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Abstract. A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equa-
tion. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The
convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak
second-order sufficient optimality condition and the theory of Newton methods for generalized equa-
tions in Banach spaces. For the numerical realization a primal-dual active set strategy is applied.
Numerical examples are included.
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1. Introduction

This paper is concerned with the numerical analysis of a sequential quadratic programming (SQP) method
for optimal control problems governed by the Burgers equation, which is a one-dimensional simple model
for convection-diffusion phenomena, such as shock waves, supersonic flow about airfoils, traffic flow, acoustic
transmission, etc. Distributed controls are considered, and terminal and distributed observation is included in
the objective functional. We extend the analysis done in [21] to bilaterally control constraints. Convergence and
rate of convergence results are proved. Let us refer to [20], where the convergence of the augmented Lagrange-
SQP method was shown for the optimal control of the stationary Burgers equation with unrestricted controls.
Including first-order sufficient optimality conditions in the considerations, we are able to essentially weaken the
second-order sufficient optimality conditions needed to prove the convergence of the method. These sufficient
conditions tighten up the gap to the associated necessary ones. We refer to [17,18], where convergence results
for a SQP method were proved for optimal control problems governed by semilinear equations.

SQP methods for the optimal control of partial differential equations have been the subject of many papers.
We refer, for instance, to [8, 22] for the optimal control of a phase field model, to [11] for a class of semilinear
elliptic optimal control problems and to [10] for time-dependent fluid flow.

Following recent developments for ordinary differential equations, we adopt here the relation between the
SQP method and a generalized Newton method. This approach makes the whole theory more transparent. We
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are able to apply known results on the convergence of generalized Newton methods in Banach spaces assuming
the so-called strong regularity at the optimal reference point. In this way the convergence analysis is shorter,
and we are able to concentrate on specific questions arising from the Burgers equation.

Once the convergence of the Newton method is shown, we have to verify the strong regularity by sufficient
conditions and to show that the Newton steps can be performed by solving linear-quadratic control problems.
This interplay between the Newton method and the SQP method is a specific feature, which cannot be derived
from general results in Banach spaces, since we have to discuss pointwise relations.

To compute each SQP step we have to solve a linear-quadratic optimal control problem. This is done by a
primal-dual active set algorithm, which is based on a generalized Moreau–Yosida approximation of the indicator
function of the admissible controls. The method was developed due to [3] and was extended in [9]. Let us also
mention [12], where the primal-dual active set algorithm was applied to parabolic optimal control problems.

Optimal control problems for the Burgers equations are important models for the analysis and the develop-
ment of numerical algorithms. These investigations can be useful to deal with more complicated problems such
as optimal control of the Navier–Stokes equations.

The paper is organized in the following manner. In Section 2 we introduce the optimal control problem for
the Burgers equation and the corresponding SQP method. The generalized Newton method is established in
Section 3. The strong stability of the generalized equation is proved in Section 4, while Section 5 is devoted to
perform the Newton steps by SQP steps. The primal-dual active set strategy is introduced in Section 6, and
numerical examples are presented in the last section.

2. Optimal control problem and sqp method

Define Ω = (0, 1) ⊂ R and, for given T > 0, Q = (0, T ) × Ω and Σ = (0, T ) × ∂Ω. We set V = H1
0 (Ω),

H = L2(Ω) and identify the Hilbert space H with its dual H ′. On H we use the common natural inner product
(· , ·)H , and endow the Hilbert space V with the inner product

(ϕ,ψ)V = (ϕ′, ψ′)H for ϕ,ψ ∈ V.

Recall that V is continuously embedded into C(Ω), see [1] for instance. Moreover, by L2(0, T ;V ) we denote the
space of (equivalence classes) of measurable abstract functions ϕ: [0, T ]→ V , which are square integrable, i.e.,∫ T

0

‖ϕ(t)‖2V dt <∞.

When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered as a function in Ω only.
In this work we make use of the Hilbert spaces

W (0, T ) = {ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)}

and

W(0, T ) = {ϕ ∈ L2(0, T ;H2(Ω) ∩ V ) : ϕt ∈ L2(0, T ;H)}

supplied with their common inner products, see [4], for instance. Notice that L2(0, T ;H) ∼ L2(Q).
The admissible set Uad ⊂ L∞(Q) for the controls is given by

Uad = {u ∈ L2(Q) : ua(t, x) ≤ u(t, x) ≤ ub(t, x) a.e. in Q},

where ua and ub are given functions of L∞(Q) satisfying ua ≤ ub a.e. in Q.
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Let f ∈ L2(Q) be a fixed forcing term and y0 ∈ V be a given initial condition. For controls u ∈ L2(Q) the
state y is defined by the weak solution of the Burgers equation

yt − νyxx + yyx = f + b u in Q, (2.1a)
y = 0 on Σ, (2.1b)

y(0) = y0 in Ω. (2.1c)

Here, ν > 0 denotes a viscosity parameter, and b ∈ L∞(Q) is a given function expressing location and intensity
of the control input. For instance, b = χQ◦ might be chosen, where Q◦ ⊂ Q is the set of control activity.

Definition 2.1. A function y is called a weak solution to (2.1) if y ∈W (0, T ) and

〈yt(t), ϕ〉V ′,V + ν (y(t), ϕ)V + (y(t)yx(t), ϕ)H = ((f + bu)(t), ϕ)H for all ϕ ∈ V and a.e. t ∈ [0, T ] (2.2a)

and

(y(0), χ)H = (y0, χ)H for all χ ∈ H. (2.2b)

Notice that Ω ⊂ R ensures V to be continuously embedded into C(Ω), therefore y(t)yx(t) ∈ H a.e. on [0, T ].
Moreover, W (0, T ) is continuously embedded into C([0, T ],H), hence the initial value y(0) in (2.2b) is a well
defined element of H. The next theorem ensures the existence of a unique weak solution to the Burgers equation
which is even more regular. The proof follows along the lines of that for the unsteady Navier–Stokes equations,
see [15] for instance. The a priori estimate (2.3) is proved in the appendix.

Theorem 2.2. For all u, f ∈ L2(Q) and all y0 ∈ H there exists a unique weak solution y ∈ W (0, T ) to (2.2)
satisfying

‖y‖W (0,T ) ≤ C
(

1 + ‖bu‖2L2(Q)

)
(2.3)

with a constant C > 0 only depending on y0, b, f and ν. Moreover, if y0 ∈ V , then y ∈ W(0, T ) holds.

Remark 2.3.
a) Since W(0, T ) is continuously embedded into the space of all continuous functions from [0, T ] into V ,

denoted by C([0, T ];V ), see [4] for example, we conclude from Theorem 2.2 that y ∈ C(Q) holds for
y0 ∈ V .

b) Since b ∈ L∞(Q) holds, we obtain from (2.3)

‖y‖W (0,T ) ≤ Ĉ
(

1 + ‖u‖2L2(Q)

)
,

where Ĉ = max(1, ‖b‖L∞(Q))C.

Throughout the Sections 2–6 we assume that y0 ∈ V . From Remark 2.3-a) and the estimate (B.9), which is
proved in the Appendix, we directly infer the next corollary.

Corollary 2.4. With u, f ∈ L2(Q) and y0 ∈ V holding the unique solution to (2.2) belongs to C(Q) and
satisfies the estimate

‖y‖W(0,T ) + ‖y‖C(Q) ≤ C
(
‖f‖2L2(Q) + ‖y0‖2V + ‖bu‖2L2(Q)

)
for a constant C > 0.
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Now we proceed by introducing the cost functional

J(y, u) =
1
2

∫
Q

αQ|y − zQ|2 + βQ|u|2 dxdt+
1
2

∫
Ω

αΩ|y(T )− zΩ|2 dx,

where zQ ∈ L2(Q) and zΩ ∈ V are given desired states, and αQ, βQ ∈ L∞(Q), αΩ ∈W 1,∞(Ω) are non-negative
weights such that βQ ≥ β a.e. in Q for a constant β > 0. We also assume b 6= 0 on a subset Q◦ ⊆ Q with
non-zero measure. The control problem can be written as

minJ(y, u) s.t. (y, u) solves (2.2) and u ∈ Uad. (P)

We refer the reader to [21] where (P) was considered with Uad = L2(Q). The next theorem guarantees the
existence of a solution to (P).

