CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

YUH-CHING CHEN Germs of quasi-continuous functions

Cahiers de topologie et géométrie différentielle catégoriques, tome 13, nº 1 (1972), p. 41-56

http://www.numdam.org/item?id=CTGDC_1972__13_1_41_0

© Andrée C. Ehresmann et les auteurs, 1972, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

GERMS OF QUASI-CONTINUOUS FUNCTIONS

by YUH-CHING CHEN

Introduction.

The notion of quasi-topological spaces was first introduced by Kowalsky [12] under the German name «Limesräume». Since then it has been applied to various branches of mathematics such as differential Geometry [1], [8], functional analysis [1], [2], [4], [6], [7], theory of differentiations [1], [3], [10], [14], [15], and algebraic topology [16]. It was Bastiani [1] who first applied this notion to differentiable manifolds and introduced the French term -quasi-topologie- which is not related to the quasi-topology defined by Spanier [18]. Since this work is inspired by some works of Ehresmann's school [8], [14], [15], [16], the term quasi-topology here is a translation of the French «quasi-topologie».

In this paper, we try to generalize the notions of germs of functions and sheaves in topological sense to that of π -germs of functions and π -sheaves in quasi-topological sense and to study the relations between these notions. We begin with a brief review of some basic definitions and properties on quasi-topologies and the introduction of the notion of germs and π -germs of functions using inductive limits. Then we generalize the notions of pre-sheaves and sheaves over a topological space to that of π -presheaves and π -sheaves over a quasi-topological space and show that every π -sheaf E is reflected by the sheaf of germs of quasicontinuous local sections of E. In fact the category of π -sheaves over a quasi-topological space (X, π) contains a reflective full subcategory isomorphic to the category of abelian sheaves over the underlying topological space (X, T_{π}) of (X, π) . Finally, we show that the canonical injective structure of this reflective subcategory determines an effacement structure [13] on the category of π -sheaves. The homological Algebra of this effacement structure appears more complicated than the relative

41

homological Algebra of Eilenberg-Moore [9] and Maranda [17]. We shall defer this pending further investigations.

The first draft of this paper was completed while I attended the seminar of Professor Ehresmann. I would like to thank Professor Ehresmann and Madame Bastiani for their encouragement and their important suggestions. I would like also to thank Dr. Machado for many interesting discussions and for his reading of my first draft and making comments. Some results of this paper are published in [5].

1. Germs and π -germs of functions.

 π will always stand for a quasi-topology on a set X. It is a function that associates to each $x \in X$ a family $\pi(x)$ of filters of subsets of X satisfying the conditions:

(1) $F_1, F_2 \in \pi(x)$ implies $F_1 \cap F_2 \in \pi(x)$,

(2) $F_1 \in \pi(x)$ and $F_2 \supset F_1$ implies $F_2 \in \pi(x)$,

(3) the filter x^{ϵ} of all subsets of X containing x is in $\pi(x)$. If $F \in \pi(x)$, we say that F converges to x in π . The pair (X, π) is called a *quasi-topological space*.

Let (X, π) and (E, τ) be quasi-topological spaces. A function $f:(X, \pi) \rightarrow (E, \tau)$, often written $f: X \rightarrow E$, is (π, τ) -continuous (called quasi-continuous in [1], [15]) if, for every $x \in X$ and every $F \in \pi(x)$, the images of the sets in F under f generate a filter $f(F) \in \tau(f(x))$. f is quasi-open if for every $x \in X$ and every $G \in \tau(f(x))$, there is $F \in \pi(x)$ with $f(F) \subset G$. If A is a subset of X, the quasi-topology induced on A by π is denoted $\pi \mid A$ and we say that $(A, \pi \mid A)$ is a (quasi-topological) subspace of (X, π) .

A topology T on X is identified with the quasi-topology π_T on X in which the filter of neighborhoods of $x \in X$ is the smallest filter in $\pi_T(x)$. The category \mathcal{T} of topological spaces and continuous functions is identified with a full subcategory of the category \mathcal{QT} of quasi-topological spaces and quasi-continuous functions (see e.g. [15]).

The underlying topology T_{π} of π is defined as follows: A set $U \subset X$ is open (in T_{π}) if and only if, for every $x \in U$, $F \in \pi(x)$ implies

 $U \in F$. Thus every (π, τ) -continuous function $f: X \to E$ is continuous in the underlying topologies T_{π} and T_{τ} . Note that $1:(X, \pi) \to (X, T_{\pi})$ is (π, T_{π}) -continuous. In fact, the underlying topology functor $T: \mathfrak{QT} \to \mathfrak{T}$ is left adjoint to the inclusion functor $\mathfrak{T} \subset \mathfrak{QT}$, i.e., \mathfrak{T} is identified with a coreflective subcategory of \mathfrak{QT} (in French term, T is a projector functor). For further definitions and properties concerning quasi-topologies we refer the readers to [1], [16].

