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TWO CONSTRUCTIONS ON LAX FUNCTORS

by Ross STREET

C 1HIE ’S DE TOPOLOGIE

ET GEOMETRIE DIFFEREIVTIELLE

Vol. XIII - 3

Introduction

Bicategories have been defined by Jean Benabou [a], and there
lre examples of bicategories which are not 2-categories. In the theory of

a bicategory it appears that all the definitions and theorems of the theory
of a 2-category still hold except for the addition of ( coherent? ) isomor-

phisms in appropriate places. For example, in a bicategory one may speak
of ’djoint 1-cells; indeed, in Benabou’s bicategory Prof of categories,

profunctors and natural transformations, those profunctors which arise from

functors do have adjoints in this sense.

The category Cat of categories is a cartesian closed category

EEK] , and a Cat-category is a 2-category. In this work 2-functor, 2-natu-
ral transformation and 2-adjoint will simply mean Cat-functor, Cat-natural

transformation [EK] , and Ccit-adjoint [Ke] . It has long been realized

by John Gray [G2] that the simple minded appl ic ation of the theory of

closed categories ( for example, the work of [DKJ ) does not disclose all

that is of interest in the theory of 2-categories (his «2-comma categories»

give an enriched Kan extension which is more involved that the Cat-Kan

extension). Except for Grothendieck’s pseudofunctors [G1], it was not

until the paper [B] of Benabou that other morphisms of 2-categories be-

sides 2-functors were considered. The pseudo-functors (they preserve com-

position and identities only up to isomorphism) do not appear to have a

very different theory to that of 2-functors; again (coherent?) isomorphisms
must be added.

Morphisms of bicategories [B] , here called lax functors, seem

fundamental even when the domain and codomain are 2-categories. The

«formal» categorical purpose for this paper is to provide in detail the

constructions of two universal functors from a lax functor with domain a

category and codomain Cat ( some generalizations are outlined in the ap-
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pendix). These constructions ( also see the appendix) lead to «limits and

colimits » for these types of lax functors into Cat ( adjoints to appropriate

di agon al fun ctors ) .

Let 1 denote the category with one object and one arrow. In [B]
it is remarked that a lax functor from 1 to 6 at is a category together with

a triple (monad) on that category. A functor from 1 to Cat is just a cate-

gory. So the two constructions assign two categories to each triple on a

category. The first construction is that of Kleisli [KI and the second
construction is that of Eilenberg-Moore [EM] .

So the second purpose of this paper is to provide a generalization
of the theory of triples. Yet it is more than a generalization: it provides
a framework for the presentation of some new ( ? ) results on triples.

We believe that Theorems 3 and 4 are unknown even in the triples
case ( A = 1 ) . The 2-categories Lax [1,Cat] and Lax [1 ,Cat] might
well be called Trip and Trip, and Gen [1 ,Cat] is Cat . So we have the

results that the Kleisli construction is a left 2-adjoint of the inclusion of

Cat in Tri p , and that the Eilenberg-Moore construction is a right 2-adjoint
- 

of the inclusion of Cat in Trip . If X is a category and Y is a category

supporting a triple T , then the following are isomorphisms of categories

where Y T denotes the category of Kleisli algebras with respect to T , Y T

denotes the category of Eilenberg-Moore algebras with respect to T , and

square brackets denote the functor category. Now T induces a triple T ,
X ] on [ Y, X ] , and Trip (( Y, T ), ( X , 1 ) ) is readily seen to be the

category of algebras [ y, X ] [ T,X ] with respect to this triple. Also T

induces a triple [X,T]on [X,Y] and Tr I p ( ( X , I ), ( Y , T ) ) is readi-

ly seen to be the category of algebras [ X, Y ] [X, T] with respect to this

tripl e. So we have isomorphisms of categories

and these commute with the underlying functors. Dubuc [Du] called the

objects of [ X, Y ] [X,T] functors together with actions, and he proved
that these are in bijective correspondence with functors from X to Y T .
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The treatment of structure and semantics using cartesian arrows

in such a way as to admit a dual, also seems to be new even in the triples
case. The simple duality between triples and cotriples corresponds to a

reversal of 2-cells in Cat. Here we have a duality corresponding to a re-

versal of 1-cells in Cat which takes Kleisli algebras to Eilenberg-Moore

algebras. Note also the amazing adjointness which Linton at the end of

his paper [Li] attributes to Lawvere and which relates Kleisli and Eilen-

berg-Moore algebras and coalgebras.
The construction ( due to Grothendieck) of a pseudo-functor V:

Bop -&#x3E; Cat from a fibration P : E -&#x3E; B may be found in [G1]: for B6B,

V B = P -1 (B) is the fibre category over B , and, for f : B -&#x3E; B’ in B, V f :
V B’ -&#x3E; V B is the inverse image functor. If P is a split fibration, then

inverse images can be chosen so that V is a genuine functor. If a fibra-

tion P is also an opfibration (terminology of [G1]), then it is called a

bifibration [BR], and, for each f : B -&#x3E; B’ , the direct image functor V f :
V B - V B’ provides a left adjoint for V f . For a bifibration P : E - B , two

pseudo-functors V : Bop -&#x3E; Cat, V : B - Cat are obtained and on objects

they have the same values. If P is split as a fibration, it need not be split
as an opfibration; if V is a genuine functor, there may still be no way of

choosing direct images so that V is a genuine functor. The usual examples
of bifibrations (see [BR]) are split either as fibration s or opfibrations.
This should justify the consideration in § 5 of functors V : A - Cat such

that, for each f : A -&#x3E; A’ in A, V f has a left adjoint. In fact we show that

the second basic construction gives such a functor under mild conditions.