Theorem 2.5. Problem (P) has at least one (globally) optimal solution (y∗, u∗).

Proof. Let (y, u) ∈W (0, T )×Uad satisfy (2.2). Then we infer from (2.3) that y is bounded in W (0, T ). Hence,
there exists a ζ ≥ 0 with

ζ = inf {J(y, u) : (y, u) ∈W (0, T )× Uad solves (2.2)} ·

This implies the existence of a minimizing sequence {(yn, un)}n∈N in W (0, T )×Uad such that ζ = limn→∞ J(yn,
un) and (yn, un) satisfies (2.2) for all n ∈ N. Since Uad is bounded, we infer that there exists u∗ ∈ L2(Q) and
a subsequence {unk}k∈N in L2(Q) with unk ⇀ u∗ as k tends to infinity. Moreover, we find from (2.3) that
ynk ⇀ y∗ ∈ W (0, T ), possibly after selecting a subsequence again. It was proved in [21] that the pair (y∗, u∗)
satisfies (2.2). Moreover, the functional J weakly lower semicontinuous with respect to (y, u). This yields
J(y∗, u∗) = ζ. Since Uad is closed and convex in L2(Q), we get u∗ ∈ Uad. Hence, u∗ is optimal.

Remark 2.6. From y0 ∈ V and Corollary 2.4 we infer that y∗ belongs to W(0, T ).

Throughout the paper we make often use of the next proposition, which is proved in the Appendix.

Proposition 2.7. Let a1, a2 ∈ C([0, T ];H), v0 ∈ H, and g ∈ L2(Q). Then

vt − νvxx + a1v + a2vx = g in Q,

v = 0 on Σ,

v(0) = v0 in Ω

(2.4)

has a unique solution y ∈W (0, T ) satisfying

‖v‖W (0,T ) ≤ C
(
‖v0‖H + ‖g‖L2(Q)

)
.

If, in addition, v0 ∈ V holds, it follows that y ∈ W(0, T ), and the estimate

‖v‖W(0,T ) ≤ C
(
‖v0‖V + ‖g‖L2(Q)

)
holds.

Due to an embedding argument, see Remark 2.3-a), we directly derive the following corollary.

Corollary 2.8. With the hypotheses of Proposition 2.7, the solution to (2.4) satisfies

‖v‖C(Q) ≤ C
(
‖v0‖V + ‖g‖L2(Q)

)
for a constant C > 0.
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Problem (P) is a non-convex programming problem so that different local minima might occur. Numerical
methods will deliver a local minimum close to their starting point. Therefore, we do not restrict our investiga-
tions to global solutions of (P). We will assume that a fixed reference solution (y∗, u∗) is given satisfying certain
first- and second-order optimality conditions (ensuring local optimality of the solution).

The Lagrange functional L : W (0, T )× L2(Q)×W (0, T )→ R associated with (P) is defined by

L(y, u, λ) = J(y, u)−
∫ T

0

〈yt(t), λ(t)〉V ′,V + ν (y(t), λ(t))V + (y(t)yx(t), λ(t))H dt

+
∫ T

0

((f + bu)(t), λ(t))H dt.

For each fixed λ ∈W (0, T ), the Lagrangian is twice continuously Fréchet-differentiable with respect to (y, u) ∈
W (0, T ) × L2(Q) and its second derivative is Lipschitz continuous. Notice that, for fixed t, y(t) ∈ V ⊂ C(Ω)
and y(t)yx(t) ∈ H, hence the inner product (y(t)yx(t), λ(t))H is defined almost everywhere in [0, T ]. Moreover,
it is integrable on [0, T ], since y ∈ L2(0, T ;V ), yx ∈ L2(Q), and λ ∈ C([0, T ],H).

Now we present the first-order necessary optimality conditions for a local solution (y∗, u∗) of (P). The pair
(y∗, u∗) has to satisfy together with an adjoint variable λ∗ ∈ W (0, T ) the state system (2.1), the constraints
u∗ ∈ Uad, the adjoint system

−λ∗t − νλ∗xx − y∗λ∗x = αQ (y∗ − zQ) in Q,
λ∗ = 0 on Σ,

λ∗(T ) = αΩ (y∗(T )− zΩ) in Ω
(2.5)

and the variational inequality ∫
Q

(
βQu

∗ + bλ∗
)
(u− u∗) dxdt ≥ 0 for all u ∈ Uad. (2.6)

In the following we shall denote by (OS) the first-order necessary optimality system.

Remark 2.9. Recall that (2.6) is equivalent with

u∗(t, x) = P[u(t,x),u(t,x)]

(
−b(t, x)
βQ(t, x)

λ∗(t, x)
)
,

where P[γ,δ] : R→ [γ, δ] denotes the projection onto the interval [γ, δ].

Proposition 2.10. There exists a unique Lagrange multiplier λ∗ associated with the optimal pair (y∗, u∗).
Moreover, λ∗ ∈ W(0, T ) holds and

‖λ∗‖L2(0,T ;V ) ≤ C
(
‖αΩ(y∗(T )− zΩ)‖H + ‖αQ(y∗ − zQ)‖L2(Q)

)
, (2.7)

where the constant C > 0 depends on ν, T and y∗.

Proof. Let τ = T − t and λ̃∗(τ) = λ∗(t) for τ ∈ [0, T ]. Then problem (2.5) can be transformed into the forward
differential equation

λ̃∗τ − νλ̃∗xx − y∗(T − τ)λ̃∗x = αQ(T − τ) (y∗(T − τ) − zQ(T − τ)) in Q (2.8)

with the initial condition

λ̃∗(0) = αΩ(y∗(T )− zΩ) in Ω.
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Since αΩ ∈ W 1,∞(Ω), zΩ ∈ V by assumption and y∗(T ) ∈ V by Theorem 2.2, we infer that αΩ(y∗(T ) − zΩ)
∈ V . Hence, the existence of a unique Lagrange multiplier λ∗ ∈ W(0, T ) satisfying (2.7) follows directly from
Proposition 2.7.

In the following we assume that a fixed reference pair (y∗, u∗) ∈ W(0, T )× Uad is given satisfying together
with λ∗ ∈ W(0, T ) the first-order necessary optimality conditions. To guarantee that (y∗, u∗) is a local solution
to (P) we have to assume some kind of second-order sufficient optimality condition. We shall investigate them
along with a first-order sufficient optimality condition. Analogously to [6], for arbitrary but fixed σ > 0, we
introduce the set

Qσ = {(t, x) ∈ Q : |βQ(t, x)u∗(t, x) + b(t, x)λ∗(t, x)| ≥ σ}·

Lemma 2.11. The control constraint is active on the set Qσ.

Proof. It is well known that the variational inequality (9) is equivalent with

(βQ(t, x)u∗(t, x) + b(t, x)λ∗(t, x))(u − u∗(t, x)) ≥ 0 a.e. on Q

for all real numbers u satisfying ua(t, x) ≤ u ≤ ub(t, x). From this we obtain

u∗(t, x) =
{
ua if (βQu∗ + bλ∗)(t, x) > 0,
ub if (βQu∗ + bλ∗)(t, x) < 0.

Remark 2.12. On Qσ the control constraints are strongly active enough. Here we do not need the coercivity
of L′′(y∗, u∗, λ∗), since the first-order sufficiency ensures local optimality.

The second Fréchet-derivative L′′ of the Lagrangian with respect to the variable x = (y, u) in directions
hi = (yi, ui) ∈W (0, T )× L2(Q), i = 1, 2, is given by

L′′(y, u, λ)(h1, h2) =
∫

Ω

αΩy1(T )y2(T ) dx+
∫
Q

αQy1y2 + βQu1u2 − λxy1y2 dxdt.

Notice that L′′(y, u, λ) is a continuous bilinear form. In fact, we estimate

|L′′(y, u, λ)(h1, h2)| ≤ ‖αΩ‖L∞(Ω)‖y1(T )‖H‖y2(T )‖H + ‖αQ‖L∞(Q)‖y1‖L2(Q)‖y2‖L2(Q)

+ ‖βQ‖L∞(Q)‖u1‖L2(Q)‖u2‖L2(Q) + ‖λ‖L2(0,T ;V )‖y1‖C([0,T ];H)‖y2‖L2(0,T ;L∞(Ω)).

