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COSTACKS - THE SIMPLICIAL PARALLEL OF SHEAF THEORY

by YUH-CHING CHEN

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

I NTRODUCTION

Parallel to sheaf theory, costack theory is concerned with the

study of the homology theory of simplicial sets with general coefficient

systems. A coefficient system on a simplicial set K with values in an abe -

. lian category 8 is a functor from K to Q (K is a category of simplexes) ; it is

called a precostack; it is a simplicial parallel of the notion of a presheaf
on a topological space X . A costack on K is a « normalized» precostack,
it is realized as a simplicial set over K/ " it is a simplicial « espace
8ta18 » .

The theory developed here is functorial; it implies that  all &#x3E;&#x3E; homo-

logy theories are derived functors. Although the treatment is completely in-

dependent of Topology, it is however almost completely parallel to the

usual sheaf theory, and many of the same theorems will be found in it

though the proofs are usually quite different.

In Chapter I we define the direct image functor f # and the inverse
image functor f # of a simplicial map f and show how this pair of adjoint
functors supply projectives and injectives to a category of precostacks. It

turns out that, if the coefficient category Q has enough projectives, then

there are enough projective precostacks on K. Thus the usual homological

algebra applies to categories of precostacks.

Chapter II begins with the definition of the homology of K with a

general system of coefficients; it is defined in the same way as singular

homology is defined. The simplicial parallel of the Vietoris-Begle theorem

follows immediately from the definition. The homology theory so defined

is proved to be the left derived functor of the 0 - th homology functor H o
(and so Ho is called a cosection functor). This enables us to give a con-
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ceptual proof of a theorem of Moore and Puppe on the equivalence of homo-

logy and homotopy theories for simplicial abelian groups. It also fol-

lows that the chain homology functor, denoted H C , , is the left derived

functor of Hc. Thus any homology theory that is defined by chain homo-
logy of complexes of modules is a derived functor. In section 7 , spectral

sequences of a simplicial map are constructed. A theorem which is the

simplicial parallel of the Leray spectral sequence of a map is proved.

Chapter III starts with functorial relations between precostacks and

costacks (see Theorem 8.2 ) . It is proved that a projective costack is pro-

jective as a precostack and that an exact sequence of costacks is exact as

a sequence of precostacks. It also proves that the associated costack of

a projective precostack is projective. Thus, when homology is concerned,
we choose to regard costacks just as precostacks and make no attempt to

set up a separated homology theory for costacks. Finally, we define relative

costacks and precostacks for computing relative homology.
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0. Categories, functors, and modules.

Let ~ be a category and let A , B be objects of d; the set of

morphisms in (2 with source A and target B is denoted by ~( A , B ) . If

the class of objects 0 f e is a set, then we say that d is a small category.
The following symbols are fixed throughout this paper :

(i, an abelian category;

Qb , the category of abelian groups;
1, a commutative ring with unit;

k , the category of unitary A - modules;

the category of chain complexes in Q of the form

Let d be a small category and let (fe be the category of functors
(covariant) from to (i; if morphisms are natural transformations of func-

tors, then (IC is an abelian category; exactness in CIC is fiberwise, i.e.

a sequence of functors

is exact if and only if, for each obj ect x in C-, the sequence

is exact in (t. Products, coproducts (sums), and limits in (te are obtained
from that of Q by fiberwise constructions, e. g.

By ~ 6 ~ the category 8 is said to be AB ( 3 ) (resp. AB * ( 3 ) ) if

it has arbitrary coproducts (resp. products) . If the coproduct (resp. pro-

duct) functor is exact on (1, then 8 is said to be AB ( 4 ) (resp. AB * (4) ).
An AB ( 3 ) category 8 is said to be AB ( 5 ) if the direct limit of any

directed system of objects of Q exists and if the direct limit functor, lim,

is exact on (t. For example the category of modules N is AB ( 3 ), AB*(3),

AB ( 4 ), AB * ( 4 ) and AB ( 5 ) . Since products, coproducts, and limits of
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the functor category CI(2 are fiberwise, we have

L EMMA 0.1. (fe inherits the following properties of (f : AB ( 3 ~, AB * ( 3 ~,
AB(4), AB*(4), AB(5).

An object P is a projective (object) of (f if the functor Q( P , - ) :
(f 4 (fb is exact; P is small if, for any coproduct ~i P of copies of P,

A generator of Q is an object U of Q such that (f( Cl , A ) ~ 0 for any
A ~ 0 in (I. Injectives and cogenerators are defined dually. For example
A is a projective generator of k ; Q /Z (rationals mod 1 ) is an injective

cogenerator of lib. Q has enough projectives (resp. injectives) if, for

each object A , there is a projective P (resp. injective E ) and an exact

sequence P - A - 0 (resp. 0 ~ A -~ E ) .

