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A-QUASICONVEXITY: RELAXATION AND HOMOGENIZATION

ANDREA BRAIDES!, IRENE FONSECA? AND GIOVANNI LEONT 3

Abstract. Integral representation of relaxed energies and of I-limits of functionals

(u,v)H/ng(x,u(x),v(m))dm

are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a
system of first order linear partial differential equations. This framework includes the treatement of
divergence-free fields, Maxwell’s equations in micromagnetics, and curl-free fields. In the latter case
classical relaxation theorems in W7 are recovered.
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1. INTRODUCTION

In a recent paper Fonseca and Miiller [22] have proved that A-quasiconvexity is a necessary and sufficient
condition for (sequential) lower semicontinuity of a functional

(u,0) / f(,u(z), v(z)) dz,

whenever f: Q x R™ x RY — [0, 00) is a Carathéodory integrand satisfying
0< f(z,u,v) <a(z,u) (1+v|7),

for a.e. z € Q and all (u,v) € R™ x RY, where 1 < ¢ < 00, a € LS. (Q x R; [0,00)), @ C RY is open, bounded,

u, — u in measure, v, — v in LY(Q;R?) and Av, — 0 in W=L49(Q;RY) (see also [14]). Here, and in what
follows, following [32]
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is a constant-rank, first order linear partial differential operator, with A : R% — R! linear transformations,
i=1,...,N. We recall that A satisfies the constant-rank property if there exists r € N such that

rank Aw = r for all w € SN 71, (1.1)

where
N
Aw ::ZwiA(i), weRN.
i=1

A function f:R? — R is said to be A-quasiconves if

o) < /Q -+ w(y)) dy

for all v € R? and all w € Cf%, (RY; R?) such that Aw = 0 and fQ w(y)dy = 0. Here () denotes the unit cube

in RN, and the space C75,.,(RY;R?) is introduced in Section 2.

The relevance of this general framework, as emphasized by Tartar (see [32,34-39]), lies on the fact that in
continuum mechanics and electromagnetism PDEs other than curlv = 0 arise naturally, and this calls for a
relaxation theory which encompasses PDE constraints of the type Av = 0. Some important examples included
in this general setting are given by:

(a) [Unconstrained Fields]
Av = 0.
Here, due to Jensen’s inequality A-quasiconvexity reduces to convexity.

(b) [Divergence Free Fields]
Av =0 if and only if dive = 0,
where v: Q C RY — R (see [33]).

(c) [Magnetostatics Equations]

()= () -

where m : R? — R? is the magnetization and h : R3 — R? is the induced magnetic field (see [17,38]); often these
are also called Maxwell’s Equations in the micromagnetics literature.

(d) [Gradients]
Av =0 if and only if curlv = 0.

Note that w € Cffper(RN;Rd) is such that curl w = 0 and fQ w(y)dy = 0 if and only if there exists ¢ €

C’f_oper(RN ;R™) such that Vi = v, where d = n x N. Thus in this case we recover the well-known notion of
quasiconvezity introduced by Morrey [30].

(e) [Higher Order Gradients]

Replacing the target space R? by an appropriate finite dimensional vector space E7, it is possible to find a
first order linear partial differential operator A such that v € LP(Q; E”) and Av = 0 if and only if there exists
© € W=9(Q; R™) such that v = V*p (see Th. 1.3).

This paper is divided into two parts. In the first part we give an integral representation formula for the
relaxed energy in the context of A-quasiconvexity. Precisely, let 1 < p < oo and 1 < ¢ < oo, and consider the
functional

F: LP(O;R™) x LI1(Q;RY) x O(R2) — [0, 00)
defined by

F((u,v); D) :z/Df(x,u(x),v(x)) dzx,
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where O(2) is the collection of all open subsets of €2, and the density f satisfies the following hypothesis:
(H) f: QxR™x R? — [0,00) is Carathéodory function satisfying
0< fz,u,v) <C(1+ |uf’ +[v|?)
for a.e. € Q and all (u,v) € R™ x R4 and where C > 0.

For D € O(Q?) and (u,v) € LP(;R™) x (L9(Q;R?) Nker A) define

F((u,v); D) == inf{limian((un,vn);D) ¢ (Un,vn) € LP(D;R™) x LY(D;R?),

(1.2)
U, — u in LP(D;R™), v, — v in LY(D;R?), Av, —0 in W 14(D;RY) }

It turns out that the condition Av, — 0 imposed in (1.2) may be replaced by requiring that v,, do satisfy the
homogeneous PDE Av = 0. Precisely, and in view of Lemma 3.1 and Corollary 3.2 below, it can be shown that

F((u,v); D) = inf{limian((u,vn);D) . vy € LY(D;RY), v, — v in LI(D;RY), Av, = o} ,

n—oo

and thus
F((u,v); D) = inf{liminf F((tn,v); D) = (un,vy) € LP(D;R™) x LYD;RY),

U, — u in LP(D;R™), v, — v in LY(D;R?), Av, = 0} =: Fo((u,v); D).