Due to embedding arguments there exists a constant depending on αΩ, αQ and λ such that

|L′′(y, u, λ)(h1, h2)| ≤ C ‖h1‖W (0,T )×L2(Q)‖h2‖W (0,T )×L2(Q). (2.9)

The continuity of L′′ is essential to prove that second order conditions are sufficient for local optimality. The
space of the Lagrange multiplier λ must comply with this requirement. In our case, λ ∈ L2(0, T ;V ) is needed.
We have λ ∈W (0, T ) by the adjoint equation, hence λ is sufficiently regular. The decisive estimate is given in the
last line before (2.9). Later, in the generalized equation, we rely on the higher regularity λ ∈ W(0, T ). Although
a slightly weaker regularity would suffice to deal with this equation, we work in W(0, T ) for convenience.

We make use of the following second-order sufficient optimality condition.

Assumption 1. There are constants κ > 0 and σ > 0 such that

L′′(y∗, u∗, λ∗)((y, u), (y, u)) ≥ κ ‖u‖2L2(Q)
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for all (y, u) ∈W (0, T )× L2(Q), where u = 0 on Qσ, and y is the weak solution to the linearized equation

yt − νyxx + (y∗y)x = b u in Q,
y = 0 on Σ,

y(0) = 0 in Ω.
(2.10)

Remark 2.13.

a) Due to Proposition 2.7, Assumption 1 implies the existence of a constant κ̄ > 0 such that

L′′(y∗, u∗, λ∗)((y, u), (y, u)) ≥ κ̄
(
‖y‖2W (0,T ) + ‖u‖2L2(Q)

)
.

b) On Qσ the control is active. Thus, the coercivity of the operator L′′(y∗, u∗, λ∗) is only assumed on the set
Q\Qσ, which contains the inactive set and part of the active set, where the constraints are only “weakly”
active. For the latter ones, u ≥ 0 if ū = ua and u ≤ 0 if ū = ub might be required to weaken the second
order condition. However, we do not consider this issue here.

c) Proposition 2.14 below justifies Assumption 1.

Let us present a sufficient condition for Assumption 1.

Proposition 2.14. If λ∗x ≤ αQ a.e. in Q or if

‖αQ(y∗ − zQ)‖L2(Q) + ‖αΩ(y∗(T )− zΩ)‖H

is sufficiently small, then there is a constant κ > 0 such that

L′′(y∗, u∗, λ∗)((y, u), (y, u)) ≥ κ ‖u‖2L2(Q)

for all (y, u) ∈W (0, T )× L2(Q) such that y solves (2.10).

Remark 2.15. Notice that this holds independently of σ so that Assumption 1 is fulfilled for Qσ = ∅.

Proof of Proposition 2.14. In the proof we shall use a generic constant C > 0. Let (y, u) ∈ W (0, T ) × L2(Q)
and y solve (2.10). From Proposition 2.7 it follows that ‖y‖W (0,T ) ≤ C ‖u‖L2(Q). Thus,

L′′(y∗, u∗, λ∗)((y, u), (y, u)) ≥
∫
Q

(
αQ − λ∗x

)
y2 dxdt+

β

2
‖u‖2L2(Q) +

β

2C
‖y‖2W (0,T ).

If λ∗x ≤ αQ a.e. in Q, the claim follows directly with κ = β/2. On the other hand, applying Hölder’s inequality
and (2.7) we obtain∫

Q

λ∗xy
2 dxdt ≤ ‖λ∗‖L2(0,T ;V )‖y‖C([0,T ];H)‖y‖L2(0,T ;L∞(Ω))

≤ C
(
‖αΩ(y∗(T )− zΩ)‖H + ‖αQ(y∗ − zQ)‖L2(Q)

)
‖y‖2W (0,T ).

Now the claim follows if ‖αΩ(y∗(T )− zΩ)‖H + ‖αQ(y∗ − zQ)‖L2(Q) ≤ β/(2C).

To solve the optimal control problem (P) we apply the SQP method. Suppose that we have already computed
(yn, un, λn) for some n ≥ 0 with yn(0) = y0. Then the next iterate

(yn+1, un+1) = (yn, un) + (δy, δu)
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is obtained by the solution of the following linear-quadratic optimal control problem

min Jn(δy, δu) = J ′(yn, un)(δy, δu) + 1
2 L′′(yn, un, λn)((δy, δu), (δy, δu))

=
∫

Ω

αΩ(yn(T )− zΩ)δy(T ) dx+
∫
Q

αQ(yn − zQ)δy + βQu
nδu dxdt

+
1
2

∫
Ω

αΩδy(T )2 dx+
1
2

∫
Q

αQδy
2 + βQδu

2 − λnxδy2 dxdt

(2.11a)

subject to

δyt − νδyxx + (ynδy)x − b δu = −ynt + νynxx

−ynynx + f + bun in Q,

y = 0 on Σ,

δy(0) = 0 in Ω

(2.11b)

and to

un + δu ∈ Uad. (2.11c)

By (QPn) we shall denote the optimal control problem (2.11).
In this work we shall prove that, under natural sufficient conditions, the SQP method exhibits local quadratic

convergence for a slight modification of our problem, see Remark 5.5. To perform this analysis, we invoke the
concept of generalized equations. The known analysis of Newton’s method for generalized equations is an elegant
and useful tool to discuss the convergence of the SQP method with reasonable effort. Moreover, we shall report
on our numerical experience with the SQP method.

3. Generalized equation and Newton’s method

Now we proceed by transforming the optimality system (OS) into a generalized equation. For that purpose
we define the set-valued mapping N : L∞(Q)→ 2L

∞(Q) by

N(u) =

{
{ψ ∈ L∞(Q) : (ψ, ũ− u)L2(Q) ≤ 0 for all ũ ∈ Uad} if u ∈ Uad,

∅ otherwise.

Then, the variational inequality (2.6) can be equivalently expressed by

0 ∈ βQu+ bλ+N(u).

Remark 3.1. The normal cone to the set Uad ⊂ L2(Q), is defined by

NUad(u) = {ψ ∈ L2(Q)′ : 〈ψ, ũ− u〉L2(Q)′,L2(Q) for all ũ ∈ Uad}·

The set N(u) is the intersection of NUad(u) with L∞(Q) (after identification of L2(Q)′ with L2(Q)).

As in the SQP method, the initial condition y(0) = y0 is kept fixed in the Newton method. The set-valued
mapping u 7→ N(u) from L∞(Q) to 2L

∞(Q) has closed graph. Let us introduce the space

Y = L2(Q)× V × L2(Q)× V × L∞(Q)
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endowed with the norm

‖η‖Y = ‖eQ‖L2(Q) + ‖eΩ‖V + ‖γQ‖L2(Q) + ‖γΩ‖V + ‖γu‖L∞(Q)

for η = (eQ, eΩ, γQ, γΩ, γu). Since y(0) = y0 is kept fix in the Newton method, we will study permutations of
the form η = (eQ, 0, γQ, γΩ, γu). Let us define the Banach space X = W(0, T ) × L∞(Q) × W(0, T ) supplied
with the norm

‖(y, u, λ)‖X = ‖y‖W(0,T ) + ‖u‖L∞(Q) + ‖λ‖W(0,T ).

Now we introduce the set-valued mapping T : X → 2Y by

T (w) = ({0}, {0}, {0}, {0}, N(u)),

and the function F : X → Y by F = (F1, . . . , F5), where

F1(y, u, λ) = yt − νyxx + yyx − f − bu,
F2(y, u, λ) = y(0)− y0,

F3(y, u, λ) = −λt − νλxx − yxλ− αQ(y − zQ),
F4(y, u, λ) = λ(T )− αΩ(y(T )− zΩ),
F5(y, u, λ) = βQu+ bλ.

The optimality system is equivalent to the generalized equation

0 ∈ F (w) + T (w), (3.1)

where F is of class C1,1, and T has closed graph. Obviously, w∗ = (y∗, u∗, λ∗) is a solution to (3.1).
To perform the convergence analysis of the SQP method, we apply (theoretically) the generalized Newton

method. Suppose that wn, n ≥ 0, is already computed. The next iterate wn+1 is given by the solution to

0 ∈ F (wn) + F ′(wn)(w − wn) + T (w). (3.2)

In the following the set Br(v) denotes an open ball of radius r > 0 centered at the point v. To ensure the
convergence of the method we make use of the next definition introduced by Robinson in [14].