The work for this paper started out in an attempt to generalize the

concept of triple and the algebra construction in the hope that many well-

known categories besides equationally defined theories could be shown

to be examples of the construction - categories of sheaves especially. The

first generalization which we worked through to a «tripleability» theorem

amounts to the case where the lax functor W : A -&#x3E; Cat has the property

that

- each set A ( A , B ) has exactly one arrow  A B &#x3E; ;
- for each A c A , W A = X for some fixed category X .
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Note that the functor category [X, X] is monoidale with composition as

its tensor product, and such a lax functor W amounts to an E X, X ] -cate-

gory with its objects the same as the objects of A. For exampl e, if K is

a category with the same objects as A and if X has copowers enough,
then a lax functor W : A -&#x3E; Cat is obtained by

WA=X, W AB &#x3E; =K(A, B)®-: X-&#x3E;X,

and the other data is provided by compositions and identities in K . Then

for each A c K , the second construction W A is the functor category [K,
X .

Benabou suggested consideration of the case where A is a gene-

ral category. The hope was that this extra freedom would give subcatego-
ries of functor categories [K,X], for example, those full subcategories
of functors which preserve a particular set of assigned limits. At this point
we do not know whether this is the case.

The first generalization of tri ples for [X, X] -categories was com-

pleted at Tulane University in New Orleans, and there also were the two

basic constructions of § 2 found. The remainder of the work was done at

Macquarie University in Sydney.
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1. Def initions.

Suppose A is a category. A lax functor W : A -&#x3E; Cat consists of the

following data:

for each object A of A, a category W A,
for each arrow f : A -&#x3E; B in A, a functor W f: W A - W B ,
for each composable pair of arrows f: A - B, g: B - C in A, a natural

transformation ag,f: Wg . W f -&#x3E; W (gf),
for each object A of A, a natural transformation wA : 1WA -&#x3E; W 1A ;

such that the following diagams commute :

For lax functors W, W’ : A -&#x3E; Cat , a le ft lax transformation L : W - W’

consists of:

for each A E A , a functor LA : W A -&#x3E; W’ A ,
for each arrow f : A -&#x3E; B in A , a natural transformation

such that the following diagrams commute :
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The data for the left lax transformation L : W - W’ is contained in the dia-

gram 
... 

L A 
....

the 2-cell points left. The data for a right lax trans f ormation R : W - W’

comes in a diagram R ,,

the 2-cell points right; and the appropriate changes must be made in the

two conditions.

For left lax transformations L , M : W -&#x3E; W’, a morphism s : L - M o f

left lax transformations is a function which assigns to each object A of

A a natural transformation sA : LA -&#x3E; MA such that the following square
commutes :

A morphism s : R -&#x3E; S of right lax trans formations consists of natural trans-

form ation s sA : RA - SA satisfying :

T’he composite L’L : W -&#x3E; W’’ o f two left lax trans formations L :

W -&#x3E; W’, L’ : W’ -&#x3E; W" is the left lax transformation given by
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This composition is associative with identities.

There are two compositions for morphisms of left lax transforma-

tions. If L, M, N:W-W’ are left lax transformations, and s:L -M, t : M -&#x3E; N

are morphisms of them, then the composite t s : L -&#x3E; N is the morphism

given by ( t s ) A = tA sA . This composition is associative and has identi-

ties. If L , M : W -&#x3E; W’ and L’,M’: W’- W" are left lax transformations and

s: L -&#x3E; M, s’ : L’ - M’ are morphisms of them, then the composite

s’ s : L’L -&#x3E; M’M is the morphi sm given by

then s’s is a morphism since the following diagram commutes.

Moreover, in the diagram

the equation

is satisfied since it holds for natural transformations and the composi-
tions were defined componentwise.

Compositions may similarly be defined with left replaced by right.

Summ arizirig then, we have a 2-c ategory Lax [A, Cat] whose

0-cells are lax functors from A to Cat , whose 1-cells are left lax trans-

formations, and whose 2-cells are morphisms of left lax transformations;
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and also, by replacing left by right, a 2-category Lax -&#x3E; [A, Cat] . For lax

functors W , W’ : A -&#x3E; Cat , we put

and

A functor W : A -&#x3E; Cat may be regarded as a lax functor which has

all the natural transformations úJ g, f’ , WA identities. If W , W’ are functors,

then a natural transformation N : W -&#x3E; W’ may be regarded as a left and right
lax transformation with all the natural transformations N f identities. Let

[W,W’] denote the full subcategory of [W,W’] whose objects are the

natural transformations from W to W’; it is also a full subcategory of

[W,W’] . Let Gen [A, Cat] denote the 2-category whose objects are

genuine functors from A to Cat and Gen [A, Cat ] ( V , V’) - [V, V’], so

that Gen [A, Cat] is a sub-2-category of both Lax [A, Cat] and

Lax [A, Cat], and both the inclusions are locally full.
A left adjoint of a left lax transformation L : W - W’ is a right lax

transformation R : W’ -&#x3E; W such that, for each A E A, RA is a left adjoint of

LA and the natural transformations L f and R f correspond under the natu-
ral isomorphism

which comes from the adjunctions RA -I LA , RB -1 LB ; the notation is

R -| L.
THEOREM 1 . (a) A left lax transformation L : W - W’ has a.left adjoint

if and only if each of the functors LA : W A -&#x3E; W’A has a le ft adjoint.
(b) If L , M : W -&#x3E; W’ are l e f t lax trans f orm ations and