Convention. Let A be a subset of X. A (π, τ) -continuous function $f: A \rightarrow E$ is the restriction to A of a $(\pi \mid U, \tau)$ -continuous function from an open neighborhood U of A to E. Thus if α is the directed set (by inclusion) of open neighborhoods of A and if $\mathfrak{QT}(U, E)$ denotes the set of (π, τ) -continuous functions from $U \in \alpha$ to E, then the restriction map

(1.1)
$$r: \lim_{\to a} \mathfrak{QI}(U, E) \to \mathfrak{QI}(A, E)$$

is a surjection, where $\{ \mathfrak{QI}(U, E) | U \in \alpha \}$ forms a direct system of sets of (π, τ) -continuous functions with genuine restriction maps.

Let $Q(x) = \bigcap \{F_i \mid F_i \in \pi(x)\}$ be the filter that is the intersecsection of all filters F_i in $\pi(x)$. Then each $A_x \in Q(x)$ is the union of a family of subsets of X one from each filter $F_i \in \pi(x)$. A set $A_x \in Q(x)$ is called a π -neighborhood of x (thus every neighborhood is a π -neighborhood). Notice that: (1) each $A_x \in Q(x)$ contains x, but Q(x) may not converge to x in π , and (2) A_x may not be a π -neighborhood of another point $y \in A_x$.

We proceed now to define germs and π -germs of functions using inductive limits. Let O(x) be the set of open neighborhoods of x (open in the underlying topology T_{π} of π). Then $O(x) \subset Q(x)$. Order both sets O(x) and Q(x) by inclusion. Then O(x) is a directed subset of Q(x). The inductive limit

 $lim \ \mathfrak{QT}(A, E), A \in Q(x)$ (resp. $lim \ \mathfrak{QT}(U, E), U \in O(x)$),

is the set of π -germs (resp. germs) of (π, τ) -continuous functions at x. Each $f: A \to E$ in $\mathfrak{QI}(A, E)$ (resp. $f: U \to E$ in $\mathfrak{QI}(U, E)$) determines a π -germ (resp. germ) f_x of a (π, τ) -continuous function at x. Often, we simply call f_x the *limit of f at x*. Since $O(x) \subset Q(x)$ as directed sets, there is a map

(1.2)
$$\gamma_x: \lim 2\mathfrak{I}(U, E) \to \lim 2\mathfrak{I}(A, E)$$

that associates to each germ f_x at x a π -germ $f'_x = \gamma_x(f_x)$ at x. It follows from (1.1) that γ_x is surjective. If O(x) is cofinal in Q(x), then the notions of germs and π -germs coincide. In particular, this is the case when π is topological.

2. π -sheaves.

A map $p: E \to X$ of quasi-topological spaces (E, τ) and (X, π) defines a π -sheaf E if the following conditions are satisfied (see [5]):

(S1) For every point $f_x \in E$ with $p(f_x) = x$, there exists a subset $U_f \subset E$ containing f_x such that the map $p \mid U_f$ is a (τ, π) -homeomorphism of $(U_f, \tau \mid U_f)$ onto an open neighborhood U_x of x;

(S2) τ is the final quasi-topology determined by all $\tau | U_f$ via inclusion maps;

(S3) For every $x \in X$, the stalk $E_x = p^{-1}(x)$ is an abelian group and the group operations are quasi-continuous in τ .

In particular, if all U_f in (S1) can be choosen open in the underlying topology T_{τ} of τ , then we say that p spreads E over X and E is a π -spreading space. It is easy to see that:

PROPOSITION 2.1. If E is a π -sheaf, then p is (τ, π) -continuous and quasi-open (cf. proposition 1.2.16 of [15]).

COROLLARY 2.2. If (E, τ) is a π -spreading space, then (E, T_{τ}) is an abelian sheaf over the topological space (X, T_{π}) . (We assume that the readers are familiar with the general theory of abelian sheaves).

Let $p:(E,\tau) \to (X,\pi)$ be a π -sheaf. A section of E over a subset A of X is a function $s: A \to E$ which is the restriction to A of a section s' of E over an open neigboorhood U of A (i.e. $s': U \to E$ is a $(\pi \mid U, \tau)$ -continuous function such that ps' is the identity of U); in particular, s is (π, τ) -continuous on A. The set $\Gamma(A, E)$ of sections of E

4

over A is an abelian group (the addition is pointwise). It follows that the restriction map

(2.1)
$$r: \lim_{\to \alpha} \Gamma(U, E) \to \Gamma(A, E)$$

is an epimorphism for every π -neighborhood A of $x \in X$. This will be referred to as property (PS) in the definition of π -presheaves in the next section.

