CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

YUH-CHING CHEN Some remarks on sheaf cohomology

Cahiers de topologie et géométrie différentielle catégoriques, tome 11, nº 4 (1969), p. 467-473

<http://www.numdam.org/item?id=CTGDC_1969__11_4_467_0>

© Andrée C. Ehresmann et les auteurs, 1969, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOME REMARKS ON SHEAF COHOMOLOGY

by YUH-CHING CHEN

Introduction. Perhaps the most important theorem that makes sheaf theory an essential tool in the study of algebraic geometry and several complex variables is the well-known comparison theorem of Leray that says:

If $H^q(U_{\sigma}; \mathfrak{F}) = 0$ for $q \ge 1$ and all $\sigma \in N(\mathfrak{V})$, then $H^*(\mathfrak{X}; \mathfrak{F}) \approx H^*(N(\mathfrak{V}); \mathfrak{F})$. The crucial point is that the theorem enables one to compute sheaf cohomology (by Čech complexes) in some given situations. In this note we shall study a general simplicial cohomology with a system of coefficients, then apply it to obtain some simplicial interpretation of sheaf cohomology.

Section 1 contains some technical terminologies and results which enable us to argue the main results in simple terms. Main theorems are in sections 2 and 3.

We would like to thank Professors Alex Heller and Shih Weishu for stimulating discussions.

1. Stacks and costacks. Let $K = \bigcup_{q \ge 0} K_q$ be a simplicial set with q-simplexes $\sigma \in K_q$, face operators $d^i: K_q \to K_{q-1}$, degenaracy operators $s^j: K_q \to K_{q+1}$. In this paper, a simplicial set K is often considered as a category with objects simplexes σ , τ , ..., and morphisms $d^i: \sigma \to d^i\sigma$, $s^j: \tau \to s^j\tau$ and their compositions. A (cohomological) system of coefficients on K with values in a category \mathfrak{A} is then a contravariant functor $A: K \to \mathfrak{A}$. We shall call such a contravariant functor A a *prestack* over the simplicial set K. For example, if \mathfrak{F} is an abelian sheaf over a space \mathfrak{A} and if \mathfrak{A} is an open cover or a locally finite closed cover of \mathfrak{A} , then \mathfrak{F} gives rise to the prestack of abelian groups $S\mathfrak{F}$ over the nerve $K = N(\mathfrak{A})$ of \mathfrak{A} defined by $(S\mathfrak{F})(\sigma) = \Gamma(U_{\sigma}, \mathfrak{F})$, where U_{σ} is the support of the simplex σ . Note that here $K = N(\mathfrak{A})$ is regarded as a category of simplexes (non-degenerate ones) and that $(S\mathfrak{F})(s^j\sigma) = (S\mathfrak{F})(\sigma)$ for every degeneracy operator s^j . The system of coefficients $\mathfrak{H}^q(\mathfrak{F})$ of Godement [2, p. 209] is another example of a prestack over $N(\mathfrak{U})$. If a prestack A has the property that $A(\sigma) \approx A(s^{j}\sigma)$ for every s^{j} , then A is called a *stack*. Therefore $S\mathcal{F}$ and $\mathcal{H}^{q}(\mathcal{F})$ are indeed stacks.

A (covariant) functor $A: K \to \mathbb{C}$ is called a *precostack* over K with values in \mathbb{C} . Let A be a precostack of abelian groups. Then the graph of A, the set $\bigcup_{\sigma \in K} A(\sigma)$, is a simplicial set and there is a simplicial projection $\pi: \bigcup_{\sigma \in K} A(\sigma) \to K$ such that $\pi^{-1}(\sigma) = A(\sigma)$. A precostack is often identified with its graph. For example, the singular complex of the abelian sheaf \mathcal{F} is a precostack, or rather the graph of a precostack of groups, over the singular complex of the base space \mathfrak{X} . A precostack can also be viewed as a (homological) system of coefficients.