The first main result of the paper is given by the following theorem:

Theorem 1.1. Under condition (H) and the constant-rank hypothesis (1.1), for all D € O(Q), u € LP(; R™),
and v € LY(Q;RY) Nker A, we have

f((u,v);D):/DQAf(x,u(x),v(I))dm

where, for each fized (x,u) € QX R™, the function Q4 f(x,u,-) is the A-quasiconvezification of f(x,u,-), namely
Oaf(z,u,v) :=inf { / flz,u,v+w(y))dy :w e Cf_oper(RN;Rd) Nker A, / w(y)dy = 0}
Q Q
for all v € RY.

Remarks 1.2. (i) Note that in the degenerate case where A = 0, A-quasiconvex functions are convex and
Theorem 1.1 together with condition (1.4) yield a convex relaxation result with respect to LP x L9(weak)
convergence. See the monograph of Buttazzo [12] for related results in this context.

(ii) If the function f also satisfies a growth condition of order ¢ from below in the variable v, that is

f(zyu,v) > %|v|q -C (1.4)
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for a.e. x € Q and all (u,v) € R™ xR?, then a simple diagonalization argument shows that (u,v) — F((u,v); D)
is LP x (L9-weak) lower semicontinuous, i.e.,

n—oo

/ Oaf(z,u(z),v(x))dx §liminf/ Oaf(x,un(x),vy(x))de (1.5)
D D

whenever u,, € LP(Q;R™), v, € L1(Q;R?) Nker A, u,, — u in LP(D;R™), v,, — v in L9(D;R?). In particular
O f is A-quasiconvex if f is continuous and

Zolt = 0 < f(@) < C(1+]ol?)

for some C' > 0, and all v € R (see the proof of Cor. 5.7).

The lower semicontinuity result (1.5) is not covered by Theorem 3.7 in [22], where it is assumed that the
integrand be A-quasiconvex and continuous in the v variable. However, as remarked in [22], in the realm of
general A-quasiconvexity the function Q4 f(z,u, ) may not be continuous, even if f(z,u,-) is. Indeed in the
degenerate case ker A = {0} all functions are A-quasiconvex. Also, when N = 1, d = 2, and v = (v1,v2),

consider
UI
Avi= (0 1) (J) .

2
Then for w € R
Aw = (O w)

and thus when |w| = 1 the matrix Aw has constant rank 1. For any given function f(v) the A-quasiconvex
envelope of f is obtained by convexification in the first component, so that by considering e.g. (cf. [22,28])

i) =T fao) = (L ),

one gets
0 if V2 75 0
1 ifve=0

U+ o))l if foo] > 1
1 if |vg] < 1.

Qafi(v) = { Qufi(v) = {

(iii) The continuity of f with respect to v is essential to ensure the representation of F provided in Theorem 1.1,
in contrast with the case where Av = 0 if and only if curlv = 0. In fact, if f : R®*¥ — [0, 00) is a Borel function
satisfying the growth condition

0< f(v) <CA+ o)
for C >0,1<q < oo, v€R"™N then it can be shown easily that

f(w;D):/DQf(Vw(:E))d:E (1.6)

for all D € O(Q), w € WH4(;R™), where Qf is the quasiconvex envelope of f. Indeed, Qf is a (continuous)
quasiconvex function satisfying (H) (see [18], [8] Th. 4.3); therefore by Theorem 1.1

w»—>/ Qf (Vw(x)) dx
D

is Wh4-sequentially weakly lower semicontinuous, and so

/D Qf V() dz < F(w; D).
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Conversely, under hypothesis (H) it is known that F(v;-) admits an integral representation (see Th. 9.1 in [10],
Th. 20.1 in [15])

Flw; D) = /D (V) de,

where ¢ is a quasiconvex function, and ¢(v) < f(v) for all v € R®*N. Hence ¢ < Qf and we conclude that
(1.6) holds.

For general constant-rank operators A, and if f is not continuous with respect to v, it may happen that
Fo((u,v);-) is not even the trace of a Radon measure in O(Q2) and thus (1.3) fails. As an example, consider
d=2,N=1,0:=(0,1), v = (v1,v2), and let A(v) =0 if and only if v5 = 0 as in (ii) above. Let

) (v1 — 1)% + 03, if v € Q
v) 1=
(1 +1)2+03,  ifv ¢ Q.