A map $\phi: E \to F$ of π -sheaves (E, τ) and (F, σ) is called a π homomorphism if: (1) ϕ is (τ, σ) -continuous, and (2) for every $x \in X$ the map $\phi_x = \phi \mid E_x$ is a group homomorphism of E_x into F_x . We write $\phi = \{\phi_x \mid x \in X\}$. The classes of π -sheaves and π -homomorphisms form a cagory \mathfrak{Q}_{π} called the *category of* π -sheaves.

PROPOSITION 2.3. The class of π -spreading spaces form a full subcategory \mathfrak{L}_X of \mathfrak{L}_{π} . If \mathfrak{L}_T denotes the category of abelian sheaves over the topological space (X, T_{π}) , then the underlying topology functor $T: \mathfrak{Q} \mathfrak{I} \to \mathfrak{I}$ induces an isomorphism $T_X: \mathfrak{L}_X \to \mathfrak{L}_T$ of categories.

Indeed, T_X sends a π -spreading space $p:(E,\tau) \rightarrow (X,\pi)$ to an abelian sheaf $p:(E,T_{\tau}) \rightarrow (X,T_{\pi})$. The inverse of T_X is defined as follows. Let $\pi:(E, \mathfrak{U}) \rightarrow (X, T_{\pi})$ be an abelian sheaf, where \mathfrak{U} is a topology on E. Then, by definition, for every point $f_x \in E$ with $p(f_x) = x$, there is a $U_f \in \mathfrak{U}$ such that $p \mid U_f$ is a homeomorphism of U_f onto an open neighborhood U_x of x. Endow each U_f with a quasi-topology τ_f that makes $p \mid U_f$ a (τ, π) -homeomorphism and let τ be the final quasi-topology on E determined by all τ_f via inclusion maps. Then $p:(E,\tau) \rightarrow (X,\pi)$ is a π -spreading space. T_X^{-1} carries $p:(E,\mathfrak{U}) \rightarrow (X,T_{\pi})$ to $p:(E,\tau) \rightarrow (X,\pi)$.

3. Construction of π -sheaves.

Let Q_{π} be the category whose class of objects is the set

$$\{ \emptyset \} \bigcup_{x \in X} Q(x) = \{ A_x \in Q(X) \mid x \in X \} \cup \{ \emptyset \}$$

of π -neighborhoods of points of X and whose morphisms are inclusion maps, and let Ab be the category of abelian groups and homomorphisms. A π -presheave is a contravariant functor $P: Q_{\pi} \rightarrow Ab$ satisfying the condition: (PS) For every $A \in Q(x)$, the restriction map $r: \lim_{\sigma \to \alpha} P(U) \to P(A)$ is an epimorphism, where α is the set of all open neighborhoods U of Adirected by inclusion. A *bomomorphism* of π -presheaves is a natural transformation of functors. π -presheaves and their homomorphisms form a category \mathcal{P}_{π} of functors.

A typical example of a π -presheaf is the π -presheaf ΓE of local sections of a π -sheaf E defined as follows. For every inclusion map $i: B \to A$ in Q_{π} , the map $(\Gamma E)(i): \Gamma(A, E) \to \Gamma(B, E)$ is the restriction map of sections of E over A to that of E over B. The property (PS) is verified by (2.1). In fact, there is a functor $\Gamma: \mathfrak{L}_{\pi} \to \mathfrak{P}_{\pi}$ called a *local section functor*.

Let P be a π -presheaf. We shall construct the associated π -sheaf SP of P as follows. For every $x \in X$ let

(3.1)
$$(SP)_x = \lim_{x \to \infty} P(A_x), A_x \in Q(x)$$

be the set of limits f_x of $f \in P(A_x)$ at x, and let

$$(3.2) S P = \bigcup_{x \in X} (SP)_x.$$

We shall endow SP with a quasi-topology τ so that the projection $p: SP \rightarrow X$ defined by $p(f_x) = x$ is a π -sheaf: For each open set U of X and for each $f \in P(U)$ let

(3.3)
$$U_f = \{ f_x \in (SP)_x \mid x \in U \text{ and } f_x = limit \text{ of } f \text{ at } x \}$$

be the set of points of SP which are the limits of f at points of U. Endow each U_f with a quasi-topology that makes $p \mid U_f \colon U_f \rightarrow U$ a (τ_f, π) -homeomorphism. Then we have

 $SP = \bigcup \{ U_f | U \text{ open in } X, f \in P(U) \},$

and τ_f and τ_g agree on $U_f \cap V_g$ for any two sets U_f and V_g defined by (3.3). τ is the final quasi-topology on *SP* determined by all τ_f via inclusion maps. Then

PROPOSITION 3.1. $p:(SP, \tau) \rightarrow (X, \pi)$ is a π -sheaf called the associated π -sheaf of the π -presheaf P.