Let $(\mathbf{f} b)$ be the category of abelian groups and let $(\mathbf{f} b)_K$ be the category of abelian prestacks over K (the category of group-valued contravariant functors on K, or the category of systems of coefficient groups over K). Then $(\mathbf{f} b)_K$ is an abelian category in which sums and products of exact sequences are exact. The category $(\mathbf{f} b)^K$ of abelian precostacks is also an abelian category with exact sums and products. It is proved in [1] that $(\mathbf{f} b)^K$ has enough projectives and injectives. We shall prove that $(\mathbf{f} b)_K$ has enough injectives.

Let X be a simplicial set and let $\varphi: X \to K$ be a simplicial map. Then φ induces two functors $\varphi^{\sharp}: \mathfrak{A} b_K \to \mathfrak{A} b_X$ and $\varphi_{\sharp}: \mathfrak{A} b_X \to \mathfrak{A} b_K$ defined as

 $\varphi^{\#}B = B \varphi$ and $(\varphi_{\#}A)(\sigma) = \prod_{x} A(x), x \in \varphi^{-1}(\sigma).$

Both functors $\varphi^{\#}$ and $\varphi_{\#}$ are exact and $\varphi^{\#}$ is (left) adjoint to $\varphi_{\#}$. Therefore, $\varphi_{\#}$ preserves injectives (cf. [1]). If $X = \Delta^{n}$ is the standard simplicial *n*-simplex, then since the constant stack $Q^{(n)}$ over Δ^{n} with value the group of rationals mod 1 is injective, $\varphi_{\#}Q^{(n)}$ is injective in $\mathbb{C}b_{K}$. Let $\varphi_{\sigma}: \Delta^{n} \to K$ be the simplicial map that sends the only non-degenerate *n*-simplex δ^{n} of Δ^{n} onto $\sigma \in K_{n}$ and let $Q = \prod_{\sigma \in K} (\varphi_{\sigma})_{\#}Q^{(n)}$, $n = \dim \sigma$. Then Q is an injective generator of $\mathbb{C}b_{K}$ and so $\mathbb{C}b_{K}$ has enough injectives.

2. Representation of cohomology by generalized Eilenberg-MacLane complexes. Let K be a fixed simplicial set. For each abelian prestack $A \in \mathbb{C} b_K$, let C^*A be the cochain complex of A with $C^q A = \prod_{\sigma} A(\sigma)$, $\sigma \in K_q$ and with coboundary maps alternating sums of the homomorphisms $A(d^i)$. Then C^* is an exact functor from (fb_K) to the category of cochain complexes of abelian groups. The homology groups of C^*A , denoted by $H^*(K;A)$ or $H^*(A)$, are cohomology groups of K with coefficients in A (a system of coefficients). Let $\Gamma_K = Hom(Z, -)$ (where Z is the constant stack of integers over K) be the section functor on (fb_K) and let $R^n \Gamma_K$ be the n-th derived functor of Γ_K . Then it is not hard to show that

THEOREM 2.1. $H^*(K; -) \approx R^* \Gamma_K(-) \approx Ext_K^*(Z, -)$, where $Ext_K^n(Z, A)$ is the group of equivalence classes of n-fold extensions of A by Z in $\mathfrak{A} b_K$.

Let $\varphi: X \to K$ be a simplicial map. It is easily seen that $H^*(X; -) \approx H^*(K; \varphi_{\#}(-))$. φ induces a homomorphism

$$\varphi^*: H^*(K; A) \rightarrow H^*(X; \varphi^{\sharp}A), A \in \mathfrak{A}_K,$$

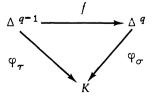
defined by $\varphi^*([c]) = [cf]$, where the cocycle $c \in \Pi_{\sigma} A(\sigma)$, $\sigma \in K_n$, is regarded as a function on K_n . Note that φ^* can also be obtained from the morphism $\rho_A : A \to \varphi_* \varphi^{\sharp} A$ of the adjoint transformation $\rho : 1 \to \varphi_* \varphi^{\sharp}$.

Let C_K be the category of simplicial sets over K, objects X_{φ} are simplicial maps $\varphi: X \to K$; morphisms $f: X_{\varphi} \to Y_{\psi}$ are simplicial maps $f: X \to Y$ such that $\varphi = \psi f$. For a given *stack* A over K, the cohomology groups of X_{φ} with coefficients in A are defined as

$$H^{*}(X_{\varphi}; A) = H^{*}(X; \varphi^{*}A).$$

This defines a cohomology functor $H^*(\cdot; A)$ on C_K . We shall show that this cohomology on C_K is representable by the generalized Eilenberg-MacLane complexes $K(A,n)_{\Theta} \in C_K$ of the system of coefficients A.

