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SEMIALGEBRAIC AND SEMÏANALYTIC SETS 

Jésus M. Ruiz 
Univers!tad Complutense, Madrid 

In this talk I shall discuss the notion and some basic features of 
semialgebraic and semianalytic sets, which are one main concern of Real 
Geometry. 

L Algebraic Geometry and Systems of polyooimàl équations. 

As is well known, Algebraic Geometry studies polynomial équations or, 
more geometrically, the sets defined by Systems of the type 

f/i(*p..->*n) = 0 

where the fis are polynomials. The classicaî ground field for this study is the 

filed C of complex numbers (or, in gênerai, an algehraically closed field). The 

reason for this choice was that in C "ail équations hâve enough solutions", 

while in the field 1R of real nurobers one encouters many surprises. For 

instance, the polynomial 

fit) = te-- Set41 + î U2t2 - 6e3 

has six complex roots ±Ve, ± \ 2 F , ±4Se for any £ (a uniform behaviour) but none 

of them is real for négative £\ Another example : the équation 

uV-2) 2 + JCV = 0 

represents nothing over the reaîs (check it !), but many points over the 
complex, e.g. 

l±i 
U,y) = (A.-rg") for X * 0 . 

Nonetheless, it is apparent the interest of understanding the qualities of 

real solutions, merely their existence. în the end, most problems arising in 

nature involve real parameters, i.e iead to Systems with real coefficients, and 
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ask for real solutions. It is at least remarkable that Real Algebraic Geometry 
became a spécifie research field only after 1970(1), but we shall not analyse the 
history of that delay hère. 

2. Classdcal Algebraic Geometry and Real Algebraic Geometry. 
Hence, we bave two différent settings for polynomial Systems : 

algehraically closed fields (think of C) «-> 

<~» Classical Algebraic Geometry 

and 
real closed fields (think of 1R) <-* 
f-> Real Algebraic Geometry . 

Of course this scheme is highly simplifying : as H. Whitney put it once, the 
complex case "is a prerequisite for a full study of the real case" ! 

However, at the basis of the theory, real objects need a spécifie treatment 
as they présent difficultés that make no sensé in the complex case. For 
instance, any équation 

f(xv...9xn) = Q 

defines in complex affine n-espace a set of the maximal predictable dimension 
/ i - l , while in real affine n-espace it may be even empty (remember the example 
(x2y-2)2 + x4y2 = 0). Hence, since we are to discuss very basic facts, we separate 
the real case from the complex. 

3- Real Algebraic Geometry and Systems of inéquations 
We hâve seen that some équations do not hâve real solutions. This is a 

conséquence of the order structure of the real line, Because of this order, a 
square is never négative, and a sum of squares vanishes only when ail squares 
vanish, Consequently, the typical System 

/ , =0 , . . . , / 4 = 0 

can be substituted by a single équation 

/Î+...+/? = o, 
and an équation like 

/Î+...+ / Î + 1 - 0 

* Once Dubois and Risîer rediscovered the Renl Nuîlstel!ensatz proved by Krivine in 1964, 



61 

has no solution. This leads to include sign conditions in the Systems under 
considération : 

< 

f/i(*i *„)=o 
/A(^!,...,«n) = 0 

gi(*i xn)>0 

g{xlt...,xn)>0 

hl(xv...,xn)^0 

lhp{xv...,xn)>0 

There are géométrie opérations behind this. For instance, let us project 

the sphère S : x2+y2+z2 = 1 from the exterior point P = (0,0,2) into the plane 

n : z = 2. 

/ 

Then the image of the projection is the disk D = {xP+y2 <,2). Of course, allowing 
complex points would produce additional points, even additonal real points : 

¢ = ( 0 , 1 - ^ , 1 + ^ - ) e S 

ç»(Q) = (0,4) € D. 
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4. Semialgebraic sets. 

After thèse remarks and examples we are ready for a 

Définition. A semialgebraic set is a subset S ofthe affine space lRn oftke forrn : 

S = U {x e WLn : gu(x) > 0,.,., gir(x) > 0, ftx) - 0} =*Jiga>09...,gir>Q,fi = Q)t 
\~-~i i—x 

where the g{ ,fts are polynornials. In other words, S is defined by finitely many 

Systems of équations and/or inéquations of polynomials. 

Note hère that : 

1) Starting from pièces {/> 0} and making boolean opérations, we obtain 
exactly ail the semialgebraic sets. For instance : 

R" \ t/>0} - {/<0} = {/<0} u (/=01 - {~/>0} u {/-0} 

2) Using tricks licke : 
^ = 0,...,/, = 0 <=>/ï+.„+/J=ot 

/ = 0 <=> ~ / 2 > 0 
a given S can be described by différent Systems. 