LEMMA 0.2 [ 6, Theorem 1.10.1 ] . An AB ( 5 ) abelian category with a gene -
rator has enough injectives.

For example ? has enough injectives. More precisely, for each

module A , there is an injective envelope E of A [ $ , p. 103 ] . It is well

known that ? has enough projectives : let P be the free module generated

by the set A ; then one gets an exact sequence P 4 A 4 0 .

The notion of adjoint functors plays an important role in this paper;
here are a few preliminary remarks. Let e and ~’ be categories, a functor

F : ~ -~ e’ is a left adjoint functor of the functor G : e’ 4 e if C’ ( Fx, x’)
is naturally equivalent to C( x, Gx’), x 6e, x’ 6e’ . The left adjoint of

G is unique up to an equivalence of functors; we shall say that F is the

left adjoint of G and G is the right adjoint of F and write F « G: (e , e’) .
Left (resp. right) adjoint functors preserve epimorphisms, cokernels, and

right limits (resp. monomorphisms, kernels, and left limits) .

LEMMA 0.3. Let 8 and Q’ be abelian categories, and F -f G : ((1, Q’) . 1 f
G is exact (resp. F is exact) then F preserves projectives (resp. G pre-
serves injectives).

P R O O F . Let P be a proj ective in Q ; then (1( P , -) is exact. Since

Q’ ( FP , - ) ~ (~ ( P , G _ ) and G is exact, (~’ ( FP , - ) is exact and FP
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is projective.
For F -~ G : (e, ~’ ) , consider the natural equivalences

and

the morphisms x~ G Fx and FGX’ - x’ corresponding to 1 : .’ Fx and 1 : .-

Gx’ give natural transformations

Let e’ be a faithful subcategory of i. e. ~’ ’X’ x ’ ) = C ( x’1, x 2 ) , and
J : ~’ -~ e be the inclusion functor of e’ C ~i . If J has a left (resp. right)

adjoint functor R, then ~’ is core flective (resp. re flective) in d ; R is

the coreflector (resp. reflector) and R(x~ is the coreflection (resp. reflec-
tion) of x in e’. Thus, for any x’ in C’ and morphism f : x , x’ (resp.

f’ : x’ -~ x ), there is a unique morphism g : .’ R ( x ) - x’ (resp. g’ : .’ ~’ ~ ~ (x~)

such that g 8x = f (resp. ox g’ = f’ ) . For example, the category of abelian

sheaves on a space X is coreflective in the category of abelian presheaves
on X; the associated sheaf functor is the coreflector. For other informa-

tions on coreflective and reflective subcategories , see Freyd [ 5 ] ; notice
that our coreflections are the reflections of [ 5 ] .
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CHAPTER I

PRECOSTACKS

1 . Def inition and exam ples of precostacks.

Let K = U Kn be a simplicial set (a semi-simplicial complex) ;
n~ 0 

n 
.

Kn is the set of n - simplexes of K , the face operators are d’ : Kn -~ Kn _lj
0  i  n , the degeneracy operators are si .’ Kn --~ Kn +1 , 0  j  n . K is

a small category : obj ects are simplexes; morphisms are determined by d’

and si in the covariant manner, e.g. if the i -th face of xn E Kn is xn_1 6

Kn-1’ then there is a morphism ~~ xn ~ xn ~1. * A precostack over K, with

values in (? , is a functor (covariant) A : .’ K - ~ . The category of precos-
tacks of modules over K is the functor category mK . By lemma 0.2 we have

PROPOSITION 1.1. NK is abelian, AB(3), AB*(3), AB(4), AB*(4),
and AB( 5).

Let ~K be the category of simplicial sets over K : objects are

simplicial maps L - K with target K; morphisms are commutative dia-

grams

If mK denotes the subcategory of A-module objects of ~K , then ~K,~;~K , ,
see [ 2 ] . The « geometrical realization » of a precostack of modules over K

is a simplicial set over K with fibers over simplexes of 11- modules; face

operators and degeneracy operators are A - homomorphis ms on fibers.

EXAMPLE 1.1. Let  0 &#x3E; be a simplicial point : a collapsed simplicial set

with one simplex in each dimension. Then a simplicial set is the geome-
trical realization of a precostack of sets over  0 &#x3E; . The category of sim-

plicial A - modules is identified with the category of precostacks m  0 &#x3E; .

