), n (G), ( A (i, G)) i = -m (5) , ... , -] , a (i, G), b (i, G))i=1, ... , n (G)),
where m(5), n (G) are natural numbers, A (i, G) sets and a (i, G),

integers such that

If X is a set and 6 a BESS, define G (X) as the sequence

satisfying the following conditions (which, obviously, determine it):

($ designates the power set).
Write further G (X) = G(X, n (G)). A 5-structure on X i s a subset of

G(X). (In the definition in [1] or [2], an element is taken. This diffe-
rence is, however, purely technical. )

If 6 is a BESS and f : X -&#x3E; Y an invertible mapping, define G(f)
as the sequence of mappings G (f, -&#x3E; m (G )), ... , G(f, n G)) such that

6(f, I) takes subsets to their images under G(f,b(i,G)) if i &#x3E; 0 and

a(i, G)= -m(G)-1,
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3.10. DEFINITION. A concrete category ( K , U ) is said to be Bourbakian

(more exactly, Bourbakian of a type 6) if there is a BESS 6 and a cor-

respondence £ associating with every obj ect a of K a G-structure £(a)
on U (a) such that for an invertible mapping f : U (a) -&#x3E; U (b) there is an

isomorphism O :a-&#x3E;b with U(O) = f iff G(f)(£(a))=£(b) (cf. [1]

IV.2.1).

3. 11. LEMMA. L et ( K, U ) be a Bourbakian category o f a type The G

from 3.9 can be extended to a set functor such that iso ( K, U) is w-rea-

lizable in iso S ( G).

PROOF. Denote by CA the constant set functor sending every X to A and

every f to 1A ) by P+ the set functor defined by

P+(X)=$(X), P+(f)(M)= f(M) (the image of M under f);

for F , G set functors denote by F X G the set functor defined by

Given 6, construct a sequence of set functors F -m, ... , Fn as follows:

for i  0 Fi = CA(i, G)’ F0 is the identity functor; for i &#x3E; 0, a ( i, 6) =

-m(G)-1, Fi=P+o Fb(i, G); for i&#x3E;0, d(i, G&#x3E;-m(G),

By definition 3.10 , we see easily that we can put G = Fn (G).
3.12. COROLLARY. Let ( K, U ) be a Bourbakian category o f a type 5, 1 f
it has the property (R), it is w-realizable in an S(F) with F such that

F(X) is finite iff G (X) is finite,
card F(X)  exp exp exp card G (X) for in f inite X.

I f it has the property (P), the functor F can be chosen such that
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