Definition 3.2. The generalized equation (3.1) is called strongly regular at w∗ if there exist r1 > 0, r2 > 0 and
CL > 0 such that for all perturbations η ∈ Br1(0Y ) the linearized equation

η ∈ F (w∗) + F ′(w∗)(w − w∗) + T (w) (3.3)

has a unique solution w = w(η) ∈ Br2(w∗) satisfying the Lipschitz–property

‖w(η1)− w(η2)‖X ≤ CL ‖η1 − η2‖Y for all η1, η2 ∈ Br1(0Y ).

The next theorem states sufficient conditions for the well-posedness of the generalized Newton method, and
gives a convergence result. For a proof we refer to [2] in the context of SQP methods and to [5] for generalized
equations.

Theorem 3.3. Assume that (3.1) is strongly regular at w∗. Then there are constants r > 0 and C > 0 such
that for all starting values w0 ∈ Br(w∗) the generalized Newton method generates a unique sequence {wn}n∈N,
which remains in Br(w∗) and satisfies the estimate

‖wn+1 − w∗‖X ≤ C ‖wn − w∗‖
2
X for n ≥ 0. (3.4)
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Remark 3.4. Estimate (3.4) expresses local quadratic convergence of the method.

4. Strong regularity

This section is devoted to prove that Assumption 1 implies strong regularity of (3.1) at w∗, if a slightly
restricted class of admissible controls is substituted for Uad (see the definition of Ûad below). Therefore, we
have to investigate the perturbed generalized equation (3.3). This equation can be interpreted as the optimality
system of a linear-quadratic control problem. In fact, equation (3.3) is nothing more than the first-order
optimality system for the following auxiliary linear-quadratic problem (QPη) associated with the perturbation
η = (eQ, eΩ, γQ, γΩ, γu) ∈ Y :

minJ(y, u; η) =
∫

Ω

(αΩ(y∗(T )− zΩ) + γΩ)y(T ) dx

+
∫
Q

(αQ(y∗ − zQ) + γQ)y + (βQu∗ + γu)u dxdt

+
1
2

∫
Ω

αΩ(y(T )− y∗(T ))2 dx

+
1
2

∫
Q

αQ(y − y∗)2 + βQ(u− u∗)2 − λ∗x(y − y∗)2 dxdt

subject to

yt − νyxx + (y∗y)x − y∗y∗x − f − bu = eQ in Q,

y = 0 on Σ,

y(0) = y0 + eΩ in Ω

(4.1)

and to

u ∈ Uad. (4.2)

Since the problem is possibly non-convex, we cannot prove strong regularity in Uad. Therefore, we replace (4.2) by

u ∈ Ûad = {v ∈ Uad : v = u∗ on Qσ}

and denote the associated linear-quadratic problem by (Q̂Pη).

Theorem 4.1. With Assumption 1 holding (Q̂Pη) has a unique solution (ȳ, ū) for every η ∈ Y .

Proof. Let us split y = ŷ + ye, where the variable part ŷ solves

ŷt − νŷxx + (y∗ŷ)x = bu in Q,

ŷ = 0 on Σ,

ŷ(0) = 0 in Ω

(4.3)

and the fixed part ye is the weak solution to

yet − νyexx + (y∗ye)x = eQ + f + y∗y∗x in Q,

ye = 0 on Σ,

ye(0) = eΩ in Ω.

(4.4)
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Notice that

L′′(y∗, u∗, λ∗)((y, u), (y, u)) = L′′(y∗, u∗, λ∗)((ŷ, u), (ŷ, u)) + 2L′′(y∗, u∗, λ∗)((ŷ, u), (ye, 0))
+L′′(y∗, u∗, λ∗)((ye, 0), (ye, 0)).

Due to Assumption 1 the first term on the right-hand side is coercive. Since the second term is linear in (ŷ, u)
and ye is fixed, the claim follows.

The Lagrange functional associated with (QPη) and (Q̂Pη) is given by

L(y, u, λ; η) = J(y, u; η)−
∫ T

0

〈yt(t), λ(t)〉V ′,V + ν (y(t), λ(t))V + ((y∗y)x(t), λ(t))H dt

+
∫ T

0

((y∗y∗x + f + bu+ eQ)(t), λ(t))H dt.

Due to the first-order necessary optimality conditions for (Q̂Pη), the adjoint state λ satisfies the initial boundary
value problem

−λt − νλxx − y∗λx = αQy + γQ in Q,

λ = 0 on Σ,

λ(T ) = αΩy(T ) + γΩ in Ω

(4.5)

in the weak sense.

Corollary 4.2. For all y ∈ C([0, T ];V ) and (γΩ, γQ) ∈ V × L2(Q) there exists a unique adjoint state λ ∈
W(0, T ) solving (4.5). Moreover, the following estimates hold

‖λ‖W (0,T ) ≤ C
(
‖y‖C([0,T ];H) + ‖γΩ‖H + ‖γQ‖L2(Q)

)
, (4.6)

‖λ‖W(0,T ) ≤ C
(
‖y‖C([0,T ];V ) + ‖γΩ‖V + ‖γQ‖L2(Q)

)
(4.7)

for a constant C > 0.

Proof. If we transform the time by τ = T − t, t ∈ [0, T ], the existence of a unique adjoint state as well as both
estimates follow from Proposition 2.7.

Let us further introduce the following norms in X and Y by

|w|X = ‖y‖W (0,T ) + ‖u‖L2(Q) + ‖λ‖W (0,T )

for w = (y, u, λ) ∈ X and

|η|Y = ‖eQ‖L2(Q) + ‖eΩ‖H + ‖γQ‖L2(Q) + ‖γΩ‖H + ‖γu‖L2(Q)

for η = (eQ, eΩ, γQ, γΩ, γu) ∈ Y , respectively. Notice the difference in the notation | · |X and ‖ · ‖X .

Theorem 4.3 (L2-stability). Suppose that Assumption 1 holds and that for arbitrary η1, η2 ∈ Y the pairs
(yi, ui), i = 1, 2, are the solutions to (Q̂Pη) with adjoints λi. Then there exists a constant C > 0 independent
on η1 and η2 such that

|(y1, u1, λ1)− (y2, u2, λ2)|X ≤ C |η1 − η2|Y .
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Proof. Due to the first-order necessary optimality conditions we have

L′(yη, uη, λη; η)(δy − yη, δu− uη, δλ− λη) ≥ 0 (4.8)

for all (δy, δu, δλ) ∈ W (0, T )× Uad ×W (0, T ). Let (yi, ui, λi), i = 1, 2, solve (Q̂Pη) for η1 and η2, respectively.
To shorten notation let us introduce

(yη, uη, λη) = (y2 − y1, u2 − u1, λ2 − λ1),

(eQ, eΩ, γQ, γΩ, γu) = (e1
Q − e2

Q, e
1
Ω − e2

Ω, γ
1
Q − γ2

Q, γ
1
Ω − γ2

Ω, γ
1
u − γ2

u).

Then we infer from (4.8) that

0 ≤ L′(y1, u1, λ1; η1)(y2 − y1, u2 − u1, λ2 − λ1)

+L′(y2, u2, λ2; η2)(y1 − y2, u1 − u2, λ1 − λ2)

= (γΩ, yη(T ))H + (γQ, yη)L2(Q) + (γu, uη)L2(Q)

−L′′(y∗, u∗, λ∗)((yη, uη), (yη, uη))

−
∫ T

0

〈yη(t), λη(t)〉V ′,V + ν (yη(t), λη(t))V dt

+
∫ T

0

((y∗yη)x(t), λη(t))H + ((buη + eQ)(t), λη(t))H dt

= (γΩ, yη(T ))H + (γQ, yη)L2(Q) + (γu, uη)L2(Q)

−L′′(y∗, u∗, λ∗)((yη, uη), (yη, uη)) +
∫ T

0

(eQ(t), λη(t))H dt.