Although f satisfies a quadratic growth condition of the type (H), and (As) holds with ¢ = 2, it is easy to see
that for all intervals (a,b) C (0, 1),

b b
Fo((u,v); (a,b)) = Fo(v; (a,b)) = min {/ (v1 —1)* + v%)dm,/ ((v1 +1)* + v%)dx}

which is not the trace of a Radon measure on O(£2). On the other hand, it may be shown that (see the Appendix
below for a proof)

b
F((u,v); (a,b)) = F(v; (a,b)) = / (Y™ (v1) + v3) de,

where 1**(v1) is the convex envelope of
1/}(’01) := min {(’Ul — 1)2, (’01 -+ 1)2} .

(iv) Using the growth condition (H), a mollification argument, and the linearity of A4, it can be shown that (see
Rem. 3.3 in [22])

QAf@s,u,v)—inf{ /Q F(@, 0+ w(y)) dy - w € LL, . (RN RY) A ker A, /Q w(y)dy—o}-

We write w € LY., (RV;R?) Nker A when w € L{_,,(RN;R?) and Aw = 0 in W~14(Q; R).

(v) We may also treat the cases ¢ =1, co and p = co. See Theorem 3.6 below.

The proof of Theorem 1.1 relies heavily on the use of Young measures (see [5,40]). However, instead of
applying directly the arguments of Fonseca and Miiller [22] (based on Balder’s [4] and Kristensen’s [26] approach
in the curl-free case), we use these together with the blow-up method introduced by Fonseca and Miiller in [20].

Although in Theorem 1.1 the functions v and v are not related to each other, the arguments of the proof
work equally well when u and v are not independent. Indeed as a corollary, we can prove the following two
theorems:

Theorem 1.3. Let 1 < p < 00, s € N, and suppose that f : Q x E[’;_l] x E" — [0,00) is a Carathéodory
function satisfying

0< flz,u,v) <C(1+|u’ + |vP), 1 <p< oo,
for a.e. x € Q and all (u,v) € E[" x BT, where C' > 0, and

s—1] EN

Xaf € Ligs(RY x Efi_j) x EJ;[0,00))  if p=oo.
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Then for every u € WP (Q; R™) we have

k—o0

/ Q°f(x,u,...,Vu)der = inf { hminf/ flzyug, ..., Viug)dx : {u} C WSP(Q; R"),
Q Q

up — u in WP (Q; R™) (3 if p= oo)},
where, for a.e. x € Q and all (u,v) € Bl x E¢,

st(l', u, ’U) := inf { / f(xa u,v + vsw(y)) dy tw e Clo—oper(RN;Rn)}'
Q

Remarks 1.4. (i) Here E” stands for the space of n-tuples of symmetric s-linear maps on RY,
(o—1] = R" X Ef x -+ x EJ 4,

and

L olu ) -
Vi <8$?1 - Oz 041+...+aN=l’ ‘=t
(ii) When s = 1 we recover classical relaxation results (see e.g. the work of Acerbi and Fusco [1], Dacorogna [13],
Marcellini and Sbordone [28] and the references contained therein).

When s > 1 lower semicontinuity results related to Theorem 1.3 are due to Meyers [29], Fusco [23] and
Guidorzi and Poggiolini [25], while we are not aware of any integral representation formula for the relaxed
energy, when the integrand depends on the full set of variables, that is f = f(z,u,...,V*u). This is due to
the fact that classical truncation methods for s = 1 cannot be extended in a simple way to truncate higher
order derivatives. The results of Fonseca and Miiller (see the proof of Lem. 2.15 in [22]), where the truncation
is only on the highest order derivative V®u, and Corollary 3.2 below, allows us to overcome this difficulty. Note
however that this technique relies heavily on p-equi-integrability, and thus cannot work in the case p = 1, if
one replaces weak convergence in W*1(Q;R") with the natural convergence, which is strong convergence in
Ws=L1(Q;R™). In this context, a relaxation result has been given by Amar and De Cicco [2], but only when
f = f(V?u), so that truncation is not needed. The general case where f depends also on lower order derivatives
has been addressed by Fonseca et al. [19].