( c ) The le ft adjoint o f L : W -&#x3E; W’ is unique up to isomor-

phism in [W’,W].
PROOF . (a) Let RA : W’A -&#x3E; WA be a left adjoint of LA . If R : W’-&#x3E; W is

to be a left adjoint of L , then the definition of R f is forced. The natura-
lity of the isomorphisms takes the conditions on the data L A ’ L f which
make L a left lax transformation into the conditions on R A" R f which
give a right lax transformation R . Then Rt L .
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(b) From the adjunctions RA -1 LA’ SA -1 MA we have natural iso-

morphisms

under which the diagrams of morphisms of left lax transformations go to

those for morphisms of right.
( c ) If R -| L and R’-l L, then the identity morphism from L to L gi-

ves an isomorphism between R and R’ using part (b).

Given a lax functor V : A -&#x3E; Cat and, for each object A of A, an

adjunction EA , nA : JA I EA ; ( V A, XA ), then the following data defines

a lax functor W:A -&#x3E; Cat :

Moreover, the following data defines a left lax transformation E : V -&#x3E; W :

and the following data defines a right lax transformation J : W -&#x3E; V :

Then /) E . ( The proof of these assertions is left up to the reader and

is recommended as an exercise in the new definitions.) Under these cir-

cumstances we say that W is the lax functor generated by V and the ad-

junction j -| E , and we write W = E V J .

2. The two basic constructions.

Suppose W : A - Cat is a lax functor. A genuine functor W: A -&#x3E; Cat

is defined as follows. For A E A, WA is the category whose objects are
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pairs (u, X), where u : A’ -&#x3E; A is an arrpw of A and X is an object of

IN A’, whose arrows are pairs (h , c):(u , X) -&#x3E; (u’, X’) where h : A "-&#x3E; A’ is

an arrow of A such that u’= uh and c : X -&#x3E; (Wh) X’ is an arrow of WA’,
and whose composition is given by

It should be checked that composition is associative and that the identity
of (u, X) is (1A’’wA’X). For f: A - Bin A, W f : W A - W B is the func-

tor given by

For ecrch A E A , define 

Then

and the following diagram completes the proof that EA is a functor.

Al so define

in W A . These arrows are the components of a natural transformation

For each X E W A , let
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in W A . These arrows are the components of a natural transformation

I . Commutativity of

implies . Commutativity of

implies . So for each A c A we have an adjunction

and

So

So put

and
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Then is a left lax transformation, J :W -&#x3E; W is a right lax trans-

formation, 

This is the first basic construction. Its characterizing properties,

along with those of the second construction, will be discussed in the next

section.

/B 
Suppose again W: A -Cat is any lax functor. A genuine functor

W: A - Cat is defined as follows. For A E A, the objects of the category
/B

WA are pairs (F, _E), where F is a function which assigns to each ar-

row u : A -&#x3E; B of A an object F u E WB , and e is a function which assigns
to each composable pair u : A -&#x3E; B , v : B -&#x3E; C of arrows of A an arrow ev,u :
(Wv) F u -&#x3E; F (vu) in WC such that the following diagrams commute :

/B

An arrow a:( F, _E ) -&#x3E; ( F’, _E’) in WA is a function which assigns to each

arrow u: A - B of A an arrow OL F u - F’u of W B such that the following

diagram commutes :

A

The composition in WA is simply given by
is defined by
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and define

where . The family of arrows

, are the components of a natural transforma-

. The family of arrows

are the components of a natural transformation
A

are in W A since

’ the arrows

commutes, and the family is natural since, for any arrow a:(F,_E)-&#x3E;(F’,_E’)
1B

in WA, the diagram

commutes. The commutative diagrams

imply

So for each A E A we have an adjunction
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and

So put

and

^

Then E : W -&#x3E; W is a left lax transformation; J : W -&#x3E; W is a right lax trans-

THEOREM 2. For every lax functor W:A-Cat there exists a genuine

functor V:A-Cat, a le ft lax trans formation E:V-W and a right lax

transformation J : W -&#x3E; V such that J is the le ft adjoint of E and W = E V J .

3. Universal properties.

ihe basic constructions are characterized in this section as 2-

adjoints of two simple inclusion 2-functors. All properties (up to isomor-

morphism) of the two constructions must be deducible from these charac-

terizations. However, we do not choose to enter into this game; we use

the expl icit formulae wherever necessary. This is why the constructions

are given in a separate section and are not included in the proofs of the
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existence of the adjoints.

THEOREM 3. Th e inclusion of Gen [ A, Cat] in Lax [A, Cat] has a

left 2-adjoint. The 2-reflection of the lax functor W : A - Cat is the right
I

lax transformations

PROOF. Suppose V : A -&#x3E; Cat i s a genuine functor.

A functor E : [W-&#x3E;, V] - [W~, V] will be defined. For an object R of

[W-&#x3E;, V], the n atur al transformation 
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Then

so that I i s n atural . Al so

clearly makes 2 a functor.