(4.9)

Notice that yη is the weak solution of the following parabolic problem:

(yη)t − ν(yη)xx + (y∗yη)x = buη + eQ in Q,

yη = 0 on Σ,

yη(0) = eΩ in Ω.

To apply Assumption 1 we split yη = ŷ + ye, where ŷ solves (4.3) with u = uη, and ye is the weak solution to

yet − νyexx + (y∗ye)x = eQ in Q,

ye = 0 on Σ,

ye(0) = eΩ in Ω.

(4.10)

Applying Proposition 2.7 with a1 = y∗x and a2 = y∗ we derive from (4.3) and (4.10) the estimates

‖ŷ‖W (0,T ) ≤ C ‖uη‖L2(Q) and ‖ye‖W (0,T ) ≤ C
(
‖eΩ‖H + ‖eQ‖L2(Q)

)
. (4.11)

These bounds imply

‖yη‖W (0,T ) ≤ C
(
‖uη‖L2(Q) + ‖eΩ‖H + ‖eQ‖L2(Q)

)
. (4.12)

Since u1, u2 ∈ Ûad, we have uη = 0 on Qσ. By Assumption 1 we obtain

L′′(y∗, u∗, λ∗)((ŷ, uη), (ŷ, uη)) ≥ κ ‖uη‖2L2(Q).
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From this estimate and from (2.9) we arrive at

L′′(y∗, u∗, λ∗)((yη, uη), (yη, uη)) = L′′(y∗, u∗, λ∗)((ŷ, uη), (ŷ, uη)) + L′′(y∗, u∗, λ∗)((ye, 0), (ye, 0))

+2L′′(y∗, u∗, λ∗)((ŷ, uη), (ye, 0))

≥ κ ‖uη‖2L2(Q) − C ‖ye‖W (0,T )

(
‖ye‖W (0,T ) + ‖ŷ‖W (0,T ) + ‖uη‖L2(Q)

)
with a constant C > 0. Thus, it follows from (4.9) that

κ ‖uη‖2L2(Q) ≤ C
(
‖γΩ‖H + ‖γQ‖L2(Q) + ‖γu‖L2(Q)

)
‖yη‖W (0,T )

+‖eQ‖L2(Q)‖λη‖W (0,T )

+C ‖ye‖W (0,T )

(
‖ye‖W (0,T ) + ‖ŷ‖W (0,T ) + ‖uη‖L2(Q)

)
.

(4.13)

Using (4.6, 4.11, 4.12) and Young’s inequality we get

‖uη‖L2(Q) ≤ C |η1 − η2| (4.14)

for a constant C > 0. From (4.6, 4.12) and (4.14) the claim follows.

The L2-estimate of the previous theorem holds for perturbations in L2. If they belong to L∞, the result
can be improved. Let us use the notation introduced in the proof of Theorem 4.3. From Proposition 2.7 we
conclude that

‖yη‖W(0,T ) ≤ C
(
‖uη‖L2(Q) + ‖eΩ‖V + ‖eQ‖L2(Q)

)
≤ C ‖η1 − η2‖Y . (4.15)

Applying (4.7) and (4.15) we obtain

‖λη‖W(0,T ) ≤ C
(
‖η1 − η2‖Y + ‖γQ‖L2(Q) + ‖γΩ‖V

)
.

In Remark 2.9 we introduced the projection P . For a.e. (t, x) ∈ Q we obtain

|uη(t, x)| ≤ |b(t, x)|
β

(|λη(t, x)| + |γu(t, x)|) ,

which implies

‖uη‖L∞(Q) ≤ C
(
‖λη‖L∞(Q) + ‖γu‖L∞(Q)

)
for a constant C > 0. Using (4.7) we arrive at

‖(yη, uη, λη)‖X ≤ C
(
|η1 − η2|Y + ‖yη‖C([0,T ];V ) + ‖γQ‖L2(Q) + ‖γΩ‖V + ‖γu‖L∞(Q)

)
for a generic constant C > 0. Since W(0, T ) is continuously embedded into C([0, T ];V ), we infer from (4.15)

‖(yη, uη, λη)‖X ≤ C
(
‖η1 − η2‖Y + ‖γQ‖L2(Q) + ‖γΩ‖V + ‖γu‖L∞(Q)

)
.

Thus, we have proved the next theorem.
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Theorem 4.4 (L∞-stability). Suppose that Assumption 1 holds. Let (yi, ui, λi) be the solutions to (Q̂Pη) for
arbitrary ηi ∈ Y , i = 1, 2. Then there exists a constant C > 0 independent on η1 and η2 such that

‖(y1, u1, λ1)− (y2, u2, λ2)‖X ≤ C ‖η1 − η2‖Y . (4.16)

Unfortunately, (4.16) holds only for u ∈ Ûad. We are not able to prove (4.16) in Uad. In this case, Jη might be
non-convex and (QPη) may not have a unique solution. We mention that Proposition 2.14 provides a sufficient
condition, where we are able to take Ûad = Uad. From Theorem 4.4 we obtain the following result.

Theorem 4.5. Suppose that w∗ = (y∗, u∗, λ∗) solves the first-order necessary optimality conditions and satisfies
Assumption 1. Then the generalized equation (3.1) is strongly regular at the point w∗ provided that the control
set Ûad is substituted for Uad in the definition of the operator T .

5. The linear-quadratic optimal control problem

In this section we investigate the linear-quadratic optimal control problem which has to be solved in each
level of the SQP method. Since we have the strict regularity only on the set Ûad we replace (2.11c) by

un + δu ∈ Ûad. (5.1)

In contrast to (QPn) we shall denote the optimal control problem (2.11a, 2.11b) and (5.1) by (Q̂Pn).
Let us choose (y0, u0) ∈ W(0, T )× Ûad such that y0(0) = y0 holds. The Newton direction δu has to satisfy

una := ua − un ≤ δu ≤ ub − un =: unb a.e. in Q

and on Qσ we have δu = 0. To shorten notation, we set

gn = −ynt + νynxx − ynynx + f + bun. (5.2)

Furthermore, we define h : Q→ R by

h = − b

βQ
in Q. (5.3)

The first-order necessary optimality conditions for (Q̂Pn) are given by the state equation (2.11b), the control
constraint un + δu ∈ Ûad and the adjoint equation for δλ

−δλt − νδλxx − ynδλx = αQ(yn + δy − zQ) in Q,

δλ = 0 on Σ,

δλ(T ) = αΩ(yn(T ) + δy(T )− zΩ) in Ω.

(5.4)

Proposition 5.1. For every δu ∈ L2(Q) and every n the state equation (2.11b) and the adjoint equation (5.4)
admit unique solutions δy, δλ ∈ W(0, T ).

Proof. By assumption we have y0 ∈ W(0, T ). Setting a1 = y0
x and a2 = y0 the existence of a unique δy ∈ W(0, T )

follows from Proposition 2.7. As in the proof of Corollary 4.2 we obtain δλ ∈ W(0, T ). Since y1 = y0 + δy
∈ W(0, T ) the claim follows by an induction argument.

Proposition 5.2. The optimal control problem (Q̂Pn) admits a unique solution, if |(yn, un, λn)− (y∗, u∗, λ∗)|X
is sufficiently small.
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Proof. Using Hölder’s inequality and Proposition 2.7 we estimate

∣∣(L′′(yn, un, λn)−L′′(y∗, u∗, λ∗)
)(

(y, u)(y, u)
)∣∣ ≤ ∫

Ω

∣∣λnx − λ∗x∣∣y2 dxdt ≤ ‖λnx(t)− λ∗x(t)‖H‖y(t)‖H‖y(t)‖L∞(Ω)

≤ ‖y‖C([0,T ];H)‖y‖L2(0,T ;V )‖λn − λ∗‖L2(0,T ;V )

≤ C ‖u‖2L2(Q)‖λn − λ∗‖L2(0,T ;V )

for a constant C > 0. Hence, there exist ε > 0 and κ̃ > 0 such that

L′′(yn, un, λn)
(
(y, u), (y, u)

)
≥ κ̃ ‖u‖2L2(Q) (5.5)

for all λn with ‖λn − λ∗‖L2(0,T ;V ) ≤ ε and for all (y, u) ∈W (0, T )×L2(Q), where u ∈ Uad, u = 0 on Qσ, and y
is the weak solution to the linearized equation

yt − νyxx + (y∗y)x = bu in Q,
y = 0 on Σ,

y(0) = 0 in Ω.
(5.6)

If ‖yn − y∗‖W (0,T ) is sufficiently close, (5.5) and (5.6) hold with y∗ replaced by yn in (5.6). This can be proved
in a standard way. For instance, we refer to [18, 19]. Therefore, the optimal control problem is convex with
linear constraints. Thus, the claim follows by standard arguments.