In practice, most of π -sheaves are constructed in this way from π -

6

presheaves of π -germs of functions satisfying some prescribed properties such as quasi-continuous, quasi-holomorphic [15], etc... In fact the introduction of the notion of π -sheaves is motivated by this sort of examples. We should point out that in the construction above the sets U_f are not open in T_{τ} in general. Since the limit f_x of $f \in P(U)$ is taken on the directed set Q(x), not on O(x), there may exist $f, g \in P(U)$ with $U_f \cap U_{\varphi}$ not open in U_f or U_{φ} .

Finally, we shall see that there is a functor $S: \mathcal{P}_{\pi} \to \mathcal{L}_{\pi}$ that sends a homomorphism $\rho: P \to P'$ of π -presheaves to a π -homomorphism $\phi: SP \to SP'$ defined as follows. Since ρ is a natural transformation of functors, it consists of a family of group homomorphisms $\rho_A: P(A) \to P'(A)$ indexed by the objects A of Q_{π} . For a point $f_x \in SP$, that is the limit of $f \in P(A)$ at x, let $\phi(f_x)$ be the limit of $\rho_A(f) \in P'(A)$ at x, i.e.

(3.4)
$$\phi(f_x) = g_x$$
, where $g = \rho_A(f) \in P'(A)$

It is obvious that ϕ is a π -homomorphism and that S is a functor.

4. The functors S and Γ .

THEOREM 4.1. The functor $S: \mathcal{P}_{\pi} \to \mathcal{Q}_{\pi}$ is left adjoint to the functor $\Gamma: \mathcal{Q}_{\pi} \to \mathcal{P}_{\pi}$.

The proof will follow two lemmas.

LEMMA 1. There is a natural transformation from the composite functor $S\Gamma$ of S and Γ to the identity functor of \mathfrak{L}_{π} .

PROOF. Let E be a π -sheaf. Then for every $x \in X$,

(4.1)
$$(S \Gamma E)_x = \lim_{\rightarrow} (\Gamma E)(A) = \lim_{\rightarrow} \Gamma(A, E), A \in Q(x).$$

That is, $(S \Gamma E)_x$ is the group of π -germs at x of local sections of E; a point in $(S \Gamma E)_x$ is the π -germ s_x at x represented by a section $s \in \Gamma(A, E)$. Let $\theta(s_x) = s(x)$. Then $\theta: S \Gamma E \to E$ so defined is a π -homomorphism. The class of θ (indexed by the objects E of \mathfrak{L}_{π}) form a natural transformation from $S \Gamma$ to the identity functor of \mathfrak{L}_{π} . Moreover, it is easily shown that:

COROLLARY. The quasi-topology of E is the final quasi-topology deter-

mined by that of $S \Gamma E$ via θ , i.e., θ is a π -epimorphism.

LEMMA 2. There is a natural transformation from the identity functor of \mathcal{P}_{π} to the composite functor ΓS of Γ and S.

PROOF. Let P be a π -presheaf. Then $(\Gamma SP)(A) = \Gamma(A, SP)$ for every $A \in |Q_{\pi}|$. Define a map $b_A : P(A) \to \Gamma(A, SP)$ by $b_A(f) = s$ with $s(x) = f_x$ for every $x \in A$. This is well defined since, for every $f \in P(A)$, the family $\{f_x \mid x \in A\}$ do define a section s of SP over A. It is easily checked that b_A is a homomorphism and that

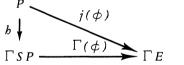
$$(4.2) b = \{ b_A : P(A) \to (\Gamma S P)(A) | A \in |Q_{\pi}| \}$$

is a π -homomorphism from P to ΓSP . The family of such b (indexed by the objects P of \mathcal{P}_{π}) form a natural transformation from the identity functor of \mathcal{P}_{π} to ΓS .