In order to show that 2 is an isomorphism we construct its in-

ver se For a natural transformation N:W-&#x3E;V,

Many things must be checked. First

and

so that is a functor. Then note
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so is natural. By applying

NC to the equation

by applying NA to the equation

and by using the fact that Nc , NA are functors , we obtain

is an object

the arrow

of is given by

Each rA is natural, so is natural. Moreover,

so is an arrow of is a functor.
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so Now take an arrow Then

Take N in Then

It remains to prove th at 2 is 2-natural in V . Suppose N : V -&#x3E; V’

is a natural transformation. We must show that

commutes. So take R in [W-&#x3E;, V]. Then
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and

So E (N, R) = N E (R) and we h ave the commut ativit y on obj ect s. Suppo se
s : R -&#x3E; S is an arrow of [W-&#x3E;, V]. Then

so E (Ns) = N E (s). So the square commutes. This proves ordinary natu-

rality of 2 . For 2-natur ality, we must show th at

commutes for any arrow r: N - P of [V, V’]. So take s: R - S in [W-&#x3E;,V] .
Then

It follows that the assignment W -&#x3E; W is the object function of a

unique 2-functor from Lax [A , Cat] to Gen [A, Cat] such th at, for

each functor V , 2 is 2-natural in W; and this 2-functor is the required
left 2-adjoint. The 2-reflection of W is the image of the identity of W

under . From the definitions of 5i -1 and J one

readily see that 2 -1 ( 1W ) = J .
COROLLARY. Suppose the lax functor W: A - Cat is generated by the

adjunction J --i E : ( V , W ), where V : A - Cat is a genuine functor. Then

there exists a unique natural trans formation N : W -&#x3E; V such that N J = J ;
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moreover, this N also satisfies E N = E .

PROOF. The existence and uniqueness of N satifying N j = j is imme-

diate from the theorem. Then

so If follows that EA NA = EA . Then

TH EO RE M 4 . The inclusion of Gen [A, Cat] in Lax ~[A, Cat] has a

right 2-adjoint. The 2-core flection of the lax functor W : A -&#x3E; Cat is the left
A 1B

lax trans formation E : W - W .

PROOF. Suppose V : A -&#x3E; Cat is a genuine functor.

A functor will be defined. For an object L of
1B

[V, W], the natural transformation II ( L ): V -&#x3E; W is given by:

The two diagrams which commute due to the fact that L is an object of

[ V, W ] show th at (F, ç) is an obj ect of W A , and the naturality of each
1B

Lv shows that TI ( L ) A h : TI ( L) A H --. II(L)A H’ is an arrow of WA. For

f : A -&#x3E; A’, one readil y checks that W f . II (L)A = II (L)A,. V f , so th at

II ( L ) : V -&#x3E; W is a natural transformation. For an arrow s : L, -&#x3E; M of [V:-W] ,
is given by:

is an arrow of

is natural. From the calculation
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/B

it follows that II(s): II(L) -&#x3E; II(M) is an arrow of [V.W] . If s is the

identity, so is II (s); and the calculation

completes the proof that II is a functor.

We show that fl is an isomorphism by constructing its inverse

. For an obj ect N of , the object
is given by:

where Each I is clearly a functor. Also i
so evaluating at H gives

Evaluating

/B 

and N A h i s an arrow of W A, so

commutes, exposing
natural transformation. From the diagrams for the object (

come the diagrams which prove n ( N ) is an object of
A

the arrow
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. The naturality of

follows from that of rA . Also

where is an arrow of . Moreover, J

is clearly a functor.

Take an object L of Then

Take an arrow

Take an obj ect N of Then

is given by

and

Also

so

so

In order to show that 11 is natural in V we must prove that the dia-

gram
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commutes for all natural transformations

Then II ( L’N )A H = ( F , _E ) where

and

Also

So

so -

commutes for all arrow s i

Then

so So fl is 2-natural in V .
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Finally, note that the image of 1 W under the functor

is the lef t lax transformation

COROLLARY. Suppose the lax functor W : A - Cat is generated by the

adjunction J -| E: (V, W), where V: A - Cat is a genuine functor. Then
^ ^

there exists a unique natural transformation N:V-W such that EN=E;
^

moreover, this N also satisfies NJ = J .moreover, this N also satisfies NJ = J.

/B

PROOF. The existence and uniqueness of N such that E N=E follow

from the theorem. Then

It follows that . Then

^

SO N J = J .

4. Structure and semant ics, and a dual.

Given a diagram

of functors, a right lifting o f F along P is a functor IIp F : X -&#x3E; A and

a natural transformation 7T : P . IIp F -&#x3E; F such that any natural transforma-

tion e : G -&#x3E; IIp F with codom ain flp F i s uniquely determined by the com-

posite 7T. P © : P G -&#x3E; P , IIp F -&#x3E; F .

1B

THEOREM 5 . If P : A -&#x3E; B is a functor with a right adjoint P : B -&#x3E; A and
1B

E : P P -&#x3E; 1 is the counit o f the adjunction, then any functor F : X -&#x3E; B has
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a right lifting along P given by the functor P F : X -&#x3E; A and the natural
^

trans formation EF : P ( P F ) -&#x3E; F .

Suppose A is a category and X is a family of categories XA
indexed by the objects A of A. A lax functor at X is a lax functor W:

A - Cat such that W A = XA for all A E A . A morphism O: W -&#x3E; W’ o f lax

functors at X is a function which assigns to each arrow f: A -&#x3E; B of A a

natural transformation Of: W f -&#x3E; W’ f such that the following diagrams com-

mute: 

Let | A I denote the subcategory of A with the same objects as

A but with only the identity arrows. Objects, arrows and 2-cells of Gen

[ |A|, Cat J are just families of categories, functors and natural trans-

formations indexed by the objects of A . The analysis of «structure and

semantics» for the first basic construction involves partial fibration pro-

perties of the 2-functor given by

Notice that P is faithful on 2-cells and so the fibre 2-categories are just

categories - they have only identity 2-cells. For this reason it suffices
-&#x3E;

to consider P as only a functor, neglecting its action on 2-cells. The

fibre category p-1 ( X ) over X will be denoted by FibA ( X ) ; its ob-

jects are lax functors at X and its arrows are morphisms of lax func-

tors at X .