Let us discuss the relationship between the Newton and the SQP method. In the following we denote by
ŵn = (ŷn, ûn, λ̂n) the iterates generated by the SQP method performed on Ûad. The iterates of the generalized
Newton method are wn = (yn, un, λn). We investigate both methods initiating from the same starting value
wn = ŵn. If ‖wn − w∗‖X is sufficiently small then there exists a unique solution (ŷn+1, ûn+1) to (Q̂Pn) with
an associated Lagrange multiplier λ̂n+1 due to Proposition 5.2. On the other hand, ŵn+1 = (ŷn+1, ûn+1, λ̂n+1)
solves the generalized equation (3.2) at wn (based on the set Ûad). For ‖wn − w∗‖X < r̂, one step of the
generalized Newton method delivers the unique solution of (3.2) by Theorem 3.3. As ŵn+1 solves the generalized
equation, which is locally unique, we get wn+1 = ŵn+1. If ‖wn − w∗‖X < min(r, r̂) =: %, then Theorem 3.3
implies that wn+1 ∈ B%(w∗). Thus, ‖ŵn+1 − w∗‖X < %. Hence, we are able to perform the next step in both
of the methods. Moreover, Newton’s and SQP method are identical on Ûad.

Theorem 5.3. Let w∗ = (y∗, u∗, λ∗) satisfy the optimality system (OS) together with Assumption 1. Suppose
that a starting value w0 = (y0, u0, λ0) ∈ X is given with u0 ∈ Ûad and ‖w0 − w∗‖X < %. Then the generalized
Newton method is equivalent to the SQP method in Ûad.

The next corollary follows directly from Theorems 3.3 and 5.3.

Corollary 5.4. With the assumptions of Theorem 5.3 we have for all n ∈ N

‖(yn+1, un+1, λn+1)− (y∗, u∗, λ∗)‖X ≤ C ‖(yn, un, λn)− (y∗, u∗, λ∗)‖2X ,

where C > 0 is a constant and (yn, un, λn) are the iterates generated by the generalized Newton or SQP method.

Remark 5.5. This convergence result still contains a formal obstacle for the numerical application. It requires
the a priori knowledge of a set Qσ for some σ > 0, hence the unknown solution w∗ should be known in advance.
Let us briefly explain a way out of this difficulty. Newton’s method is known to be only locally convergent.
Hence we have to start the iteration in a neighborhood of the unknown solution. In our SQP method, we cannot
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do better, and we must assume additionally that the iterates stay in this neighborhood (see the comments and
the counterexample for this issue in [7]). Suppose that the second order sufficient condition is satisfied with
σ > 0. Let w0 be the initial iterate and define Uεad = {u ∈ Uad | ‖u − u0‖L∞(Q) < ε}, ε sufficiently small. If
u0 is close to u∗, then all elements u ∈ Uεad are close to u∗. In this case one can show that (QPn), based on
Uεad instead on Ûad, has exactly one solution un+1, which is active on Qσ and equal to u∗ there, provided that
ε is sufficiently small. We do not discuss this intuitively clear observation and refer to the analysis in [18] for a
similar parabolic problem. In the numerical application we therefore have two ways to guarantee convergence.
We might add an additional constraint of the form −ε ≤ u − u0 ≤ ε forcing the algorithm to stay in a
neighborhood. Alternatively, we can do without this, if the algorithm is monitored to converge. The latter is
what we observed in our numerical tests.

6. A primal-dual active set algorithm

To solve the optimal control problems (QPn), in each level of the SQP method we use a primal-dual active
set strategy. This algorithm is based on a generalized Moreau–Yosida approximation of the indicator function
of the set Uad of admissible controls. For more details we refer to [3].

Let the superscript n and the subscript k denote the current SQP- and active set iteration, respectively, and
dual variables δξk stand for the Lagrange multipliers associated with the inequality constraints

un + δu ∈ Uad.

Suppose that (δuk−1, δξk−1) are given. Then the una -active and unb -active sets of the current iterate are chosen
according to

Ank =
{

(t, x) ∈ Q : δuk−1(t, x) +
δξk−1(t, x)

c
< una(t, x) a.e. in Q

}
,

A
n

k =
{

(t, x) ∈ Q : δuk−1(t, x) +
δξk−1(t, x)

c
> unb (t, x) a.e. in Q

}
,

where c > 0 is a scalar, and we set Ank = Ank ∪A
n

k . Furthermore, we define the inactive set

Ink =
{

(t, x) ∈ Q : una(t, x) ≤ δuk−1(t, x) +
δξk−1(t, x)

c
≤ unb (t, x) a.e. in Q

}
·

Notice that, in general, un + δuk−1 need not be feasible on Ink . Notice that the definition of Ank and Ink involve
the primal variable δu as well as the dual variable δξ corresponding to the inequality constraints. In Algorithm 1
below the identification Ank−1 = Ank means Ank = Ank−1 and A

n

k = A
n

k−1.

Algorithm 1 (Primal-dual active set strategy).

a) Choose c > 0 and starting values (δu0, δξ0) ∈ Uad × L∞(Q), and set k = 1;
b) compute Ank , A

n

k , and Ink ;
c) if k ≥ 2, Ank = Ank−1, Ink = Ink−1 then STOP;
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d) else, find (y, λ) ∈ W(0, T )×W(0, T ) satisfying

yt − νyxx + (yny)x = bunb + gn in A
n

k ,

yt − νyxx + (yny)x = buna + gn in Ank ,

yt − νyxx + (yny)x − hλ = gn in Ik,

y = 0 on Σ,

y(0) = 0 in Ω,

−αQy + λxy − λt − νλxx − ynλx = αQ(yn − zQ) in Q,

λ = 0 on Σ,

αΩy(T ) + λ(T ) = αΩ(yn(T )− zΩ) in Ω,

(6.1)

set (δyk, δλk) = (y, λ) and

δuk =


unb in A

n

k ,

una in Ank ,

h δλk in Ink ;

e) put δξk = δλk − βQδuk, k = k + 1, and return to b).

Remark 6.1. Let us mention that Algorithm 1 stops feasible if there exists an iteration level k such that
Ank = Ank+1. In particular, in this case we have un + δuk ∈ Uad.

Proposition 6.2. With the hypotheses of Proposition 2.14 there exists a radius r̂ > 0 so that Algorithm 1 is
well-defined if

‖(yn, un, λn)− (y∗, u∗, λ∗)‖X < r̂. (6.2)

Proof. Due to Proposition 2.14 and Remark 2.15 the second-order sufficient optimality condition holds at
(y∗, u∗, λ∗) for Qσ = ∅. Using the regularity properties of the Lagrangian, we can prove that there exists a
radius r̂ > 0 such that the second-order sufficient optimality condition holds for all (yn, un, λn) ∈ Br̂(y∗, u∗, λ∗),
see the proof of Proposition 5.2. Hence, the linear system (6.1) is uniquely solvable.

7. Numerical experiments

To solve (P) we use the so-called “optimize-then-discretize” approach, i.e., we compute the solution of
the linear-quadratic subproblems (QPn) by discretizing Algorithm 1, i.e., by discretizing the associated sys-
tems (6.1).

In our test runs we also compare the optimal solutions with the solutions of the unconstrained problems, i.e.,
for Uad = L2(Q).

For the time integration we apply the backward Euler scheme while the spatial variable is approximated by
piecewise linear finite elements. The programs are written in MATLAB, version 5.3, executed on a Pentium III
550 MHz personal computer.

Run 1. In the first test example we choose T = 1, ν = 0.01, y0 = 0, and f = 0. For N,M ∈ N the grid was
given by

xi =
i

N
for i = 0, . . . , N and tj =

jT

M
for j = 0, . . . ,M.
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Figure 1. Desired state zQ for N = M = 50.