Thus we corne to the core of the matter : the relationship between a 
semialgebraic set S and its varions defining Systems. In order to make this 
more explicit, let me state two qui te natural questions : 

a) Which opérations préserve the semialgebraic nature of S ? 
b) Which are the cheapest defining Systems of S ? 

5. Topological opérations. 
To explain question a) consider the curve C : y2+x2-xB = 0 

file:///~-~i
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It consists of a smooth brach C" plus an isolated point at the origin. Each of 
thèse two components is semialgebraic, but to define them we need an extra 
équation. For instance, 

C':y2+x2-x3 = 0, x>£. 

Now take S : y2+x2~xz < 0 

/m 
j » _ 

In this case, the lirait point of S are those in the branch C\ and not the origin. 

Hence, the closure S of S is not obtained by relaxing inequalities, and we need 

again the extra équation x > ̂  . Note hère that also X>K does the job, but we 

prefer the non strict inéquation because it reflects closedness. 

Thus, thèse natural topological opérations furnish new semialgebraic 
sets, but we hâve to fînd additional équations to show it. Furthermore, we 
succeeded by looking at the pictures, which cannot be done in gênerai. 



€4 

6. The number of inéquations neededL 
For question b) conceming the change of the defining System let us 

consider planar polygons like 

u L 

S : /j £ 0, /2 > 0, /3 > 0, l4 > 0 

4 
This semialgebraic set can be defined in a more economical way. 

l s t step : 1^2^4 ^ 0 (chessboard coîoring) 

23t step : l{l2l$U > 0, / £ 0 (drawing a 

circuraference to get rid of the extra 
pièces) 

Thus we need only two inéquations instead of four (but notice that the 
degrees increase : the l\ s are lines, so degree 1, while Z r . i 4 has degree 4 a n d / 

degree 2). 
In gênerai, an n-gnon will be : 

S:lxl2...ln>09 / > 0 

Hence, despite the number of edges, we are done with two équations. 
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7. The number of Systems needed 
Let us turn to a more elaborated situation. Look at the following pictures, 

focusing the attention around the origin : 

*• vft-tft/*' 

S 1 :11I2I3I4 ^ OJ S 2 : 

/ \ \ 

rWs^sso 

[z 5*o 
S3 : {1^2 > 0 or 

r / 3 / 4âO 

!z5^o 

Thèse semialgebraic sets are examples and counterexamples of two 
impotant notions : 

Sx is principal, i.e. can be defîned with one single inequality, 
52 is not principal, but it is basic, i.e. can be defîned with one single 

System, 
53 is not basic. 

To understand why S2 is not principal, note that in case S2 = {/> 0}, then 
/ would change sign in passing the boundary of S2 and so it would vanish on 
the upper half of the line lv But then it would vanish on the lower half too, and 
this lower half would be contained in S2. 

More difficult is to explain why Ss is not basic. But imagine it were : 
S3 = [gx > 0,..., gr > 0} . Then some gt would be négative on the left half of/3Z4 and 
positive on S3 . Thus the curve gi = 0 would converge to the origine with slopes 
like Z5 or Z6 in the picture. Then the sign changing along those slopes would 
necessarily exclude some of the halves of lxl2, which is not possible. 

A complète analysis of this example would show that the basic sets of 
this form are either a union of separated halves or a union of full sectors. 

a separate half a full sector 

Furthermore, two équations suffice in that case. 
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& Isit possible togetridof a corner? 

Thèse pictures tell us that there is something spécial about corners, and 
I cannot help posing a curious open problem : is there any polynomial 
mapping 

R2 > R 2 . ̂ y),—> (P(x,y),Q(xty)l P, Q polynomials 

whose image is exactly the open quadrant 

x>0, >*>0 

Remark : The image of : (x,y) •—> (x2ytx
2yA) is "almost" a solution, as it maps 

R2 onto the open quadrant plus the corner ! 

I 
i 

9c Lojasdewicz's and Brocker*s theorems. 

The previous examples are ail very well, but as far, I hâve not stated any 
theorem, something improper for a mathematician. Hence, to respect 
tradition, I shall formulate two that give answers to our initial questions a) 
and b). 