PROOF OF THEOREM 4.1. We want to show that there is a natural equivalence

(4.2)
$$j: \mathscr{Q}_{\pi}(SP, E) \to \mathscr{P}_{\pi}(P, \Gamma E)$$

of the set of π -homomorphisms from SP to E to the set of homomorphisms from P to ΓE . For any $\phi \in \mathfrak{L}_{\pi}(SP, E)$, define $j(\phi) = \Gamma(\phi)b$ as in the diagram



Then $j(\phi)$ consists of a set of homomorphisms $j(\phi)_A : P(A) \rightarrow (\Gamma E)(A)$ defined by

(4.4)
$$j(\phi)_A(f) = (\Gamma(\phi)_A b_A)(f) = \Gamma(\phi)_A(s) = \phi s,$$

where $s \in \Gamma(A, E)$ is the section $s(x) = f_x$. We claim that j is a bijection with inverse k defined by $k(\rho) = \theta S(\rho)$ for every $\rho \in \mathcal{P}_{\pi}(P, \Gamma E)$. Indeed,

(4.5)
$$(jk(\rho))_{A}(f)(x) = \theta S(\rho)(s(x)) = \theta S(\rho)(f_{x}) = \theta(\rho_{A}(f))_{x} = \rho_{A}(f)(x)$$

for every $f \in P(A)$ shows that $jk(\rho) = \rho$. On the other hand,

(4.6)
$$k_{j}(\phi)(f_{x}) = \theta S(j(\phi))(f_{x}) = \theta (j(\phi)_{A}(f))_{x} = (j(\phi)_{A}(f))(x) = \phi(f_{x})$$

shows that $k j(\phi) = \phi$. Since j and k are defined by functors and natural transformations, the bijection j is natural.

REMARK. (1) \mathcal{P}_{π} and \mathfrak{L}_{π} are additive categories and j is indeed a natural isomorphism of groups.

(2) \mathcal{P}_{π} and \mathcal{L}_{π} are not abelian categories. For example, \mathcal{P}_{π} is not closed under the formation of kernels since the property (PS) which is defined by colimits is not preserved by kernels.

5. The subcategory \mathscr{L}_X of \mathscr{L}_{π} .

Recall that T_{π} is the underlying topology of π . Regard T_{π} as a category with morphisms inclusion maps; then it is a full subcategory of Q_{π} . Let \mathcal{P}_X be the category of presheaves over (X, T_{π}) , i.e., the category of contravariant functors from T_{π} to Ab. Then there is a functor $R': \mathcal{P}_{\pi} \rightarrow \mathcal{P}_X$ defined by $R'(P) = P \mid T_{\pi}$. On the other hand, we define a functor $J': \mathcal{P}_X \rightarrow \mathcal{P}_{\pi}$ as follows. For every presheaf $G: T_{\pi} \rightarrow Ab$, let J'G be a mapping on Q_{π} to Ab with

(5.1)
$$(J'G)(A) = \lim_{\sigma \to a} G(U), \quad \forall A \in [Q_{\pi}],$$

where α is the set of open neighborhoods of A directed by inclusion. Then J'G verifies the property (PS) and thus defines a π -presheaf. By a routine limit argument in category theory, one shows that the correspondence $G \rightarrow J'G$ defines a functor J' from \mathcal{P}_X to \mathcal{P}_{π} and that

PROPOSITION 5.1. J' is left adjoint to R'. Moreover, the composite functor R'J' of R' and J' is naturally equivalent to the identity functor of $\mathcal{P}_{\mathbf{Y}}$ (and therefore J' is a full embedding).

Recall that \mathfrak{L}_X is a full subcategory of \mathfrak{L}_{π} (see proposition 2.3). $\Gamma | \mathfrak{L}_X$ defines a functor Γ' from \mathfrak{L}_X to \mathscr{P}_X that can be identified with the composite functor $R'\Gamma J$, where J is the inclusion functor of \mathfrak{L}_X in \mathfrak{L}_{π} . On the other hand, a functor $S' : \mathscr{P}_X \to \mathfrak{L}_X$ with

(5.2)
$$S'G = \bigcup_{x \in X} (S'G)_x, \text{ where } (S'G)_x = \lim_{x \in X} G(U), U \in O(x),$$

can be defined by replacing Q_{π} by T_{π} in the construction of S in section 3. Notice that here the limit f_x of f at x is taken on O(x) instead of Q(x); contrary to the remark of section 3, $U_f \cap V_g$ is always open in τ_f and τ_g . Therefore, the quasi-topology τ on S'G is the only quasi-topology that renders each U_f an open subset of S'G (cf. [16], p.28). In fact, the family of all subsets U_f form a basis for the underlying topology T_{τ} on S'G. Similar to theorem 4.1 we have

PROPOSITION 5.2. S' is left adjoint to Γ' . Moreover, the composite functor S' Γ' is naturally equivalent to the identity functor of \mathcal{L}_X .

If \mathfrak{L}_X is identified with the category \mathfrak{L}_T of abelian sheaves over (X, T_{π}) by the functor T_X of proposition 2.3, then the functors S' and Γ' are identified with the associated sheaf functor and the local section functor, respectively, of the theory of sheaves.

Like \mathcal{L}_T , \mathcal{L}_X is an abelian category with enough injectives; it is AB5 (see [11]). The injective structure on \mathcal{L}_X is called *the canonical injective structure* on \mathcal{L}_X .