Theorem 1.5. Let 1 < p < oo, let Q C RN be an open, bounded, connected set, and suppose that f : Q x RN x
RN [0,00) is a Carathéodory function satisfying

ng($7u’v)SC(1+|u|p+|U|p)7 1<p <o,
for a.e. x € Q and all (u,v) € RN x RNQ, where C' > 0, and

XQfeL‘X’(RNxRNxRNz;[O,oo)) if p = oo.

loc

Then for every u € WHP(Q;RY) such that divu = 0, we have

/ f(z,u(z), Vu(z)) de = inf { liminf/ f (@, un(x), Vg (x) de : {u,} € WHP(Q;RY),
Q Q

n—oo

(1.7)
divu, =0, wup, —uin WHP(Q;RY) (& ifp= oo)},
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where, for a.e. v € Q and all (u,v) € RN x RN,

f(z,u,v) :=inf {/ flz,u, v+ Vw(y))dy : w € C’f_"per(RN;RN), divw = O}-
Q

Remark 1.6. To the authors’ knowledge, this result is new in this generality (for a different proof, with
additional smoothness assumptions, see [9]). A related problem was addressed by Dal Maso et al. in [16], where
it was shown that the I-limit of a family of functionals of the type (1.7) may be non local if (H) is violated.

In the second part of the paper we present (I'-convergence) homogenization results for periodic integrands
in the context of A-quasiconvexity. Let € > 0 and 1 < g < 0o, and consider a family of functionals

F s (LR Aker A) x 0() — [0.00)

defined by
Fe(v; D) := /Df (g,v(x)) dz,

where the density f satisfies the following hypotheses:

(A1) f: RN xR? — [0, 00) is a continuous function, Q-periodic in the first argument, that is f(z+e;,v) = f(z,v)
for every i = 1,..., N, where e; are the elements of the canonical basis of R";
(A2) there exists C' > 0 such that
0< f(z,v) <O+ |v|7)
for all (z,v) € RNV x R%
(Ag) there exists C > 0 such that
1
flav) > Zhft —C
for all (z,v) € RN x R

Let &, — 0%. We say that a functional
T+ (LY RY) Nker A) x O(€) — [0, 400

is the ' — lim inf (resp. T' — lim sup) of the sequence of functionals {F_ } with respect to the weak convergence
in LI(Q;R?) if for every v € L4(;RY) Nker A

(03 ) ¢ v, € LYQ;RY) Nker A,
n—oo n—oo

J(v; ) = inf{lim inf (resp. limsup) F.
Up — v in Lq(Q;Rd)},

and we write
J =T —liminf . <resp. J =T —limsup fgn) .
n—00 n—o0
When finite energy sequences are L-equibounded then the infimum in the definition of I' — liminf (resp.
I' — limsup) is attained. We say that the sequence {F;, } I'-converges to J if the I — liminf and I" — lim sup
coincide, and we write

J=T- lim F.,.

n—00
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The functional 7 is said to be the I' — liminf (resp. I' — lim sup) of the family of functionals {F.} with respect
to the weak convergence in L4(; RY) if for every sequence &, — 07 we have that

J =T — liminf F_ (resp. J =T — limsup fen> )

n—oo n—oo

and we write
J =T —1lim iélf Fe (resp. J =T —limsup .E) .
E—

e—0

Finally, we say that J is the is the I'-limit of the family of functionals {F.}, and we write

J=T- lim F.,

n—00

if I' — liminf and I" — lim sup coincide.

In the sequel we will also consider functionals J given by (1.8) where we replace the weak convergence v,, — v
with the convergence v,, — v with respect to some metric d. In order to highlight this dependence on the metric
d these functionals will be denoted as

J =T(d) — liminf <resp. J =T(d) — limsup f€n> ;

n—00 n—00
as it is customary (see [10,15]).
Theorem 1.7. Under hypotheses (A1) — (A2) and the constant-rank hypothesis (1.1),
Fhom = I' — liminf F¢,

e—0

where
]:hom('U;D) = / fhom(v) dx

D

for all v € L1(Q;R?) Nker A and D € O(R2), and
1
fhom(v) := inf — inf f(z,v+w(x))de: we Ll (RY;RY) NkerA, w(z)dr =0 (1.9)
keN kN kQ per kQ

for all v € R%. Moreover, if (A3) holds then

Frhom = I' — lim F..
e—0
For the definition of the space Lz_per(RN :RY), we direct the reader to Section 2.

Remarks 1.8. (i) Using the growth condition (As3), a mollification argument, and the linearity of A, it can be
shown that

e 1 o0
fhom(v) = lirelfN N 1nf{/kQ flz,o+wx)de: we Lk-per(RN;Rd) Nker A,

/kQ w(z) dz = o}.

