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SOME REMARKS ON SHEAF COHOMOLOGY

by YUH-CHING CHEN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XI, 4

Introduction. Perhaps the most important theorem that makes sheaf theory
an essential tool in the study of algebraic geometry and several complex
variables is the well-known comparison theorem of Leray that says:

If Hq(Uo ; F) = 0 for q &#x3E; 1 and all o E N(U), then H*(X ; F) = H*( N(U) ; F).
The crucial point is that the theorem enables one to compute sheaf coho-

mology (by Cech complexes) in some given situations. In this note we

shall study a general simplicial cohomology with a system of coefficients,
then apply it to obtain some simplicial interpretation of sheaf cohomology.

Section 1 contains some technical terminologies and results which

enable us to argue the main results in simple terms. Main theorems are in

sections 2 and 3.

We would like to thank Professors Alex Heller and Shih Weishu for

stimulating discussions.

1. Stacks and costacks. Let K = lJ Kq be a simplicial set with-q- simplexesq&#x3E; 0

o E Kq, face operators di : Kq -&#x3E; K q-1, degenaracy operators sj : Kq -&#x3E; Kq+1.q q

In this paper, a simplicial set K is often considered as a category with

objects simplexes o-, T, .’ ., and morphisms di:cr...dicr, sj : T -&#x3E; Sj T and
their compositions. A (cohomological) system of coefficients on K with

values in a category (1 is then a contravariant functor A : K -&#x3E; Q. We shall

call such a contravariant functor A a prestack over the simplicial set K .

For example, if if is an abelian sheaf over a space X and if 1) is an open

cover or a locally finite closed cover of X, then ? gives rise to the pre-
stack of abelian groups S F over the nerve K = N (U) of h defined by

(S F) (o) = T(Uo, F), where Uo. is the support of the simplex or. Note that
here K = N(U) is regarded as a category of simplexes (non-degenerate
ones and degenerate ones) and that (SF)(sjo) = (SF)(o) for every de-

generacy operator si. The system of coefficients Hq(F) of Godement
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[2, p. 209] is another example of a prestack over N(U). If a prestack
A has the property that A(o) = A(sjo) for every s j, then A is called a

stack. Therefore SF and Hq(F) are indeed stacks.

A ( covariant ) functor A : K -&#x3E; Q is called a precostack over K with

values in Q. Let A be a precostack of abelian groups. Then the graph of

A , the set A ( o-) , is a simplicial set and there is a simplicial projec-
s E K

tion 77.’ U A(o) -&#x3E; K such that TT-1 (o) = A (o). A precostack is often i-

dentified with its graph. For example, the singular complex of the abelian

sheaf ? is a precostack, or rather the graph of a precostack of groups, o-

ver the singular complex of the base space 1(. A precostack can also be
viewed as a (homological) system of coefficients.

Let d b be the category of abelian groups and let (i b K be the ca-

tegory of abelian prestacks over K ( the category of group-valued contra-

variant functors on K , or the category of systems of coefficient groups o-

ver K ). Then d b K is an abelian category in which sums and products of

exact sequences are exact. The category Qb K of abelian precostacks is

also an abelian category with exact sums and products. It is proved in [1]
that Qb K has enough projectives and injectives. We shall prove that Qb K
has enough injectives.

Let X be a simplicial set and let ç: X -&#x3E; K be a simplicial map.

Then y induces two functors cp 1/:: (j b K ... (1 b X and ç # : Qb X -&#x3E; Qb K de-

fined as

Both functors ç# and ç# are exact and is (left) adjoint to Y,.The-
refore, Y. preserves injectives (cf. [1]). If X=Dn is the standard sim-

plicial n-simplex, then since the constant stack Q(n) over Dn with va-

lue the group of rationals mod 1 is injective, y yo (n) is injective in (i b K
Let ço : Dn -&#x3E; K be the simplicial map that sends the only non-degenerate
n-simplex sn of Dn onto o E Kn and let Q =o-Ih« ço) Q (n) , n = dim a.
Then Q is an injective generator of Qb K and so Qb K. has enough in-

jectives.