EXAMPLE 1.2. Let X be a topological space and let 6 ( X) be the total

singular complex of X (a simplicial set), then a local system of coeffi-

cients on X gives rise to a precostack over 6.. ( X ).

EXAMPLE 1.3. Let E 4 X be a sheaf of modules over X ; " then S (E ) -~ S (X )
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is (the geometrical realization of) a precostack of modules.

2 . Direct and inverse images.

Let f : K - L be a simplicial map; f is a functor when K and L

are regarded as categories of simplexes. Let B be a precostack of mo-

dules over L, i.e. B 6 )RL ; then the composite functor B f is a precostack
of modules over K . B f is called the inverse image of B under f and is

denoted by 14B. f induces a functor f # : ~L -~ ~(K on precostacks. Also,

f induces a functor f # : NK _ VL in the following manner. For A in VK,
let f #A in ? be the precostack over L that assigns to each y E L the

module ~ 
f~x~ - y A ( x) J’ the values of f #A acting on morphisms of L are

obtained in the natural way by the universal property of coproducts. For

example for a morphism d : y 4 dy of L given by a face operator d,

( f #A ) ( d ) is the unique homomorphism that renders the diagram

commutative. f 1f:A is called the direct image of A under f.
For simplicial maps and g . we have

L EM M A 2.1. f # and 14 are exact functors, i. e. they take exact sequences
to exact sequences.

This follows from the definition of fj and f # and the fact that

categories of precostacks of modules are AB ( 4 ~ .

LEMMA 2.2. f# is the le ft adjoint of fll, i. e. there is a natural isomorphism

o f abelian groups.

PROOF. An element of ~K ( A , f # B ) is a natural transformation
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of functors. For each such y there corresponds a natural transformation

defined by the universal mapping diagram of

cp x = T ix . . This correspondence gives rise to an isomorphism.
P RO P OSITION 2.3. 1, preserves projectives, 14 preserves injectives.

This follows from Lemmas 0.3 , 2.1, and 2.2 .

3. Projectives and injectives of )t!~.

Let n &#x3E; be the simplicial set of the standard n -simplex and let

8 be its onlynon degenerate n -simplex;  0 &#x3E; is a simplicial point as indi-

cated before; the simplicial standard 1 - simplex  1 &#x3E; plays in simplicial

homotopy theory a similar role as the unit interval I plays in the homotopy

theory of topological spaces.Given a simplicial set K = U Kn , I for each
n&#x3E; 0 

~

x E Kn the correspondence 8 ~ x determines uniquely a simplicial map
x ~ : :72&#x3E;-&#x3E;K [8, p. 237]. This shows that, if l~ n is the constant pre-

costack over  n &#x3E; with value A , then for any A in ?

T H E OR E M 3. 1. ~K has enough projectives and injectives.

P R O O F . Let U = ~x E K ( x # ~1 n ) , n = dim x , then U is a proj ective gene-
rator of m K. As exactness in m K is fiberwise, it follows from ( 3.1 ) that

, - ) is exact and so An is projective in ~Cn~~ x #~1 n is proj ec-
tive in ? since x# preserves projectives. Now U as a coproduct of

projectives is itself projective. U is a generator since, for A # 0 in !)R~

? has enough projectives since each A in NK is a quotient of ~l U,
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the index set is the set ‘~IK (C~, A ) ,‘~ ~x E K ‘4 ( x ) . Finally, by Lemmas
0.1 and 0.2, )RK has enough injectives since it is AB ( 5 ) and has a gene-

rator U .

This theorem tells us that there is a homology theory on NK defined

by derived functors and computed by resolutions. In particular, when K =

=0&#x3E; is a simplicial point, 0 : n&#x3E; - 0&#x3E; is the only simplicial map.

0. : ~n&#x3E;~ ~0&#x3E; maps An onto the n -dimensional model simplicial module
also denoted by A n (we adopt the term «model ~) from [ 8 , p. 237 ] ). Thus

in m 0&#x3E; the coproduct of model simplicial modules of all dimensions,

U = 2. ~ OA n, is a projective generator. We shall show that the classical
homology theory of simplicial modules defined by chain modules is a deri-

ved functor.
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CHAPTER II

HOMOLOGY

4 . Homology of precostacks.