6. Germs of local sections of a π -sheaf.

In the diagram

of categories and functors, let $R = S'R'\Gamma$. Then for any π -sheaf E,

(6.1)
$$(RE)_{x} = (S'R'\Gamma E)_{x} = lim \Gamma(U, E), U \in O(x),$$

since $(R'\Gamma E)(U) = \Gamma(U, E)$ for every U in T_{π} . Thus $RE = \bigcup_{x \in X} (RE)_x$ is the π -sheaf (indeed a sheaf) of germs of local sections of E. Since

(6.2)
$$S \Gamma E = \bigcup_{x \in X} \lim_{x \to \infty} \Gamma(A, E), A \in Q(x)$$

is the π -sheaf of π -germs of local sections of E, formula (1.2) and property (PS) show that there is a surjective π -homomorphism $\zeta : R E \to S \Gamma E$ defined by the set of group epimorphisms:

(6.3)
$$\zeta_{x} : \lim_{\to} \Gamma(U, E) \to \lim_{\to} \Gamma(A, E), x \in X.$$

We claim that the quasi-topology σ' on $S \Gamma E$ is the final quasi-topology determined by the quasi-topology σ on RE via ζ and therefore ζ is a π -epimorphism. Indeed, since σ (resp. σ') is the final quasi-topology determined by the family $\sigma_f = \sigma | U_f$ (resp. $\sigma'_f = \sigma' | U_f$) via inclusion maps $U_f \subset RE$ (resp. $U_f \subset S \Gamma E$), every $p | U_f$ is a (σ, π) -homeomorphism (resp. (σ', π) -homeomorphism) of U_f onto U. Now, let (Y, σ'') be a quasi-topological space and let $\phi: S \Gamma E \to Y$ be a map such that $\phi \zeta$ is (σ, σ'') -continuous. Then, since each $\phi | U_f = (\phi \zeta | U_f)(\zeta | U_f)^{-1}$ is (σ', σ'') -continuous, so is ϕ (cf. [16]). This shows that σ' is the final quasi-topology determined by σ via ζ .

Recall (corollary of lemma 1 of section 4) that $\theta: S \Gamma E \rightarrow E$ is a π -epimorphism; so is

$$(6.4) \qquad \psi: R E \to E, \quad \psi = \theta \zeta.$$

We identify \mathfrak{L}_X with \mathfrak{L}_T and see that every π -sheaf E is a quotient of the sheaf of germs of local sections of E. More generally, we shall prove that \mathfrak{L}_X is a reflective subcategory of \mathfrak{L}_{π} and that ψ of (6.4) is a reflection. Thus every π -sheaf is *reflected* by the sheaf of germs of its local sections.

THEOREM 6.1. $R: \mathcal{L}_{\pi} \rightarrow \mathcal{L}_{X}$ is right adjoint to the inclusion functor $J: \mathcal{L}_{X} \rightarrow \mathcal{L}_{\pi}$, i.e., R is a reflector.

PROOF. We want to show that for E' in \mathcal{L}_X and E in \mathcal{L}_{π} , there is a natural bijection

(6.5)
$$\mathfrak{L}_{\pi}(JE', E) \to \mathfrak{L}_{X}(E', RE).$$

We observe that $J = S J' \Gamma'$. Indeed, since

$$(J'\Gamma'E')(A) = \lim_{\rightarrow \alpha} \Gamma(U, E'), \quad \forall A \in |Q_{\pi}|,$$

we have

$$(SJ'\Gamma'E')_{x} = \lim_{\rightarrow} (J'\Gamma'E')(A) = \lim_{\rightarrow} \Gamma(U,E') = E'_{x}.$$

Therefore $SJ'\Gamma'E' = E'$. Now, by theorem 4.1 and proposition 5.1, $\mathfrak{L}_{\pi}(JE', E) = \mathfrak{L}_{\pi}(SJ'\Gamma'E', E) \approx \mathfrak{P}_{\pi}(J'\Gamma'E', \Gamma E) \approx \mathfrak{P}_{X}(\Gamma'E', R'\Gamma E).$ Since $S'|\Gamma'(\mathfrak{L}_{X})$ is a full embedding, proposition 5.2 shows that

$$\mathcal{P}_{X}(\Gamma'E',R'\Gamma E) \approx \mathfrak{L}_{X}(S'\Gamma'E',S'R'\Gamma E) \approx \mathfrak{L}_{X}(E',RE).$$

Thus, $\mathfrak{L}_{\pi}(JE', E)$ is naturally isomorphic to $\mathfrak{L}_{X}(E', RE)$. COROLLARY 6.2. $R | \mathfrak{L}_{X}$ is the identity functor of \mathfrak{L}_{X} .