2. Representation of cohomology by general ized Ei lenberg-Mac Lane complexes.
Let K be a fixed simplicial set. For each abelian prestack A E (1 b K ’ let
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C’*A be the cochain complex of A with C qA = IT ol A (o-), aE K q and with 
*

coboundary maps alternating sums of the homomorphisms A(di). Then C

is an exact functor from (f b K to the category of cochain complexes of a-

belian groups. The homology groups of C *A, denoted by H *(K ; A) or

* 
.

H ( A ), are cohomology groups of K with coefficients in A ( a system o f

coe f ficients ). Let r K = Hom ( Z, -) ( where Z is the constant stack of

integers over K ) be the section f unctor on (1 b K and let R n r K be the n-th
derived functor of r K °. Then it is not hard to show that

THEOREM 2.1. H*(K;-) = R*TK (-) = ExtK(Z,-), where ExtK(Z,A) is
the group o f equivalence classes o f n-fold extensions o f A by Z in (f b K-

Let ç : X -&#x3E; K be a simplicial map. It is easily seen that H*(X; -)
*

= H (K ; ç# (-)). ç induces a homomorphism

defined by cp * ( [c] )= [cf] , where the cocycle c E II o A (o), o E Kn, is
*

regarded as a function on K n . Note that cp can also be obtained from the

morphism pA ; A -&#x3E; ç # ç # A of the adj oint tran sformation p : 1 - ç # ç #.
Let C K be the category of simplicial sets over K, objects X ç are

simplicial maps ç : X -&#x3E; K; morphisms f : Xç -&#x3E; Yy are simplicial maps f :
X -&#x3E; Y such that ç = Y f. For a given stack A over K, the cohomology

groups of X m with coefficients in A are defined as

This defines a cohomology functor H ( -; A ) , on CK . We shall show that
this cohomology on C K is representable by the generalized Eilenberg-
MacLane complexes K( A, n ) 8 E C K of the system of coefficients A.

Let A be a stack of groups over K . K ( A , n) e, or 8 : K ( A , n)-K,

is defined as follows. For T = dio the i-th face of o E K q, let f be the

the morphism in C K defined by f(d q-1) = di dq, see the diagram
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Then f induces a homomorphism of groups of normalized n-cocycles

Define the simplicial set K(A, n) = U K q(A, n) by letting K q( A, n) =
, with face operators defined by Zn(f) and de-

generacy operators defined in a similar way. Let 8 : K (A,n) -&#x3E; K be the

obvious simplicial projection with Then K(A, n)8
is a well-defined obj ect in C K . Note that by the remark on precostack
in section 1, K ( A , n ) is an abelian precostack over K . If K = Do is a sim-

plicial point, then the stack A is ( isomorphic to) a constant stack with

value group 7T. In this case K ( A , n ) is the classical Eilenberg-MacLane

complex K(TT, n).

In stating the cohomology representation theorem, we need the con-

cept of homotopy in C K . In the diagram

I = D. 1 is the standard simplicial 1-simplex, p is the projection p ( x, d) =

x , F : ( X X I) ç p -&#x3E; Y y is called a K-homotop y . Two maps f, g = X ç -&#x3E; Y W
are K-homotopic if they are connected by a K-homotopy F. For each o-E K

let A’ be the simplicial subset of K generated by cr. The K-homotopy is

a system of simplicial homotopies

related by the simplicial operators di, s i of K ( a stack of simplicial ho-

motopies). Let [Xç, y w] denote the set of equivalence classes of K-

homotopic maps from X y to Y y ’ If Y is the graph of a precostack, then

[x ç, Yw] is an abelian group.

T H E O R E M 2. 2. For any stack A (’normalized prestack’) there is a na-
tural isomorphism
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PROOF. To define cpn , let c E C n (8 # A) be the n-cochain on K ( A, n )

defined by c(y)=y(dn) for every y E K n (A, n). Then c i s a cocycle

called the fundamental cocycle on K ( A , n). The cohomology class

is said to be characteristic for K ( A , n) e. For each homotopy class [f]

cpn is a homomorphism independent of the representative f . çn has an in-

verse that sends each cohomology class [h] E H n(Xp ; A ) onto the ho-
motopy class of the K-map f : X -&#x3E; K(A, n) defined by (f(x))(dn)=h(x).
Thus cpn is an isomorphism.

If K is a simplicial point, then A is isomorphic to a constant stack

with value group 7T and the theorem becomes the classical representation
theorem of simplicial cohomology by K(TT, n ).