For each A in NK, let -6 A be the chain module of A : the module

of n -chains is ~x A ( x ) , where x ranges over all n -simplexes of K , the

boundary operator G n is the alternating sum of the face operators d’ . The
homology of K with coefficients in A is by definition the chain homology
of aA and is denoted by H ( K ; A ) , or sometimes by HA . Since the cor-

respondence A - a A defines an (additive) exact functor, H = ~ Hn : n &#x3E; 0 ~ }
is a homological functor (a connected sequence of functors in the sense

of [ 1, p. 43 ] ) .
Let f : .’ K 4 L be a simplicial map, it is easily seen that the chain

modules

A in c

We have the dual version of the Vietoris-Begle Theorem :

L E MME 4. 1.

Vle shall now prove the following main theorem on the homology of

precostacks.

THEOREM 4.2. H = H(K;-) is «the» (unique up to natural equivalence of

functors) left derived functor o f Ho(K,’-), i. e. H(K,’A) or HA is the

chain homology of the chain module obtained by applying the functor Ho,(K;-)
to a projective resolution of A in mK.

P ROOF . Since Ho ( K; - ) is right exact, by the isomorphism criterion of

Cartan and Eilenberg [1, p. R7] it suffices to show that H q( K; P ) = 0
for q &#x3E; 0 and P projective. Since a projective P is a summand of a co-

product i U of copies of U and since H ( K; - ) preserves coproducts, it

suffices to show that H q( K; U ) = 0 for q &#x3E; 0 . Now

by’ Lemma 4.1; H q( K ; U ) is isomorphic to the coproduct of the q-th homo-
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logy group of G An, n = 0 ~ 1 , 2 , .... Since the a l~ n are acyclic [ R , 7 p.

23R ] , H q( K; U ) = 0 for q &#x3E; 0 and the theorem is proved.

Ho( K; A ) is the cosection of A over K (dual to the notion of

section in sheaf theory) . Since Ho is right exact and preserves coproducts,
it is a «tensor product » functor; its left derived functor H is therefore a

«torsion product » functor. Sometimes we write Hn( K; A ) = Torn ( A ) for
n n

and

Applying’ this theorem to the examples in Section 1 , we see that the

classical homology theory of simplicial modules, the singular theory, and

the homology with local coefficients are all derived functors; they can be

computed by resolutions.

Finally let j : K - L be a simplicial map and let f3 be a precostack
in )RL ; f induces a homomorphism

in the following way. Let P * be a projective resolution of f~B,’ then

f 11 P * is a projective’resolution of f # f # B , since f 11 is exact and preserves

projectives. By «the comparaison theorems the map p : f # f #B -~ B of ( 0.2 )
lifts uniquely (up to homotopy) to a chain map from f # P* to a projective
resolution of B . This chain map induces the homomorphism f* of ( 4. 3 ) .

f * can also be obtained from a naturally defined chain map from the chain

module -a(14B) to the chain module 3B/ J’ we leave the details to the

reader.

5 . A ’remark on simplicial homotopy.

A simplicial set K = Un&#x3E; ~ Kn is a Kan complex if, for each set

of n ( n- 1 ) - simplexes

with

there is a n -simplex w with d Z o- = a-Z for i t k . A Kan complex with a

fixed 0 -simplex e as its «base point » is called a pointed Kan complex. For

example, a simplicial group is a pointed Kan complex with base point the
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identity element of the 0 -dimension group [ 9 ] . Since we are interested

primarily in simplicial abelian groups, we shall restrict the general homo-

topy theory on pointed Kan complexes to the category of simplicial abelian

groups (~b ~ ~ &#x3E; .

Let 77 =J77’ q &#x3E; 0 ~ 1 be a homotopy theory on (tb  0&#x3E;  7+ is cha-

racterized by axioms analogue to that of the homology theory of Eilenberg
and Steenrod, see [ 7 , Chap. II ] ); then each 7T q is an additive functor

from Cib 0&#x3E; 
to (3~. The q -th homotopy group 7T q ( K , e ) is defined, accor-

ding to J.C. Moore, as the quotient group

see [ 7 , Chap. IV ] . We shall give a conceptual proof of the following
theorem of Moore and Puppe.

PROPOSITION 5. 1. The homotopy groups and homology groups of a

simplicial abelian group are naturally isomorphic.

P R O O F . Let A be a simplicial abelian group. Since H (  0 &#x3E; ; A ) is a left

derived functor of Ho (  0&#x3E;, A ) and since Ho (  0 &#x3E; ,~ A ) is equivalent to

o ( A ), we shall show that 7T is a left derived functor of o on QbC ~&#x3E;.