Clearly, the solution to (2.2a) with u = 0 is y = 0. For the optimal control problem we take αΩ = 0, αQ = 1,
βQ = 0.0175 and b = χQ◦ , where χQ◦ denotes the characteristic function of the set Q◦ = (0, T/2)× (0.5, 0.75).
The desired state is shown in Figure 1.

(i) First we solve the optimal control problem with Uad = L2(Q) by applying the SQP method. Then the
solution (δy, δu) of (QPn) as follows: First we solve the linear system

(δy)t − ν(δy)xx + (ynδy)x − hδλ = gn in Q,

δy = 0 on Σ,

δy(0) = 0 in Ω,

(λnx − αQ)δy − (δλ)t − ν(δλ)xx − yn(δλ)x = αQ(yn − zQ) in Q,

δλ = 0 on Σ,

αΩδy(T ) + δλ(T ) = αΩ(yn(T )− zΩ) in Ω,

(7.1a)

where gn and h were introduced in (5.2) and (5.3), respectively. Next, we obtain δu from

δu = hδλ in Q. (7.1b)

The discretization of (7.1a) leads to an indefinite system Hn(δy, δλ)T = rn, where Hn is of the form

Hn =
(
An (Bn)T

Bn Cn

)
.

As starting values we take y0 = 0, u0 = 0 and λ0 = 0. We stop the SQP iteration if the associated
residuum is less than 10−6, i.e.,

Res(n) = ‖∇L(yn, un, λn)‖L2(Q)3 ≤ 10−6.

Here, ∇ stands for the gradient of L with respect to (y, u, λ). Notice that ∇uL(yn, un, λn) = 0 is guaran-
teed by (7.1b). We do not have to check it numerically.
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Figure 2. Optimal state and control for Uad = L2(Q) and N = M = 50.

Table 1. CPU-times in seconds.

(SQP-LU) (SQP-GMRES) (SQP-GMRES-IN)
N = M = 50 137 66 59
N = M = 60 249 116 105

The linear system (7.1a), which has to be solved in each level of the SQP-iteration, is treated in three
different ways:
1.) (SQP-LU): utilize a LU -factorization with pivoting (MATLAB routine lu),
2.) (SQP-GMRES): apply the Generalized Minimum Residual Method (MATLAB routine gmres) and

stop the iteration if the relative residual

‖rn −Hn(δy, δλ)T‖2
‖rn‖2

is less than 10−6. Here, ‖ · ‖2 denotes the Euclidean norm.
3.) (SQP-GMRES-IN): use the GMRES method and stop the iteration if the relative residual is less than

the actual value of Res(n). In this way, the precision for solving the linear system (7.1a) is adapted
to the size of the outer iteration. The closer the iterates are to the optimum, the finer the system is
solved.

As a preconditioner for the GMRES method we took an incomplete LU -factorization of the matrix

D =
(

0 PT

P 0

)
(7.2)

by utilizing the MATLAB function luinc(D,1e-05). Here, the matrix P is the discretization of the heat
operator yt − νyxx with homogeneous Dirichlet boundary conditions at x = 0 and x = 1, and the matrix
PT is the discretization of its adjoint. In Figure 2 the discrete optimal solution is presented.

All the three variants of the SQP method stop after five iterations and their optimal solutions coincide.
Let us mention that no step size control is necessary in this example. The needed CPU times are given in
Table 1. It turns out that for this example the inexact GMRES method is the fastest method.
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Table 2. Number of inner iterations, residua, and CPU times for (SQP-LU).

SQP iterations Alg. 1 iterations residuum CPU time
1 6 6.19e-03 90.9 seconds
2 3 6.81e-04 76.7 seconds
3 2 2.23e-06 52.2 seconds
4 1 3.14e-09 26.7 seconds∑

= 276.7 seconds

Table 3. Number of inner iterations, residua, and CPU times for (SQP-GMRES).

SQP iterations Alg. 1 iterations residuum CPU time
1 6 6.19e-03 63.2 seconds
2 3 6.81e-04 33.4 seconds
3 2 2.23e-06 21.7 seconds
4 1 3.14e-09 11.3 seconds∑

= 169.5 seconds

Table 4. Number of inner iterations, residua, and CPU times for (SQP-GMRES-IN).

SQP iterations Alg. 1 iterations residuum CPU time
1 6 6.18e-03 47.2 seconds
2 4 6.65e-04 30.0 seconds
3 2 2.08e-06 15.8 seconds
4 3 4.88e-09 27.3 seconds∑

= 160.5 seconds

Table 5. CPU times in seconds.

(SQP-LU) (SQP-GMRES) (SQP-GMRES-IN)
N = M = 60 673 355 272

(ii) Next we introduce inequality constraints by choosing ua = 0 and ub = 1. We solve the linear system (6.1)
utilizing analogous versions of (SQP-LU), (SQP-GMRES) and (SQP-GMRES-IN). For N = M = 50 the
behavior of the SQP-method combined with Algorithm 1 is presented in Tables 2–4. We check Res(n)
≤ 10−6 only on the current inactive set for u. By our active set strategy, the variational inequality is
automatically satisfied on the remaining set. Therefore, the necessary optimality conditions are satisfied
up to precision 10−6.
The needed CPU times are given in Table 5 for N = M = 60. Again, for a fine grid the inexact GMRES
method SQP-GMRES-IN is the fastest variant.
The discrete optimal solution is plotted in Figure 3. It turns out that (6.1) is uniquely solvable throughout
the iteration process. Therefore, Algorithm 1 is well-defined for Qσ = ∅. The values of the cost functional
are presented in Table 6.

Run 2. In the second test we want to track the optimal state to a desired state at the terminal time. We take
T = 1, ν = 0.1,

y0 =
{

1 in (0, 0.5]
0 otherwise,
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Figure 3. Optimal state and control for ua = 0, ub = 1, and N = M = 50.

Table 6. Values of the cost functional for N = M = 50.

u = 0 u ∈ L2(Q) u ∈ Uad

J(y∗, u∗) 0.12653 0.09319 0.10743
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Figure 4. Solution for u = 0 and N = M = 50.

and f = 0. The grid is the same as in the previous test example. To solve (2.1) with u = 0 we apply Newton’s
method at each time step. The algorithm needs 1 second in case of N = M = 50. The numerical solution is
shown in Figure 4.

Now we turn to the optimal control problem. We choose αΩ = 1, αQ = 0, βQ = 0.2 and b = χQ◦ with
Q◦ = (0, 9T/10)× (0, 0.75). The desired state is zΩ(x) = sin(2πx). First we solve (P) with Uad = L2(Q). The
starting values for the SQP method are y0 = 0, u0 = 0 and λ0 = 0. The stopping criterion is the same as
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Table 7. CPU-times in seconds.

(SQP-LU) (SQP-GMRES) (SQP-GMRES-IN)
N = M = 50 128 58 53
N = M = 60 299 126 118
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Figure 5. Optimal state and control for N = M = 50.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

t−axisx−axis 0
0.2

0.4
0.6

0.8
1

0

0.5

1

−0.4

−0.2

0

0.2

0.4

t−axisx−axis

Figure 6. Optimal state and control for ua = −0.5 = −ub and N = M = 50.

in Run 1. In Figure 5 the discrete solution is plotted. All three versions of the SQP method stop after four
iterations. The needed CPU times are given in Table 7.
Now we take ua = −0.5 = −ub. The discrete solution is presented in Figure 6.

For N = M = 50 the behavior of the SQP-method combined with Algorithm 1 is presented in Tables 8–10.
The values of the cost functional are presented in Table 11.
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Table 8. Number of inner iterations, residua, and CPU times for (SQP-LU).

SQP iterations Alg. 1 iterations residuum CPU time
1 7 1.25e-02 86.7 seconds
2 5 1.12e-03 148.0 seconds
3 3 6.54e-06 96.8 seconds
4 3 5.04e-09 96.9 seconds∑

= 450.9 seconds

Table 9. Number of inner iterations, residua, and CPU times for (SQP-GMRES).

SQP iterations Alg. 1 iterations residuum CPU time
1 7 1.25e-02 59.6 seconds
2 5 1.12e-03 67.6 seconds
3 3 6.54e-06 32.4 seconds
4 3 5.04e-09 30.7 seconds∑

= 220.1 seconds

Table 10. Number of inner iterations, residua, and CPU times for (SQP-GMRES-IN).