3. Applications to sheaf cohomology. Let C be the category of abelian

sheaves over a topological space X, let U= {Ua} be an open cover of

X, and let K = N(U) be the nerve of H. For each sheaf ? in C, let SF

be the stack over K defined by (SF) (s) = T(Uo, F), the local sections
of if over the support U o of u. Then S : C -&#x3E; Q b K is a left exact functor.

Note that C*(SF) is the usual Cech complex of h with coefficients in if.
Consider left exact functors

where T K S = T is the section functor of sheaves; we claim that

THEOREM 3.1. T’here is a spectral sequence

where R qS is the right q-th derived functor o f S.

Since C, (i bK and (i b are abelian categories with enough injec-

tives, the -henrem follows from the

L E M M A. S takes injective sheaves into TK -acyclic stacks, i. e. H q(K ; SF)
= 0 for p&#x3E; 0 and F an injective sheaf ( cf. Theorem 2.1. ).

PROOF. Let 8* be an injective resolution of 5:. Then the double complex



472

C *(S&#x26; *) = S Cp( S &#x26; q) gives rise to two spectral sequences of which the

second one degenerates and the first one yields an isomorphism Hp(T&#x26;*)
= Hp(C*(S&#x26;*)). If ? is inj ective, then Hp(T&#x26;*) = Hp(X;F) = 0 for p &#x3E; 0
and Hp(C*(S&#x26;*)) = Hp(K ; SF). Thus Hp(K ; SF) = for

p&#x3E; 0 and ? injective.

REMARKS. (1) S&#x26;* is a complex of stacks over K from which R qSy-

H q(S&#x26;*) is computed. It can be shown by a routine computation that RqSF

is isomorphic to Hq(F) defined by Hq(F)(o) = Hq(Uo, F) in [2] .
Thus the spectral sequence in the theorem is isomorphic to the spectral

sequence Ep,q2 = Hp(K; Hq(F)) of Leray. Consequently, one has the well-
known

every UE K. (This and Leray theorem are proved in [2] using the

Cech resolution C*(U ; F) called the canonical resolution of F.)
(2) Let 0 be a sheaf of commutative rings with identities and

let O (X) be the ring of (global) sections of O . Then for each 0-module

, SF is a stack of O(X)-modules over K . The theory on (1 b K carries

over to a theory on m,K, the category of prestacks of O(X )-modules over

K . In particular, we have H *(K ;-) = Ext*K(R,-) on M(K, where R is the

constant stack with value O(X). This and the corollary above show that,
for the 0-module ?,

THEOREM 3.2. 1 f Hq(Uo ; F) = 0 for q&#x3E;1 and every JUE K, then

For example, let (X, 0 ) be a scheme ( resp. a complex analytic space) and
let 11 be an open cover of X by affine varieties (resp. by Stein spaces ) .
Then for a quasi-coherent (resp. coherent) 0-module 5:, Hn(X ; F) =

ExtnK(R, SF) is, by abuse of language, the module of «K-coherent n-fold

extensions" of the system of modules {F=(Uo) |o E K} by the module O(X).
Finally we shall prove a representation theorem for sheaf cohomo-

logy. In the representation Theorem 2.2, if X ç is the identity map 1: K -&#x3E; K,

simply denote thi s by K, we have [K,K(A, n)8)] = Hn(K; A), i.e, for

a stack A , H n ( K , A ) is isomorphic to the group o f homotopy classes of
sections o f K ( A , n ) .



473

If precostacks are identified with their graphs, then Qb K can be
identified with a subcategory of CK. Two precostack homomorphisms are

homotopic if they are K-homotopic as morphisms in C K . The group of ho-

motopy classes of precostack homomorphisms from A to B is denoted by

Hom K [A, B]. If Z K denotes the constant costack of integers, then

[K,E8] = HomK [ZK, E] for E 8 E C K in which E is a precostack.
In particular, [K, K (A, n)8] = Hom K[ZK, K(A, n)]. We have the
LEMMA. Hn(K ; A) is naturally isomorphic to Hom K [ZK, K ( A , n)]
for stacks A over K.

This and Theorem 3.1 show that

THEOREM 3.3. T’here is a spectral sequence

COROLLARY ( representation of shea f cohomology) . 1 f H q( Uo; F) = 0
f or q &#x3E; 1 and every o- E K , then 
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