Since every short exact sequence of simplicial abelian groups is a fiber

sequence of Kan complexes, there is associated to it a homotopy sequence

of homotopy groups connected by connecting homomorphisms.The correspon-
dence is functorial and so 7T is a homological functor. To complete the

proof we shall show that ~q ( P , e ) = 0 for q &#x3E; 0 and P proj ective in

~ b  ~&#x3E; . As in the proof of Theorem 4.1, ?T q ( P , e ) is a summand of

’~q(~ C1, e) _ ’~q(~~Zn~ e). But ’~q(~,~Zn, e) ,’1; ~~’~q(Zn, e) (this

follows from the definition of Trq ) and Zn is  contractible &#x3E;&#x3E; for each n &#x3E; 0 , I
q -

’~q(~U, e) = 0 for q&#x3E;0, so is ’~q(P, e).
The original proof of the theorem is a consequence of the equiva-

lence between simplicial modules and chain modules; we shall establish

the equivalence (without proof) and some of its consequences for use in

later sections.

For A ~ in ~ ~&#x3E; , let CA be the normalized chain module of A;
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CA is the quotient of a A by the chain submodule generated by the dege-
nerate simplexes of A ( g , p. 236 J ; then the correspondence A - CA

defines a functor C : ~ C ~~ -~ 0 m, where 0 m is the category of left

(positive) chain modules.

L E MM A 5.2. The functor C is a homotopy preserving equivalence o f cate-

gories (C carries simplicial homotopy to chain homotopy) .
For details see, e.g., [ 3 ] .
Let H C denote the chain homology functor; then by the normali-

zation theorem of Eilenberg - Mac Lane we have H C ( a A ) ,’~, H C ( CA ) .
Thus Lemma 5.2 shows that ? is identified with om when homology
is concerned. As a direct consequence of Theorem 3.1 and Lemma 5.2 we

have :

L E MM A 5 . 3. 0 m has enough projectives and injectives; the chain homo-

logy functor HC is the left derived functor of Ho .0

This is true for all 0 (f, when 8 has enough projectives and injec-
tives. In such a case, one constructs projectives (resp. injectives) as a

coproduct (resp. product) from some « basics projectives (resp. injectives ) .

6. Hyperhomology and derived spectral functors.

Let a ~K be the category of complexes of precostacks of modules

over K of the form

o 8

... ~Xn-~Xn,l-~... ~Xo-~A-~0, or X*-~A; ,.

then a ~K has enough projectives and injectives. X * is projective in

a ~K if and only if it is a coproduct of the « basics projectives of the form
1

... ~ 0 -~ P -~ P -~ 0 -~ ... ,

with a projective precostack P in positions n and n- I (see, e.g., ( 4 J ) .
It is easy to see that a  basic &#x3E;&#x3E; projective is projective and that X * is

projective if and only if

( 1 ) each Xn is projective in mK, and
( 2 ) X* is split exact, i.e. H q ( X*) = 0 for q t 0 and a X 

n 
is

* q * n

a summand of X ~ (recall that HC denotes the chain homology functor).
Thus for any additive functor F : ~K-~ cr we have H q (FX*) ,’~ FH $(X ) = 0q * q *
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for q # 0, if X * is projective (here FX* is the complex obtained by ap-

plying F to X * termwise) .
R E M A R K S. a) For A 

* 
in 3~, let X ** be a left complex over A ; * then

there results a bicomplex X of the form

X 6~ and homology precostacks ~J/~ ~ and H q ( X ) . TheI p q q p ~*
total homology precostack of X is denoted by H to t ( X ) . X** is called a

strong projective resolution of A* if it is a projective resolutions in the
sense of Cartan and Eilenberg, i.e. if, for each p &#x3E; 0, H~ ( X ) is a pro-

jective resolution of HC( A*) in VL and if B~X~, tte p -boundaries of
the first boundary operation, is a projective resolution of Bp ( A*), see
[ 1, p. 363].

b) Let F : ~K -~ S be an additive functor, let

be the spectral homology sequences of FX . If X ** is a strong projective
resolution of A*,then ( 6.1 ~ becomes

*

where 2n F is the n -th left derived functor of F. Both spectral sequences
of ( 6.2 ) converge to the hyperhomology ( HF ) ( A* ) - H to t( FX ) ; HF is

*

the hyperhomology functor of F .

We shall show that the hyperhomology functor HF : .’ a ~1(K ~ Q is
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a derived functor.