Let A be a stack of groups over K. $K(A, n)_{\theta}$, or $\theta: K(A, n) \rightarrow K$, is defined as follows. For $\tau = d^{i}\sigma$ the i-th face of $\sigma \in K_{q}$, let f be the the morphism in C_{K} defined by $f(\delta^{q-1}) = d^{i}\delta^{q}$, see the diagram

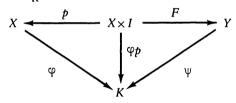


Then f induces a homomorphism of groups of normalized n-cocycles

$$Z^{n}(f): Z^{n}(\Delta^{q}; \varphi^{\sharp}_{\sigma}A) \to Z^{n}(\Delta^{q-1}; f^{\sharp}\varphi^{\sharp}_{\sigma}A) = Z^{n}(\Delta^{q-1}; \varphi^{\sharp}_{\tau}A).$$

Define the simplicial set $K(A, n) = \bigcup K_q(A, n)$ by letting $K_q(A, n) = \bigcup Z^n(\Delta^q; \varphi_{\sigma}^{\sharp}A), \sigma \in K_q$, with face operators defined by $Z^n(f)$ and degeneracy operators defined in a similar way. Let $\theta: K(A, n) \rightarrow K$ be the obvious simplicial projection with $\theta^{-1}(\sigma) = Z^n(\Delta^q; \varphi_{\sigma}^{\sharp}A)$. Then $K(A, n)_{\theta}$ is a well-defined object in C_K . Note that by the remark on precostack in section 1, K(A, n) is an abelian precostack over K. If $K = \Delta^o$ is a simplicial point, then the *stack* A is (isomorphic to) a constant stack with value group π . In this case K(A, n) is the classical Eilenberg-MacLane complex $K(\pi, n)$.

In stating the cohomology representation theorem, we need the concept of homotopy in C_{κ} . In the diagram



 $I = \Delta^{-1}$ is the standard simplicial 1-simplex, p is the projection p(x, d) = x, $F:(X \times I)_{\varphi p} \rightarrow Y_{\psi}$ is called a *K-homotopy*. Two maps $f, g = X_{\varphi} \rightarrow Y_{\psi}$ are *K-homotopic* if they are connected by a *K*-homotopy *F*. For each $\sigma \in K$ let Δ^{σ} be the simplicial subset of *K* generated by σ . The *K*-homotopy is a system of simplicial homotopies

$$F = \{ F_{\sigma} : \varphi^{-1}(\Delta^{\sigma}) \times I \to \psi^{-1}(\Delta^{\sigma}) \mid \sigma \in K \}$$

related by the simplicial operators d^i , s^j of K (a stack of simplicial homotopies). Let $[X_{\varphi}, Y_{\psi}]$ denote the set of equivalence classes of K-homotopic maps from X_{φ} to Y_{ψ} . If Y is the graph of a precostack, then $[X_{\varphi}, Y_{\psi}]$ is an abelian group.

THEOREM 2.2. For any stack A ("normalized prestack") there is a natural isomorphism

$$\varphi^{n}: [X_{\varphi}, K(A, n)_{\theta}] \rightarrow H^{n}(X_{\varphi}; A) \text{ for } X_{\varphi} \in C_{K}.$$

PROOF. To define φ^n , let $c \in C^n(\theta^*A)$ be the *n*-cochain on K(A,n) defined by $c(\gamma) = \gamma(\delta^n)$ for every $\gamma \in K_n(A,n)$. Then *c* is a cocycle called the *fundamental cocycle* on K(A, n). The cohomology class

$$\begin{bmatrix} c \end{bmatrix} \in H^n(K(A,n)_{\Theta};A) = H^n(K(A,n);\Theta^{\ddagger}A) = H^n(C^{\uparrow}(\Theta^{\ddagger}A))$$

is said to be *characteristic* for $K(A, n)_{\Theta}$. For each homotopy class $[f] \in [X_{\varphi}, K(A, n)_{\Theta}]$, let $\varphi^{n}([f]) = f^{*}[c] = [cf] \in H^{n}(X_{\varphi}; A)$. Then φ^{n} is a homomorphism independent of the representative f. φ^{n} has an inverse that sends each cohomology class $[b] \in H^{n}(X_{p}; A)$ onto the homotopy class of the K-map $f: X \to K(A, n)$ defined by $(f(x))(\delta^{n}) = b(x)$. Thus φ^{n} is an isomorphism.