For X E Gen [ |A|, Cat ] , the comma category ( XX, p ) has ob-
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jects pairs ( V , J ) where V : A -&#x3E; Cat is a lax functor and J : X -&#x3E; PV is ,

an arrow of Gen [|A|, Cat] , and has arrows R :(V, J) -&#x3E; (V’, J’), right
lax transformations R : V -&#x3E; V’ such that P ( R ) . J = J’ . An object (V, I )
of (X, P) is said to be tractable when there exists a cartesian arrow

( with respect to the functor P ) over J which has codomain V . This means

that there exists a lax functor J * V at X and a right lax transformation

J : J * V -&#x3E; V with P ( J ) = J such that, if R : W -&#x3E; V is a right lax transfor-

mation with P ( R ) = J, then there exists a unique morphism O: W -&#x3E; J * V
of 1 ax func tor s at X such th at R = J O .

TH EO R E M 6. Suppose ( V , J ) is an object o f (X, P). Suppose that, for
each f: A -&#x3E; B in A , a diagram

is given, in which the functor (V I ) f : XA -&#x3E; XB and the natural trans for-

mation J f : J B. ( V J ) f -&#x3E; ( V f ) . JA form a right li fting o f Vi- JA along

IB, Then
( a ) the data ( V J ) A = X A’ ( V j ) f can be uniquely enriched to a lax

functor V j A -&#x3E; Cat such that the data J A , J f form a right lax trans for-
mation J: V I - V ;

( b ) the right lax transformation T: V I - V is a cartesian arrow over

J : X - P V , so (V, I ) is tractable.

PROOF. ( a ) Th e def inition s of wg,f, wA f or V j c ome from th e con-

ditions that are needed for JA, Jf to form a right lax transformation J :
V J - V ; one uses the universal property of right liftings.

(b) Suppose R : W -&#x3E; V is such that P (R) = J; thatis, RA-JA
for all A E A . For f: A - B in A , R f : I B ’ W f -&#x3E; V f . JA uniquely determines

a natural transformation Of: W f -&#x3E; (V J) f such that R f= J f’ JB Øf. Then
the following diagrams commute.
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The universal property of liftings allow us to deduce that 1J: W - V f is a

morphism of lax functors at X ; moreover, it is the unique one such that

.
Putting together Theorem 5, Theorem 6 and the definition of E V J ,

we obtain :

COROLLARY. I f V : A -&#x3E; Cat is a lax functor and, for each A E A, th ere

is an adjunction 8A’ nA; fA -I EA : (V A , X A) , then Vj = E V J (where
the liftings are those coming from the counits EA, A E A), and ( V , J )
is tractable.

Let Tract A ( X) denote the subcategory of (X, p ) consisting of

those obj ects (V, J) such that V : A -&#x3E; Cat is a genuine functor and (V . J)
is tractable, and those arrows N : ( V , J ) -&#x3E; ( V’, J’ ) such that N : V -&#x3E; V’

is a natural transformation. The «opsemantics» functor
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is defined by :

for a lax functor W at X ,

for a morphism O : W -&#x3E; W’ of lax functors at X, Sem (O) is the uni-

que natural transformation such that

commutes.

Since 7 has a right adjoint the above Corollary implies that Se ( W )

is tractable.

T H E O R E M 7. The opsemantics f unctor

has a right adjoint called the « opstructure » functor

and the unit o f this adjunction is an isomorphism.

PROOF. Suppose (V, J) E TractA (X), and choose a cartesian arrow

J : J * V -&#x3E; V over J . Then, for each W E FibA (X), the correspondence

O -&#x3E; N set up by commutativity of the diagram

gives a bijection

- 

(using the cartesian property of J and the reflection property of j ; see

Theorem 3). The bijection is clearly natural in W . The fact that the unit
- - 

is an isomorphism follows from the fact that W = W J and so J : W -&#x3E; W is

cartesian (Theorem 6 ) .
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All the preceding work of this section can be dualized in Cat . The

definitions make sense in any 2-category, so, instead of making them in

Cat , we make them now in Cat’P and express them in terms of the data

of Cat .

The dual of right lifting is right extension (usually c alled right
Kan extension). The data for a right extension of F: B -&#x3E; X along P: 

B -&#x3E; A is contained in a diagram

V

TH E O R E M 5 oP. If P : B -&#x3E; A is a functor with a left adjoint P : A -&#x3E; B and
v

8: P P -&#x3E; 1 is the counit of the adjunction, then any functor F : B -&#x3E; X has
v

a right extension along P given by the functor F P : A -&#x3E; X and the natu-
v

ral transformation F 6.- ( F P ) P - F .

The functor

is given by

However, nothing essentially new arises for the fibre category P -1 (X);
it is just FibA (X)op.

An object (V , E) of ( P , X ) is said to be tractable when there

exists a cocartesian arrow (with respect to the functor P) over E : PV - X

which has domain V .