L EM M A 6.1. Let P ** be a projective resolution o f A* and let X** be a
strong projective resolution, then

Indeed, the identity chain map of A * lifts uniquely (up to homo-

topy) to a map P - X of bicomplexes. This map induces a morphism

of spectral sequences, which is an isomorphism since the two spectral

sequences are isomorphic to H p (( ~ q F ) A~) .
THEOREM 6.2. The hyperhomology functor HF is the left derived functor

of the composite functor FHo
PROOF. Let P** be a projective resolution of A* ; the first spectral* *

sequence £1 ( FP) converges to H tot( Fp ~ ~ ( HF ~ ( A*) by ( 6 .3 ~ . Com-
*

pute the second spectral sequence

since each column of P is a proj ective in 3MI , it is split exact and so

~~fFP~ ~ F ( H ~, P ) = 0 for q ~ 0 . Thus the second spectral sequence

collapses to

and yields

This completes the proof.
Thus for obtaining the spectral sequences ( 6. 2 ) one may use either

a projective resolution of A* or a strong projective resolution of A*; " in

either case the hyperhomology is ~ ( F H o ) ( A*) ..0 .

The argument in this section remains valid when Nk is replaced
by an abelian category with enough projectives. For example, let A * be a
complex over A in mK; then a A* (d applies to A * termwise) is a com-

plex over aA in 3!/)! and yields a bicomplex of A-modules. (6.2 ) becomes
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both converge to ~ ( FHo ) A . If A* is a projective resolution of A , then

a A * is a projective resolution of a A in 3’)!!. In this case the second

spectral sequence collapses and yields

Moreover, if F is the identity functor of m, then both spectral sequences
collapse and yield of Theorem 4.2.

7. Spectral sequences of a simplicial map.

Let A. be a positive complex of precostacks of modules over K,
~. ~

and let be the cosection functor over K.

Then, since H ,’~; ~ ~10 , the spectral sequences of the previous section

become

where H q A* is obtained by applying H q = ~ q H o to A* termwise. There
are two interesting cases corresponding to the degeneracy of one or the

other of the spectral sequences.

CASE 1 . Assume that H~ (HqA*) = 0 for q &#x3E; 0, e.g. when each term ofp q *

A * is an acyclic precostack. Then the first spectral sequence collapses
and yields

There is a spectral sequence (the second spectral sequence) .

CASE 2 . Assume that Hq (A*) = 0 for q &#x3E; 0, e.g. when is a resolution
q * *

of A . Then the second spectral sequence collapses and yields

There is a spectral sequence (the first spectral sequence)

As an application of case 1 we shall construct a simplicial dual of

the Leray spectral sequence of a map.
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Let f : .’ K - L be a simplicial map. For each A in NK, let f o A be

an object in mL defined as follows: For y E L , let Ay( x) be the cons-

tant precostack over K with value the module ~,, (x~ = y A ( x ) . Let

be the 0-th (classical) homology module of K with coefficients in lf(x)=YA(x).
Then, since f , Ho , A are functors, / /4 is made a functor from L to N

in the natural way; u : y - uy in L determines a homomorphism

which extends to a morphism u : A ("x~-~~ fx~, which induces - the

morphism u : ( f o A ) fy~~/ ~~z/y~. It is easily seen that the corres -

pondence A - /,,,A defines a functor / : VK ~L , called the direct image
functor (with respect to the cosection functor H,,). Since Ho is right
exact, we have :

PROPOSITION 7.1. fo is right exact.
We shall show that /OA is acyclic whenever A is projective.

P ROPOSITION 7.2. I f A is projective in ~K, then Hq( L ; foA ) = 0 for

q &#x3E; 0.

P R O O F . A s usual let 3(~/ /~ be the ch ain module of f o A ,

th en a n ( f o A ) - ~ y H o ( K ; A y ( x )) , where y ranges over all n -simplexes
of L. Since Ho preserves coproducts, a simple computation shows that

where an A / K is the constant precostack over K with value the n -chain

module an A of 3/~. Thus a A is a chain of coefficients that gives the

chain of constant precostacks

from which a ( jo A ) is obtained by applying the cosection functor H 0
termwise.

If A is projective, so is a A , Thus each an A is a projective
module and a A is split exact, see the first paragraph of section 6. This
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gives the split exactness of ( 7.2 ), therefore a ( f o A ) is exact. This

proves the proposition.
For A in NK, the cosection of f o A is computed in the following

proposition.

PROPOSITION 7.3. Ho( foA) ,^; Ho(K; HoA ), the (classical) 0-th homo-
logy module of K with coefficients in the module H 0 A.
P ROOF . Since H 0 is right exact and preserves coproducts, we have the

commutative diagram with exact rows and columns

where ~ I a j A is the coproduct indexed by K Z of copies of a j A , i , j =

= 0, 1 . The last row of the diagram shows that

The following theorem is a simplicial dual of the Leray spectral

sequence of a map.