If K is a simplicial point, then A is isomorphic to a constant stack with value group π and the theorem becomes the classical representation theorem of simplicial cohomology by $K(\pi, n)$.

3. Applications to sheaf cohomology. Let C be the category of abelian sheaves over a topological space \mathfrak{X} , let $\mathfrak{U} = \{U_{\alpha}\}$ be an open cover of X, and let $K = N(\mathfrak{U})$ be the nerve of \mathfrak{U} . For each sheaf \mathfrak{F} in C, let $S\mathfrak{F}$ be the stack over K defined by $(S\mathfrak{F})(\sigma) = \Gamma(U_{\sigma}, \mathfrak{F})$, the local sections of \mathfrak{F} over the support U_{σ} of σ . Then $S: C \rightarrow \mathfrak{Cb}_{K}$ is a left exact functor. Note that $C^*(S\mathfrak{F})$ is the usual Čech complex of \mathfrak{U} with coefficients in \mathfrak{F} . Consider left exact functors

$$C \xrightarrow{S} \operatorname{Cl} b_K \xrightarrow{\Gamma_K} \operatorname{Cl} b, \quad \Gamma_K = Hom (Z, -),$$

where $\Gamma_K S = \Gamma$ is the section functor of sheaves; we claim that THEOREM 3.1. There is a spectral sequence

$$E^{p,q} = H^{p}(K; R^{q}S\mathcal{F}) \Longrightarrow H^{n}(\mathfrak{X}; \mathcal{F}),$$

where $R^{q}S$ is the right q-th derived functor of S.

Since C, $\mathfrak{A} b_K$ and $\mathfrak{A} b$ are abelian categories with enough injectives, the theorem follows from the LEMMA. S takes injective sheaves into Γ_K -acyclic stacks, i. e. $H^q(K; S\mathcal{F}) = 0$ for p > 0 and \mathcal{F} an injective sheaf (cf. Theorem 2.1.). PROOF. Let \mathcal{E}^* be an injective resolution of \mathcal{F} . Then the double complex $C^*(S\mathcal{E}^*) = \sum C^p(S\mathcal{E}^q)$ gives rise to two spectral sequences of which the second one degenerates and the first one yields an isomorphism $H^p(\Gamma\mathcal{E}^*) \approx H^p(C^*(S\mathcal{E}^*))$. If \mathcal{F} is injective, then $H^p(\Gamma\mathcal{E}^*) = H^p(\mathfrak{X};\mathcal{F}) = 0$ for p > 0and $H^p(C^*(S\mathcal{E}^*)) = H^p(K;S\mathcal{F})$. Thus $H^p(K;S\mathcal{F}) \approx H^p(\mathfrak{X};\mathcal{F}) = 0$ for p > 0 and \mathcal{F} injective.

REMARKS. (1) $S\mathcal{E}^*$ is a complex of stacks over K from which $R^{q}S\mathcal{F} = H^{q}(S\mathcal{E}^*)$ is computed. It can be shown by a routine computation that $R^{q}S\mathcal{F}$ is isomorphic to $\mathcal{H}^{q}(\mathcal{F})$ defined by $\mathcal{H}^{q}(\mathcal{F})(\sigma) = H^{q}(\mathcal{U}_{\sigma}, \mathcal{F})$ in [2]. Thus the spectral sequence in the theorem is isomorphic to the spectral sequence $E_{2}^{p,q} = H^{p}(K; \mathcal{H}^{q}(\mathcal{F}))$ of Leray. Consequently, one has the well-known

COROLLARY. $H^{n}(\mathfrak{X}; \mathfrak{F}) \approx H^{n}(K; S\mathfrak{F})$ if $H^{q}(U_{\sigma}; \mathfrak{F}) = 0$, for $q \ge 1$ and every $\sigma \in K$. (This and Leray theorem are proved in [2] using the Cech resolution $C^{*}(\mathfrak{U}; \mathfrak{F})$ called the canonical resolution of \mathfrak{F} .)