THEOREM 6 op. Suppose (V, E) is an object of (P, X). Suppose that,

for each f : A -&#x3E; B in A, a diagram
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is given, in which the functor (E V) f : XA -&#x3E; XB and the natural transfor-
mation E f: ( E V ) f . EA -&#x3E; EB . V f form a right extension o f EB . V f along
EA’ Then :

( a ) the data ( E V )A -XA’ ( E V ) f can be uniquely enriched to a

lax functor E V : A - Cat such that the data E A’ E f form a left lax trans-
f ormation E : V - E V ;

( b ) the le ft lax transformation E : V -&#x3E; E V is cocartesian over

É: P V - X , so ( V , E ) is tractabl e.

COROLLARY. 1 f V : A -&#x3E; Cat is a lax functor, and, for each A E A, there

is an adjunction

then E V = E V J ( where the extensions are those coming from the counits

8A’ A E A ), and ( V , E ) is tractabl e,

Let TractA (X) denote the subcategory of ( P, X ) consisting of

those objects ( V, E ) which are tractable and are such that V : A -&#x3E; Cat

is a genuine functor, and those arrows N : ( V , E ) -&#x3E; ( V’, E’ ) such that

N : V -&#x3E; V’ is a natural transformation. The « semantics» functor

is defined by

for a lax functor W at X , 

for a morphism O : W’ - W of lax functors at X, Sem (O) is the unique
natural transformation such that

commutes ( where Ol : W -&#x3E; W’ is O : W’ - W regarded as a left lax transfor-

mation which is the identity on objects).

TH E O R E M 7 °p. The semantics functor
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has a left adjoint called the « structure » functor

and the counit of this adjunction is an isomorphism.

5. Distinguishing the second basic construction

The aim of this section is to examine properties of the second

basic construction and to find necessary and sufficient conditions under

which a given generator should be isomorphic to it.

THEOREM 8 . Suppose the lax functor W: A - Cat satis fies the following
condition :

for each A E A, the category W A has a coproduct for each family o f

objects indexed by any subset of any hom set o f A, and, for each u :

A -&#x3E; B in A, the functor W u : W A -&#x3E; W B preserves these coproducts.
^ ^ ^

Th en, f or each f : A’ -&#x3E; A in A the functor W f : WA’ -&#x3E; W A has a l e f t adjoint.
^

PROOF. Take (F, _E ) E W A. For u’ : A’ -&#x3E; B’ , define

that is, F u’ is the coproduct of the family of objects F u indexed by the

subset of A ( A , B’ ) consisting of those arrows u.- A - B’ such that u’=

ul. Let Ku : F u -&#x3E; F u’ be the injection corresponding to the u-component
F u of the coproduct. By this condition of the theorem, for each v’ : B’ -&#x3E; C’ ,

the arrows (W v’) Ku : (W v’) F u -&#x3E; (W v’) F u’ have the properties of in-

jections into a coproduct. So an arrow _E v’,u’ : (W v’) F u’ -&#x3E; F (v’u’) i s de-

fined uniquel y by commutativity of the diagram

where u’ = u f ; then the following diagrams commute



248

The arrows W w’ . W v’ . Ku are inj ections into a coproduct by the condi-

tion of the theorem. So (F,_E ) E W A’. From the definition of _E it then

follows that the arrows Ku are the components of an arrow

Suppose
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These are the components of an arrow in

ce, for u’ = u f , the following commutes.

From the definition of /3 it follows that /3 is unique with the property that

A

commutes. If follows that W f has a left adjoint and K is the unit of the

adjunction.

Suppose V: A -&#x3E; Cat is a functor and A is an object of A. An A-

centred centipede in V is a quadruple (M, N, m , n ) which assigns to

each pair of arrows u : A - B , v : B -&#x3E; C of A a diagram



250

in V C . A re fl ection o f the centipede ( M , N , m, n ) is a pair (H, h ) , where

H is an oject of V A and h is a family of arrows hu : Nu -&#x3E; ( V u ) H in-

dexed by the arrows u : A -&#x3E; B in A out of A , such that the diagram

commutes. If ( H, h ) has the property that, for any reflection ( H’, h’) of

( M , N , m , n ) , there exists a unique arrow h: H -&#x3E; H’ of V A such that

commutes, then ( H, h ) is called a universal reflection of the centipede.
The category A [A] will be defined. The objects are either of

the form [z/] where u : A -&#x3E; B is an arrow of A, or of the form [v, u ]

where u : A -&#x3E; B , v : B -&#x3E; C are arrows of A . For each pair of arrows u : 

A -&#x3E; B , v : B -&#x3E; C of A there is exactly one arrow [v, u ] - [u] and e-

xactly one arrow [v, u] -&#x3E; [vu] in A [A] ( in the case v u = u , there

are exactly two arrows [ v, u ] -&#x3E; [u] ), and the only other arrows of

A [A] are the identities.

TH E O R E M 9 . Suppose V : A -·Cat is a functor and A E A, and suppose :

- for each arrow u : A -&#x3E; B in A, the functor V u : V A -&#x3E; V B has a le ft

adjoint,
- every functor from A I A I i nto V A has a colimit.

Then every A-centred centipede in V has a universal reflection.
v

PROOF. For each u : A -&#x3E; B in A , let V u : V B -&#x3E; V A be the left adjoint
v v

of Vu with Àu : (V u) (V u) -&#x3E; 1, Ku : 1 -&#x3E; (V u) (V u) as counit and unit.

Suppose ( M, N, m, n ) is a centipede in V centred at A . Excluding the
dotted arrows from the following diagram, we note that a functor from
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A [ A I to V A is determined.