7. An effacement structure on $\, \pounds_{\pi}^{} \, .$

Let the canonical injective structure of \mathscr{L}_X be denoted $(\mathfrak{M}, \varepsilon)$ and identify \mathscr{L}_X with \mathscr{L}_T . Then \mathfrak{M} is the class of sheaf monomorphisms and ε is the class of injective sheaves [11]. $(\mathfrak{M}, \varepsilon)$ induces an effacement structure $(\mathcal{F}, \mathcal{H}')$ on \mathscr{L}_X , where $\mathcal{F}' = \mathfrak{M}$ and \mathcal{H}' is the class of π homomorphisms that factor through an injective object of \mathscr{L}_X (see proposition 2.13 of [13]).

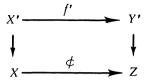
The notion of an *effacement structure* on a category C was first defined by Zimmermann [19] under the German name "Erweiterungspaare". It consists of a pair $(\mathcal{F}, \mathcal{H})$ of two classes of morphisms of C satisfying the following three conditions:

(1) \mathcal{H} is the class of all morphisms $h: A \to B$ such that, for every $f: X \to Y$ in \mathcal{F} and for every given $u: X \to A$ in C, there is a morphism $v: Y \to B$ such that vf = hu;

(2) \mathcal{F} is the class of all morphisms $f: X \to Y$ such that, for every $b: A \to B$ in \mathcal{H} and for every given $u: X \to A$ in C, there is a morphism $v: Y \to B$ such that vf = bu;

(3) for every object A in C, there is a morphism $f \in \mathcal{F} \cap \mathcal{H}$ with domain A.

We need also the following definition from [13]. $\mathcal{F}' \subset \mathcal{F}$ is a *sub*basis for \mathcal{F} if \mathcal{F} is the class of morphisms $f: X \to Y$ such that there exists a push-out



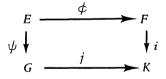
with $f' \in \mathcal{F}'$ and a morphism $k: Y \rightarrow Z$ with $k \neq \phi$.

Let $(\mathcal{F}', \mathcal{H}')$ be the effacement structure on \mathfrak{L}_X induced by $(\mathfrak{M}, \varepsilon)$ as mentioned in the first paragraph. We have

THEOREM 7.1. There is an effacement structure $(\mathcal{F}, \mathcal{H})$ on \mathfrak{L}_{π} in which $\mathcal{H} = R^{-1}(\mathcal{H}')$ and \mathcal{F} has \mathcal{F}' as a subbasis.

In view of theorem 4.6 of [13], $(\mathcal{F}, \mathcal{H})$ is the inverse transfer of $(\mathcal{F}', \mathcal{H}')$ by the pair of adjoint functors J and R provided that push-outs exist in \mathcal{Q}_{π} .

Given π -homomorphisms $\phi: E \to F$ and $\psi: E \to G$, we shall construct the push-out K of ϕ by ψ . For every $x \in X$, let K_x be the push-out of $\phi_x: E_x \to F_x$ by $\psi_x: E_x \to G_x$ (since push-outs exist in Ab) and let $K = \bigcup_{\substack{x \in X \\ x \in X}} K_x$. Then we have a diagram



Endow K with the final quasi-topology τ determined by the quasi-topologies of F and G via i and j. Then (K, τ) is a π -sheaf which is the push-out of ϕ by ψ .

Finally, we shall generalize the notion of injective resolutions in sheaf theory to that of π -injective resolutions. Recall that for every sheaf E' (e.g. E' = RE of a π -sheaf E) there is an injective resolution

$$0 \longrightarrow E' \longrightarrow Q'_*$$

defined as follows: Choose a map $i': E' \to Q'_0$ in $\mathcal{F}' \cap \mathcal{H}'$ (i.e. *i'* is a monomorphism with Q'_0 injective) and let G_0 be the cokernel of *i'*. Then we obtain an exact sequence

YUH-CHING CHEN

$$0 \longrightarrow E' \xrightarrow{i'} Q'_0 \xrightarrow{j'} G_0 \longrightarrow 0$$

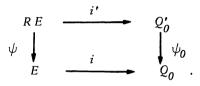
Choose a map $k': G_0 \to Q'_I$ in $\mathcal{F}' \cap \mathcal{H}'$ and let G_I be the cokernel of k'. Then an exact sequence

$$0 \longrightarrow E' \stackrel{i'}{\longrightarrow} Q'_0 \stackrel{d'_0}{\longrightarrow} Q'_1 \longrightarrow G_1 \longrightarrow 0, \quad d'_0 = k'j',$$