THEOREM 7.4. Let f : K ~ L be a simplicial map, let A be in mK, and
let P * be a projective resolution of A . 1 f K is connected (any two 0 -

simplexe.s can be joined by a chain of 1 -simplexes), then there is a spec-

tral sequence

where fo P* is obtained by applying f o to P* termwise.

P R O O F . Since each term of P * is proj ective, each term of f 0 P * is acyclic
by proposition 7.2 . Case 1 applies and yields a spectral sequence
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Since K is connected, ( 7.3 ) yields H ( f P ) ,;; H P The right hando 0 * 0 *

side of ( 7.4 ) becomes H p + q( A ) = H p + q( K; A ) . This proves the

th eorem .

Again f : K - L is a simplicial map. This time we consider the

inverse image functor f4: ~(L ~ NK. Let B be in m L and let X * be a

projective resolution of B . Since 1* is exact, 14X * is a resolution of

f # B . Case 2 applies.
TH E oR E M 7.5. L et f : K ~ L be a simplicial map, let B be in NL, , and
let X* be a projective resolution of B. There is a spectral sequence

In particular when B = G is a constant precostack over L with

value the module G (a local system of coefficient modules), then 14G is

constant (a local system) over K and H ( K ; f # G ) is the classical homo-

logy of K with (local) coefficients in G , i, e. H ( K ,~ f # G ) = H ( K " G ). In

this case ( 7.5 ) becomes
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CHAPTER III

COSTACKS

8 . Subcategory of costacks.,

Recall that a precostack of modules over K, A ENK, is charac-

terized by :

( 1 ) For each x E K, A ( x ~ is a module, and

( 2 ) For each simplicial operator u ( u can be decomposed in a

unique way as a composite of face operators d’ and degeneracy operators

s~ ) , A ( ux ~ . A ( x ) -~ A ( ux ~ is a homomorphism of modules.

It is realized as a simplicial set over K . If for each degeneracy s of K

the homomorphism A ( sx ) : A ( x ) -~ A ( sx ~ is an isomorphism, then A is

a costack (of modules over K ) . By the definition of K,

we have for an d .

Thus we have :

P R O P OS IT IO N 8. 1. A precostack A is a costack if and only i j A ( dsx )
is an isomorphism for all x E K .

Examples 1.2 and 1.3 of Section 1 are two examples of costacks.

Costacks over K form a subcategory (f~ of ? .The following
properties of (1~ are easy to check :

( C1 ) (f~ is a faithful, exact subcategory of ? ;

( C2 ) it is closed under the formation of subobjects, quotient ob-

jects, and extensions, i. e. it is a Serre subcategory of mK;

( C3 ) it is closed under the formation of products and coproducts.
Therefore, by a theorem of Freyd [ 5 ] ,

(C4) (1~ is reflective and coreflective in ? (c.f. section 0 ) .

Let R : ~K -~ (1~ be the coreflector; R is the left adjoint functor

of the inclusion functor] : Q~ -~ ~I(K ; the coreflection RA of A ÈmK is

called the associated costack of A . (Strictly speaking, a coreflection is
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a pair ( RA , f~A ) , where e A : A -~ RA is the canonical map displayed in

( 0.2 ) ) . For example, let A be a simplicial module, A E ~C ~~ ; the asso-
ciated costack of A is the constant simplicial module with Ho ( A ) in

each dimension. Indeed,

is the simplicial homomorphism

with 6 - cokernel of

and etc... o

(that 8, a. , ~ ,... are compatible with degeneracy operators is obvious) .

By property C1 , the inclusion functor J is exact, therefore RA is projec-
tive in (î~ if A is projective in )RK (see lemma 0.3).

CONSTRUCTION OF REFLECTIONS. For A in mK, let R’A be the

costack defined as follows : ( R’A ) ( x ) = A ( x ) for a nondegenerate sim-

plex x E K and ( R’A ) ( sx ) = A ( x ) for any degeneracy operator s and

any x 6 K . Then R’A is the reflection of A in 8~. Indeed, the canonical
map

is the natural transformation such that Px = 1 : A ( x) if x is nondegene-

rate, and P,x = A ( sx ) : A ( x ) -~ A ( sx ) ; pdx is determined by the com -

patibility of a simplicial map with s and d. That ~oA is well-defined fol-

lows from an easy but rather tedious computation which we shall not

present here. Also, we omit the tedious proof that the R’A so defined is

actually the reflection ,of A . By recognizing all these, it is fairly easy to

see that PA is a monomorphism and that the reflector R’ is an exact

functor,

Since R’ is the right adjoint functor of j and since both R’ and
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j are exact, R’ preserves injectives and J preserves projectives by
Lemma ~.3 .