Let ( H, h ) be an upper bound of this functor as illustrated by the dotted

arrows. This is equivalent to ( H , h ) a reflection of the centipede, where

h , h are related by

The diagram

commutes if and only if the diagram

commutes. So ( H, h ) is a colimit of the functor if and only if (H, h) is a

universal reflection of the centipede.

REMARK. Professor Mac Lane has made the following observations on

centipedes. The category A [A] is exactly the Kan subdivision catego-

ry ( see Mac Lane’s forthcoming book) of the category A/A of objects
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under A . For any functor V : A -&#x3E; Cat , define the join J ( V ) of V to be the
-

category V*, where * is the terminal object of A (added if A does not

already have one ) .

Given a functor V A -&#x3E; Cat, define a functor V 4- A [ A ]op -&#x3E; Cat

as indicated by the diagram

Then we have the category j ( V #) and the projection P: J (V #) -&#x3E; A [A] .
An A-centred centipede in V is precisely a functor Q : A [ A I - j ( V 4)
with P Q = 1 ; that is a section of p .

We further observe that, if CpdA ( V ) denote the full subcategory
of the category of functors from A [ A I to j ( V 4) consisting of the sec-

tions of P , then there is an inclusion functor V A -&#x3E; CpdA ( V ) given by

H -&#x3E; H , where

The reflection of a centipede Q is its reflection in V A with respP=t to

this inclusion.

Suppose X is an object of Gen [ | A |, Cat I , and suppose ( V , E )

is an obj ect of ( P , E ) where V : A -&#x3E; Cat is a functor. The family E of

functors EB : V B -&#x3E; X B , B E A, is said to split the centipede ( M , N, m , n )

in V centred at A when there exist, for arrows u : A -&#x3E; B , v : B -&#x3E; C in A,

obj ects
arrow s

arrow s

arrows

such that the following diagrams commute :
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The family E of functors is said to create universal re flections o f A-cen-

tred centipedes which it splits when it has the following property : given
an A-centred centipede ( M, N, m, n ) in V which the family of functors

splits via Xu, Pv,u, su, tv,u as in the definition, then there exists a uni-
que reflection ( H, h ) of the centipede such that X u = EB ( V u ) H and

P v, u = ( V v ) hu ; moreover, this reflection is universal.
THEOREM 10 . For any l ax f unctor W.-A-Cat the family E of functors
^ ^

EA : WA -&#x3E; WA, A E A creates universal re f l ections o f all centi pedes in
^

W which it splits.
n

PROOF. Let ( M , N , m , n ) be a centipede at A in W which is split by
the family of functors in the theorem. Put

We have Xu, Pv,u, su, tv,u as in the definitions. Define H u = X u and
define Tv,u : ( W v ) H u -&#x3E; H ( v u ) to be the composite

^

The following diagrams show that ( H , T) E W A .
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For u : A -&#x3E; B , v : B -&#x3E; C define . The

right side of the last diagram shows that h u ( v ) are the components of an
A A 

arrow hu : ( Fu, Çu ) -&#x3E; ( W u ) ( H, T) in W B . Then ( ( H, T ), h ) is a reflec-

tion df the centipede ( M , N , m , n ) , and

We must show that ( ( H, T), h ) is unique with these properties. Suppose
( ( H, T’ ), h ) is a reflection of the centipede. Then
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commutes. So

It remains to prove that ( ( H , T ) , h ) is a universal reflection. Sup-

pose ( ( H’, T’ ) , h’ ) is another reflection of the same centipede. Define

k ( u ) by the commutative diagram

A

These airows are the components of an arrow k : ( H , T) -&#x3E; ( H’, T’ ) in W A as

the following diagram shows :

The following diagram commutes
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So the diagram

commutes. Moreover, k is unique with this property. For if k’ also makes

this triangle commute, then

THEOREM 11. Suppose ( V , E, J ) is a generator of the lax functor W : 
A

A -&#x3E; Cat with V : A -&#x3E; Cat a genuine functor, and suppose N : V _ W is the
^

uni que natural transformation such that E N = E . 1 f the family E of functors

EA : V A -&#x3E; W A , A E A, creates universal reflections o f A-centred centipedes
in V which it splits, then the functor NA : V A -&#x3E; W A is an isomorphism.

v ^

PROOF. For each A E A we define a func tor NA : W A -&#x3E; V A . Take (F,6)
A

in W A . This gives rise to the following centipede in V centred at A :

The family E of functors spl its this centipede; the splitting is given by
the data:
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Let ( H, h ) be the unique reflection of this centipede with the property F u =

EB (V u) H and Çv, u = E C (V v) hu. Define NA ( F, Ç ) = H.
Let ( H’, h’ ) be the corresponding reflection for ( F’, Ç’ ) and sup-

^

pose a : ( F , Ç ) -&#x3E; ( F ’, Ç’ ) is an arrow of WA. The following diagram com-

mutes :

It follows that there exists a unique k : H -&#x3E; H’ such that

commutes. Define is a functor.
v

Next we show that NA NA = 1 . Take
where

The following diagram commutes :

So is a reflection of the centipede used in the construction
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v

while ( NA ( F , Ç ) , h ) was the unique reflection with this property. So

Let l : K -&#x3E; K’ be an arrow of V A . Then

k is the unique arrow such that

v

commutes. But by naturality of 8B’ I does this. So NA NA l = l .
B/

Finally we show that NA NA = 1 . Take ( F, Ç ) E W A and v let ( H, h )

be the reflection of the centipede used in the construction of NA ( F, 67).
Then NA H = ( F, 6) where

Now

and (W v ) wB F u is a right inverse for 

v

Take a : ( F , Ç ) -&#x3E; ( F’ , Ç’ ) and put k = NA a. Th en

and ú) B F u is a right inverse for

The usual variety of weaker assumptions than those of the last theo-

rem lead to the usual variety of weaker conclusions as in the «triples» case.