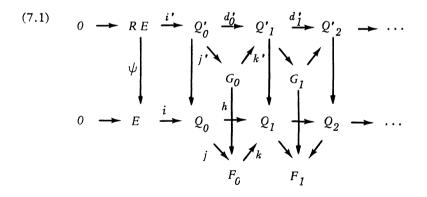
is obtained. Continuing in this way, we get an injective resolution

$$0 \longrightarrow E' \stackrel{i'}{\longrightarrow} Q'_0 \stackrel{d'_0}{\longrightarrow} Q'_1 \stackrel{d'_1}{\longrightarrow} Q'_2 \longrightarrow \dots$$

We shall generalize this construction to one for a π -sheaf E. Let Q_0 be the push-out of $i': R \to Q'_0$ by the reflection $\psi: R \to E$



Then it is easy to show that, since $i' \in \mathcal{F}' \cap \mathcal{H}'$, $i \in \mathcal{F} \cap \mathcal{H}$. Moreover, i is a π -monomorphism. In the diagram



let F_0 be the cokernel of *i*, Q_1 be the push-out of *k*' by *b*, F_1 be the cokernel of $d_0 = kj$ and Q_2 be a push-out again. Then by repeating this construction we obtain an exact sequence

(7.2)
$$0 \xrightarrow{i} E \xrightarrow{d_0} Q_0 \xrightarrow{d_1} Q_1 \longrightarrow Q_2 \longrightarrow \cdots$$

called a π -injective resolution of E in \mathscr{L}_{π} . We remark that, in general, nei-

ther Q_i is injective in \mathfrak{L}_{π} , nor is RQ_i in \mathfrak{L}_X . We call (7.2) a « π -injective» resolution just because it is constructed out of an *injective* resolution of RE. Nevertheless, when Q'_* is replaced by another injective resolution of RE, the corresponding π -injective resolution of E is chain homotopic to (7.2). Therefore, there is a cohomology theory on \mathfrak{L}_{π} defined by resolutions that generalizes the sheaf cohomology. We shall study this further under a more general topic.

Department of Mathematics Wesleyan University, Middletown, Conn. Fordham University, Bronx, N.Y., U.S.A.

REFERENCES

- BASTIANI A., Applications différentiables et variétés différentiables de dimension infinie, Jour. Analyse Math. Jérusalem, 13 (1964) 1-114.
- [2] BINZ E., Bemerkungen zu limitierten Funktionenalgebren, Math. Ann. 175 (1968), 169-184.
- [3] BINZ E., Ein Differenzierbarkeitsbegriff in limitierten Vektorräumen, Comm. Math. Helv. 41 (1966-67).
- [4] BINZ E. and KELLER H., Funktionenräume in des Kategorie der Limesräume, Ann. Acad. Sci. Fenn. (Finlande) A1, 383 (1966).
- [5] CHEN Y.C., Quasi-faisceaux sur les espaces quasi-topologiques, C.R.A.S. Paris 273 (1971).
- [6] COOK C. and FISCHER H., Uniform convergent structures, Math. Ann. 173 (1967), 290-306.
- [7] COOK C. and FISCHER M., On equicontinuity and continuous convergence, Math. Ann. 159 (1965), 94-104.
- [8] EHRESMANN C., Catégories topologiques I, II, III, Koninkl. Nederl. Akad. van Wetenschappen, Proceeding series A 69, 1 (1966).
- [9] EILENBERG-MOORE, Foundations of relative homological algebra, Memoirs Amer. Math. Sci. 55 (1965).
- [10] FRÖLICHER-BUCHER, Calculus in vector spaces without norm, Lecture Notes in Math. 30, Springer (1966).
- [11] GROTHENDIECK A., Sur quelques points d'algèbre homologique, Tohoku Math. Jour. 9 (1957), 119-221.
- [12] KOWALSKY H., Limesräume und Kompletierung, Math. Nach. 12 (1954), 301-340.
- [13] LEROUX P., Sur les structures d'effacement, (to appear).
- [14] MACHADO A., Caractérisation à l'aide de quasi-topologies de la structure de variété analytique complexe, C.R.A.S. Paris 268 (1969), 1402-1405.
- [15] MACHADO A., Quasi-variétés complexes, Cabiers de Top. et Géom. Diff. XI,3 (1969), 229-279.
- [16] MACHADO A., Quasi-topologie algébrique, Esquisses Math. 10 (1970).
- [17] MARANDA J., Injective structures, Trans. Amer. Math. Sci. 110 (1964), 98-135.
- [18] SPANIER E., Quasi-topologies, Duke Math. Jour. 30 (1963).
- [19] ZIMMERMANN W., Injektive Strukturen und M-injektive Objekte, Thesis, Ludwig-Maximilians-Universität, München (1969).