(2) Let O be a sheaf of commutative rings with identities and let $O(\mathfrak{A})$ be the ring of (global) sections of O. Then for each O-module \mathfrak{F} , $S\mathfrak{F}$ is a stack of $O(\mathfrak{A})$ -modules over K. The theory on $\mathfrak{A}b_K$ carries over to a theory on \mathfrak{M}_K , the category of prestacks of $O(\mathfrak{A})$ -modules over K. In particular, we have $H^*(K; \cdot) \approx Ext_K^*(R, \cdot)$ on \mathfrak{M}_K , where R is the constant stack with value $O(\mathfrak{A})$. This and the corollary above show that, for the O-module \mathfrak{F} ,

THEOREM 3.2. If $H^q(U_{\sigma}; \mathfrak{F}) = 0$ for $q \ge 1$ and every $\sigma \in K$, then $H^*(\mathfrak{X}; \mathfrak{F}) \approx Ext_K^*(R, S\mathfrak{F}).$

For example, let (\mathfrak{X}, O) be a scheme (resp. a complex analytic space) and let \mathfrak{U} be an open cover of \mathfrak{X} by affine varieties (resp. by Stein spaces). Then for a quasi-coherent (resp. coherent) O-module \mathfrak{F} , $H^n(\mathfrak{X}, \mathfrak{F}) \approx Ext_K^n(R, S\mathfrak{F})$ is, by abuse of language, the module of "K-coherent *n*-fold extensions" of the system of modules $\{\mathfrak{F}(U_{\sigma}) \mid \sigma \in K\}$ by the module $O(\mathfrak{X})$.

Finally we shall prove a representation theorem for sheaf cohomology. In the representation Theorem 2.2, if X_{φ} is the identity map $1: K \rightarrow K$, simply denote this by K, we have $[K,K(A,n)_{\Theta}] \approx H^n(K;A)$, i.e. for a stack A, $H^n(K,A)$ is isomorphic to the group of homotopy classes of sections of K(A,n). If precostacks are identified with their graphs, then $(A b^{K} can be)$ identified with a subcategory of C_{K} . Two precostack homomorphisms are *homotopic* if they are K-homotopic as morphisms in C_{K} . The group of homotopy classes of precostack homomorphisms from A to B is denoted by $Hom_{K} [A, B]$. If Z^{K} denotes the constant costack of integers, then $[K, E_{\Theta}] \approx Hom_{K} [Z^{K}, E]$ for $E_{\Theta} \in C_{K}$ in which E is a precostack. In particular, $[K, K(A, n)_{\Theta}] \approx Hom_{K} [Z^{K}, K(A, n)]$. We have the LEMMA. $H^{n}(K; A)$ is naturally isomorphic to $Hom_{K} [Z^{K}, K(A, n)]$ for stacks A over K.

This and Theorem 3.1 show that

THEOREM 3.3. There is a spectral sequence

$$E_{p,q}^{p,q} = Hom_{K} \left[Z^{K}, K(R^{q}S\mathcal{F}, p) \right] \Longrightarrow H^{n}(\mathfrak{X}, \mathcal{F}).$$

COROLLARY (representation of sheaf cohomology). If $H^{q}(U_{\sigma}; \mathcal{F}) = 0$ for $q \ge 1$ and every $\sigma \in K$, then

$$H^{n}(\mathfrak{X}; \mathfrak{F}) \approx Hom_{K} [Z^{K}, K(S\mathfrak{F}, n)].$$

References.

- 1. CHEN, Y. C., Stacks, costacks and axiomatic homology, Trans. Amer. Math. Soc., 145 (1969), 105-116.
- 2. GODEMENT, R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.

Department of Mathematics Wesleyan University MIDDLETOWN, Connecticut U.S.A.

473