We conclude this section with a theorem that summarizes some

results scattered over the previous sections.

T H E O R E M 8. 2. Let f : K -~ L be a simplicial map. There is a diagram D

(diagram D )

in which

( 1 ) All functors but R and R f # are exact, R and R f # are right
exact;

(?) f#, R and Rf 11 are the left adjoint functors of f~, J, &#x3E; and

f1l /aX respectively.
( 3 ) f #, R , R f #, and j preserve projectives.

N O T E . f 11 takes costacks to costacks but f # usually not.

9. Costack homology.

Let A be a costack of A -modules over K , A E d § . The homology
of K with coefficients in A is defined to be

as in the beginning of the section 4 and is denoted simply by H( K; A )
or H ( A ) . ~ y regarding A as a precostack, we proved in theorem 4. 2 that

H ( K ; A ) is isomorphic to ( ~ Ho ) ( A ) on m K. We shall show that this
can also be done in (t~ and that in computing H ( K ; A ) by resolutions

there is no difference in doing it in ? or in Q~ .
THEOREM 9. 1. L et NK be the set o f non degenerate simplexes o f K , let
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and

Then U is a projective generator o f (1~. I and there fore (f~ has enough
projectives and injectives (by Lemma 0.2 ) .

P R O O F . U’ being a coproduct of proj ectives is itself a proj ective, there-

fore, by part ( 3 ) of Theorem ~3.2. , U = R U’ is proj ective. Compute Q~ (U, A) ,
A ~8~; since R is the left adjoint of J , I we have

By ( 3.2 ) the last term of ( 9.2 ) is isomorphic to l~x E NK A ( x ) . Thus

and is nontrivial if A 4 0 . This shows that U is a generator and the

theorem is proved.

Thus, let P* be a projective resolution of A in (JK, then since J
is exact and preserves projectives, P * is a projective resolution of A in

K and H( K; A ) is naturally isomorphic to ( ~ Ho ) ( A ) where o is either
the cosection functor on (f~ or the cosection functor on ?.

We shall now consider the relative homology of a pair of simplicial
sets with coefficients in a costack. Let ( K, K’) be a simplicial pair; K’

is a simplicial subset of K. Then the inclusion map i : K’ 4 K induces

the functors ill and z on precostacks. For A’ in NK" , i #A’ is a functor

(a precostack) on K to t with « supports in K’ , i. e.

for

for

This shows that if A’ is a costack, so is i #A’ . Thus we have a pair of

adjoint functors i # .... i 11: «(t~’ , (1~ ). It is clear that i # is an exact full

embedding of categories; we shall identify A’ with i #A’ and regard (t~’
as a subcategory of Q~ .

Let (K, K’) be a simplicial pair; for A in (t~, let qA be the

quotient

then qA has supports in K - K’ . Any costack over K having supports in
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K - K’ is of the form qA for some A E (1* and is called a relative co-

stack over K (relative to K’ ) . All qA over K form a subcategory q(1*
of (1~. Relative precostacks and qNK are defined in the same way.

For a simplicial pair ( K , K’ ) and a costack A E (1*, the relative

homology of ( K, K’ ) with coefficients in A is defined to be the homology
of qA and is written H ( K , K’ ; A ) = H ( qA ) . Thus H ( K , K’ ; A ) can be

computed by resolutions either in mK or in (1* as ( ~ Ho ) ( qA ) . In parti-
cular, if K’ is empty, one identifies ( K, K’ ) with K and obtains the

(absolute) homology H ( K ; A ) .
Let f : ( K, K’ ) ~ ( L , L’ ) be a simplicial map of simplicial pairs;

let B be a costack over L . Since f # maps costacks onto costacks, the
homomorphism f* of ( 4.3 ) induces a homomorphism

If g = ( M , M’ ) -~ ( K , K’ ) is another simplicial map, one has

It is proved in [ 2 J that this H is a unique homology theory on the category
of simplicial pairs in the sense of Eilenberg and Steenrod (actually the

uniqueness theorem in [ 2 ] is more general than thi s) .

For computing H ( qA ), we prefer to do it in ~K . Define H (K , K’; A)
for A E mK and extend the homology theory of previous chapters to the

relative case. The details will be left to the reader.

In particular, if K is finite ( K has a finite number of non degene-
rate simplexes) and A = Z is the ring of integers, the homology of a

costack can be computed by torsion groups of modules (see [ 2 J ) .
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