Theorem 1 (S. Lojasiewicz), Let S semialgebraic. Then 
(1) S has finitely many connected components, which are ail 

semialgebraic. 
(2) The closure ofS is semialgebraic, and it can be described using only 

non strict inequalities. 
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Note that the finiteness in (1) fails if we do not restrict to polynomials. 
Consider for instance the set 

r = {y - cosjt; < 0 j ï 0 | c R 2 . 

Also, the use of > usually requires additional équations as in the example 

yfi+xP-x3 considered before. 

The second important resuit is 

Theorem 2 (L. B rocker, C. Scheiderer), Let S be semialgebraic ofthe form 
[fx > 0,..., / , > 0} ) (resp. [fx > 0,..., f8 > 0}). 

Then, after replacing the polynomial /• by suitable new ones, we hâve 

s< n (resp. s ^ K fl(fi+l)) * 

In other words, no matter how many inéquations there are in the 
defining System at the begining, we can find another System with no more 

1 
than n (resp. Ô n(n+D) inéquations ! 

10. The variety of methods involvedL 

The methods used in the proofs of the previous results are very différent, 
running from Quadratic Forms to Model Theory or from Commutative 
Algebra to Valuation Theory. And this does not mean that there are différent 
proofs using différent tools, but that any proof needs ail of the tools. This 
interdisciplinary nature is one appealing characteristic of Real Algebraic 
Geometry and has the good conséquence that very often the ideas developed in a 
concrète context are useful in others. This is indeed the case with our 
problems, which can be posed and attacked also in the analytic case. 



11. From Real Algebraic to Real Analytic Geometry. 

Like Real Algebraic Geometry, Real Analytic Geometry deals with 
Systems of équations and inéquations. The différence cornes from the use of 
analytic functions (like sin, cos, exp, etc.) instead of polynomial s. An analytic 
fiinction / is characterized by the fact that close enough to any fixed point x, f 
can be substituted by its Taylor expansion Tx / In some sensé, / can be 
replaced by the family {Txf\x of ail its Taylor expansions at the points where / 
is defîned. Thus our viewpoint splits into a local view (fix x and take Txf) and a 
global one (take the whole family [Txj)x). 

With this idea in mind one can imagine the framework for real geometry 

as follows 

Algebraic Geometry <-* polynomials 
l81 J \ completion 

Local Analytic Geometry <-> power séries 
2nd / \ Taylor expansion 

Global Analytic Geometry <~> analytic functions 

Then an often walked path from the algebraic context to the analytic is 

l s t : Mimic for power séries the arguments that work for polynomials, 

Usually they go by induction on the number n of variables and Weierstrass' 

theorems ease the translation. It is remarkable that sometimes things become 

easier for power séries (according to S. Abhyankar this is by no means 

surprising, because writting a polynomial 

d 
ÛQ •+ axx +...4- a^x 

takes more time than writting a séries 

a0+axx+...). 

This way one obtains information locally around every fixed point. 

2 n d : Take as local data what has been found for power séries and try to 

glue them together. This is by far the hard part of the whole affair. 
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12. Semianalytic sets. 

The scheme proposed above works well for the problems I am discussing 
hère and produces the arfalytic counterparts of Theorems. 1 and 2. To state 
them, let us fix a compact real analytic manifoïd M of dimension n (i.e. a 
compact space which is locally anaîytically diffeoraorphic to R n , think of a 
sphère, a torus, a projective space), Then 

Définition. A semianalytic set is a subset S ofMofthe form 

S = U {*€M:ft^*)>0,...,tffr(*)>0^ 
i=l i— 1 

where the gij,fi s are analytic functions M » R. 

With this notion, patterned upon the semialgebraic one, the following 

holds true : 

Theorem 1 (analytic). Let S c M be semianalytic. Then : 

(1) S has finitely many connected components, which are ail 

semianalytic. 

(2) The closure ofS is semianalytic, and it can be described using only 

non strict inequalities. 

Theorem 2 (analytic). Let S a M be semianalytic ofthe form 

{/x > 0,. . . , / , > 0} (resp. [fx £ 0,. . . , / , > 0}). 

Then after replacing the analytic functions f. by suitable new ones, we hâve : 

s<n(resp. s<^ n(n+D). 

In thèse results we assume M to be compact, This excludes the example 
fy-coss < 0, y > 0} and implies finiteness in (1). This compactness assumption 
is used only at the very end of the giobalization process and it can be somewhat 
weakened. However, the answers to questions a) and b) in full generality for a 
non-compact analytic manifoïd like IR" remain today a mos interesting open 
problem. 
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Finally, there is an abstract theory of real constructible sets that generalizes 
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subject of the forthcoming book. 
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