Among these is the following theorem, whose proof, after Theorem 11, we

leave to the reader. See Theorem 9 for a simple test for the validity of the

hypothesis of the next theorem.
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T H E O R E M 12. In the circumstances described in the first sentence o f T’he-

orem 11, i f universal rellections centred at A E A exist in V , then the
A

functor NA : V A -&#x3E; W A has a left adjoint.

6. Appendix: Enrichment of results. Limits of lax functors into Cat .

Generalizations of the two basic constructions can be pursued in

several directions. We do not wish to examine any of these in detail here,

only some brief outlines.

1° Suppose C is a complete and cocompl ete symmetric monoidal closed

category. Let C-Cat denote the 2-category of C-categories, C-functors and
C-natural transformations. Suppose A is a small category. A lax functor

W : A -&#x3E; C-Cat is a morphism of bicategories in the sense of Benabou, so

that each W A is a C-category, each W f is a C-functor and wg, f, cvA are

C-natural transformations.

For A E A, W A becomes a C-category as follows. The objects

( u , X ) are as before. For ( u , X), (u’, X’ ) E W A ,
the object W A ( ( u , X ) , ( u’ , X’ ) ) of C is given by the coproduct

Composition is given by the composite
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The identity of ( u , X ) is enriched to the composite

Now C itself may be regarded as a functor C : A -&#x3E; Cat given by

C A = C , C f = 1 C . So the notion of cocentipede makes sense in C : A -&#x3E; Cat .

Since all the functors C f = 1 C have right adjoints, A is small, and C is

complete, all the cocentipedes in C : A -&#x3E; Cat have universal coreflections
^

(dual of Theorem 9). For A E A, W A becomes a C-category as follows.
^

The objects ( F , Ç ) are as before. For ( F , Ç ) , ( F’, Ç’ ) E W A , the object
^

W A (( F , Ç ), ( F’, Ç’ )) of C is the universal coreflection of the cocenti-

pede

( excluding the dotted arrows ) in C . Compositions and identities are readily

supplied.
~ 1B

In fact, W, W become genuine functors from A to C-Cat , and the

general theory of this work ( excluding § 5 ) goes through with minor chan-

ges.

20 Another direction of generalization is to consider lax functors W :

A -&#x3E; Cat where A is a 2-category. Then W and W may be defined suitably
on 2-cells giving the procedures for creating 2-functors into Cat from lax

functors into Cat , each procedure with its appropriate universal property
(Theorems 3 and 4).
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Even if A is a bicategory, no new problems seem to arise other than

book-keeping.

3° The generalization we wish to mention now seems to have more con-

tent. Here we would like to change the codomain of our lax functors to other

2-categories besides Cat.

For any 2-category A, and any object A of A, the 2-category A/A

has obj ects pairs ( B , u ) where u: A -. B is an arrow of A , has arrows

( f , T ) : ( B , u) - ( B’, u’ ), pairs consisting of an arrow f : B - B’ in A and a

2-cell T: f u - u’, and has 2-cells o : ( f , T) -&#x3E; ( f’, T’ ) just 2-cells o : f -&#x3E; f’

of A such that T’. o u = T.

An alternative definition of A/A can be made as follows. Let

a hom 2-functor for the 2-category °p A obtained from A by reversing 2-

cells. If A does not have a terminal object *, one is easily added

Then ( A/A ) op = H *. Let Pr: AI A - A denote the projection 2-functor gi-
ven by

Suppose W : A -&#x3E; C is a lax functor between 2-categories A and C
1B

and suppose A E A, C E C . Then a 2-category W( C, A ) can be defined,

for which we give the objects and arrows. The objects are lax functors

F : A/A - C/C such that the square
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commutes. The arrows a.: F - F’ are left lax transformations which project

to the identity of W; right lax transformations with this projection property
amount to the same thing.

If C = Cat and C = 1 , then the 2-category C/ C might well be cal-

led Cbj ; it is the 2-category of «all objects of all categories». If A is a

category, then A/ A is the category of obj ects under A .

When we presented the second basic construction ( for a lax func-

tor W : A -&#x3E; Cat with A a category) to John Gray, he suggested the equali-
n

lity W A = W ( 1 , A ) ; this is indeed the case.

4° Finally, as promised in the introduction, we show how «limits and

colimi ts» for lax functors into Cat may be obtained from the constructions.

There are two « diagonal» 2-functors

which take each category to the lax functor whose value all over A is that

category.

THEOREM 13. T’he 2-functor K has a left adjoint

-

while the 2-functor A has a right adjoint

PROOF. The diagonal functor 0394 : Cat -&#x3E; Gen [A, Cat] , induced by the
functor A - 1 , has both a left and a right 2-adjoint (2-Kan extension of the
LDK ] type ) . Composing with the inclusions

we obtain the 2-functors 0394, 0394. The result follows from Theorems 3 and 4 .

The following construction of lim W for a lax functor W: A - Cat

may be of interest to formal category theorists.
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From the codomain functor d1 : A2 -&#x3E; A and the projection Pr :

Obi -Cat, form the pullback

Then is the fibre category U -1 (W) over W with respect to U .
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