SQP iterations Alg. 1 iterations residuum CPU time
1 3 1.47e-02 19.3 seconds
2 5 2.09e-03 49.0 seconds
3 3 2.62e-05 23.5 seconds
4 3 3.30e-08 25.0 seconds∑

= 146.7 seconds

Table 11. Values of the cost functional for N = M = 50.

u = 0 u ∈ L2(Q) u ∈ Uad

J(y∗, u∗) 0.28873 0.22292 0.24455

Appendix A. Proof of Theorem 2.2

To derive an estimate for ‖y(t)‖H we choose ϕ = y(t) in (2.2a). Then we get

1
2

d
dt
‖y(t)‖2H + ν ‖y(t)‖2V = ((f + bu)(t), y(t))H . (A.1)

From (A.1), Poincaré’s and Young’s inequality we infer that

d
dt
‖y(t)‖2H + ν ‖y(t)‖2H ≤

1
ν
‖(f + bu)(t)‖2H .

Recall that in our case the Poincaré constant is equal to 1. Thus,

d
dt

(
eνt ‖y(t)‖2H

)
≤ eνt

ν
‖(f + bu)(t)‖2H . (A.2)
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Integrating (A.2) yields

‖y(t)‖2H ≤ e−νt ‖y0‖2H +
eνT

ν
‖f + bu‖2L2(Q) ≤ ‖y0‖2H +

2eνT

ν

(
‖f‖2L2(Q) + ‖bu‖2L2(Q)

)
.

Hence, there exists a constant C1 > 0 depending on ν, f , and y0 such that

‖y‖L∞(0,T ;H) ≤ C1

(
1 + ‖bu‖L2(Q)

)
. (A.3)

Due to the differential equation we get

‖yt(t)‖V ′ ≤ (ν + ‖y(t)‖H) ‖y(t)‖V + ‖(f + bu)(t)‖H .

This gives

‖yt‖L2(0,T ;V ′) ≤
(
ν + ‖y‖L∞(0,T ;H)

)
‖y‖L2(0,T ;V ) + ‖f‖L2(Q) + ‖bu‖L2(Q). (A.4)

Integrating (A.1) over (0, T ) we end up with

‖y‖L2(0,T ;V ) ≤ C2

(
1 + ‖bu‖L2(Q)

)
, (A.5)

where the constant C2 > 0 depends on ν, y0, and f . From (A.4) and (A.5) we conclude that there exists a
positive constant C3 = C3(ν, y0, f) such that

‖y‖W (0,T ) ≤ C3

(
1 + ‖bu‖2L2(Q)

)
.

Appendix B. Proof of Corollary 2.4

We will prove that there exists a constant C > 0 satisfying

‖y‖W(0,T ) ≤ C
(

1 + ‖bu‖2L2(Q)

)
(B.6)

for a constant C > 0. Then the claim follows by an embedding argument. Choosing ϕ = −yxx(t) in (2.2a) we
obtain

1
2

d
dt
‖y(t)‖2V + ν ‖yxx(t)‖2H =

(
(yyx − f − bu)(t), yxx(t)

)
H
. (B.7)

As in [13] (Th. 2) we find

‖y(t)‖V ≤ ‖y0‖V + C ‖y0‖3H + ‖f + bu‖L2(Q), t ∈ [0, T ] a.e.

for a constant C > 0. This bound gives together with (A.3) and (A.5)

‖y‖L∞(0,T ;V ) + ‖y‖L∞(0,T ;H) + ‖y‖L2(0,T ;V ) ≤ C
(

1 + ‖bu‖L2(Q)

)
. (B.8)

Integrating (B.7) we infer from Hölder’s and Young’s inequalities and (B.8) that

‖y‖L2(0,T ;H2(Ω)∩V ) ≤ C
(

1 + ‖bu‖L2(Q)

)
. (B.9)

Using the differential equation yt = νyxx − yyx + f + bu, (B.8) and (B.9) we arrive at (B.6).
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Appendix C. Proof of Proposition 2.7

For t ∈ [0, T ] we introduce the bilinear form a(t; ·, ·) on V × V by

a(t;ϕ, φ) =
∫

Ω

νϕ′φ′ + a1(t)ϕ′φ+ a2(t)ϕφdx.

Then, a is continuous. In fact, we obtain

|a(t;ϕ, φ)| ≤
(
ν + ‖a1‖L∞(0,T ;H) + ‖a2‖L∞(0,T ;H)

)
‖ϕ‖V ‖φ‖V

for ϕ, φ ∈ V and t ∈ (0, T ) a.e. Due to Agmon’s inequality, see [16], there exists a constant CA > 0 satisfying

‖ϕ‖2L∞(Ω) ≤ CA ‖ϕ‖H‖ϕ‖V for all ϕ ∈ V. (C.10)

Utilizing (C.10) and Young’s inequality we find

a(t;ϕ,ϕ) ≥ ν

2
‖ϕ‖2V − C ‖ϕ‖

2
H for all ϕ ∈ V and t ∈ [0, T ] a.e.

for a constant C > 0 depending on a1, a2 and ν. Hence, the existence of a unique solution v ∈W (0, T ) of (2.4)
follows from [4]. Now we proceed by proving estimates. For that purpose we multiply the differential equation
by v and integrate over Ω and (0, t) for t ∈ (0, T ). Using Hölder’s inequality we get

1
2
‖v(t)‖2H + ν ‖v‖2L2(0,t;V ) ≤

1
2
‖v0‖2H + ‖g‖L2(Q)‖v‖L2(0,t;H) + ‖a1‖C([0,T ];H)‖vx‖L2(0,t;H)‖v‖L2(0,t;L∞(Ω))

+ ‖a2‖C([0,T ];H)‖v‖L2(0,t;L∞(Ω))‖v‖L2(0,t;H).

From Agmon’s and Young’s inequalities it follows that

‖v(t)‖2H + ν ‖v‖2L2(0,t;V ) ≤ C
(
‖g‖2L2(Q) + ‖v0‖2H + ‖v‖2L2(0,t;H)

)
(C.11)

for t ∈ [0, T ]. Due to Gronwall’s inequality we find

‖v(t)‖2H ≤ C
(
‖g‖2L2(Q) + ‖v0‖2H

)
for t ∈ [0, T ].

Thus,

‖v‖L∞(0,T ;H) ≤ C
(
‖g‖L2(Q) + ‖v0‖H

)
. (C.12)

Using (C.12) we infer from (C.11)

‖v‖L2(0,T ;V ) ≤ C
(
‖g‖L2(Q) + ‖v0‖H

)
. (C.13)

Now the estimate in the W (0, T )-norm follows from (C.12, C.13) and vt = νvxx − a1v − a2vx + g. We continue
by proving the second estimate. Therefore, we multiply the differential equation with −vxx and integrate over
Ω and (0, t) for t ∈ (0, T ). Hölder’s inequality yields

1
2
‖v(t)‖2V + ν ‖vxx‖2L2(0,t;H) ≤

1
2
‖v0‖2V + ‖g‖L2(Q)‖vxx‖L2(0,t;H) + ‖a1‖C([0,T ];H)‖vx‖L2(0,t;L∞(Ω))‖vxx‖L2(0,t;H)

+ ‖a2‖C([0,T ];H)‖v‖L2(0,t;L∞(Ω))‖vxx‖L2(0,t;H)
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for t ∈ [0, T ] a.e. Using Agmon’s and Young’s inequalities, equations (C.12, C.13) and the estimate ‖v0‖H ≤
‖v0‖V we conclude

‖v(t)‖2V + ν ‖vxx‖2L2(0,t;H) ≤ C
(
‖g‖2L2(Q) + ‖v0‖2V

)
for t ∈ [0, T ].

Hence,

‖v‖L∞(0,T ;V ) + ‖vxx‖L2(0,T ;H) ≤ C
(
‖g‖L2(Q) + ‖v0‖V

)
. (C.14)

From (C.12–C.14) and vt = νvxx − a1v − a2vx + g the stated estimate follows.

The authors would like to thank Dr. M. Hintermüller for helpful discussions about the primal-dual active set strategy.
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