See also Corollary 5.7 below.
(ii) When f satisfies the ¢-Lipschitz condition

[f(z,01) = f(@,02)] < Cloa] ™" + o270 + 1)[or — v2 (1.10)
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for all z € RN, vy, v3 € R?, and for some C' > 0, then the continuity of f(-,v) can be weakened to measurability,
namely f can be assumed to be simply Carathéodory. Note that (1.10) is not restrictive when A = curl, that
is when v = Vu for some u € WH4(Q;R™), d = N x m. Indeed, in this case in the definition of I'-convergence
we may replace the weak convergence of the gradients in L7(£2; R%) with the strong convergence in L7(Q; R™)
of the potentials normalized to have zero average over €2, and thus

-tim | f (g,v(x)) dr =D(LY(QR™)) ~ iy | f (g Vu(x)) dw

= (LI R™) ~ lim | Of (g,Vu(x)) do,

by Proposition 7.13 in [10]. As shown in [27], if f(z,v) is a Borel function which satisfies the growth condi-
tion (As) then its quasiconvex envelope Qf satisfies (1.10).

A similar argument fails for general A-quasiconvexity, since the function Q4 f(x,-) may not even be contin-
uous, see Remark 1.2(i) above.

In Section 2 we collect preliminary results on Young measures and I'-convergence. The general relaxation
results (see Th. 1.1 and its exstension Th. 3.6) are proved in Section 3, and Section 4 is devoted to the applications
of the general relaxation principle to Theorems 1.3 and 1.5. Finally, in Section 5 we address homogenization of
functionals of A-constrained vector fields.

2. PRELIMINARIES

We start with some notation. Here € is an open, bounded subset of RY, £V is the N dimensional Lebesgue
measure, SV 1 = {z € R : |z| = 1} is the unit sphere, and Q := (—1/2,1/2)" the unit cube centered at the
origin. We set Q(x¢,¢) := 29 +eQ for e > 0 and zg € RY. A function w € L] (R™;R?) is said to be Q-periodic

loc

if w(z +e;) = w(z) for a.e. all z € RN and every i = 1,..., N, where (ey,...,ex) is the canonical basis of
RY. We write w € L(f_per(RN;]Rd). More generally, w € LfOC(RN;Rd) is said to be kQ-periodic, k € N, if

w(k-) is Q-periodic. We write w € L{ ., (RY;RY). Also CF5,..(RY; RY) will stands for the space of Q-periodic
functions in C>°(RY;R?).

We recall briefly some facts about Young measures which will be useful in the sequel (see e.g. [5,33]). If D
is an open set (not necessarily bounded), we denote by C.(D;R?) the set of continuous functions with compact
support in D, endowed with the supremum norm. The dual of the closure of C.(D;R?) may be identified with
the set of R%-valued Radon measures with finite mass M(D;R9), through the duality

() 1) = /D fWdv(y), veMDRY), feCu(D;RY.

A map v : Q — M(D;R?) is said to be weak-+ measurable if x +— (v, f) are measurable for all f € C.(D;R%).
The following result is a corollary of the Fundamental Theorem on Young Measures (see [5,7,34])

Theorem 2.1. Let z, : Q — R? be measurable functions such that

sup/ |2 |? dx < o0,
neNJQ

for some q > 0. Then there exists a subsequence {zn, } of {zn} and a weak-x measurable map v : Q — M(R?; R?)
such that

(1) vz >0, |[Val|m = [gadve =1 for a.e. x € Q;
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(ii) if f: Q@ x R? — R is a normal function bounded from below then

k—o0

hminf/ﬂf(x,znk(x)) dxz/ﬂf(x)dm < 00,

where

F@) = (e, f(z.) = | fl,y)dva(y);

Rd

(iii) for any Carathéodory function f : Q2 x R? — R bounded from below one has

Jim /Q F(@, 2 () dz = /Q Fla)da <

k—oo
if and only if {f(-, zn,,(+))} is equi-integrable.
The map v : Q@ — M(R%;R?) is called the Young measure generated by the sequence {z,, }.

Proposition 2.2. If {z,} generates a Young measure v and v, — 0 in measure, then {z, +v,} still generates
the Young measure v.

If 1 < g < oo then W=1¢(Q; R!) is the dual of Wol’q’ (4 RY), where ¢ is the Hélder conjugate exponent of g,
that is 1/¢+1/¢’ = 1. Tt is well known that F' € W—14(Q; R!) if and only if there exist g1,...,gn € LI(;RY)
such that

a ow
(F,w) = ;/Qgi Geda forall we WY (KR),

Consider a collection of linear operators A®) : R* — R! i =1,..., N, and define the differential operator

A LY RY) — Wha(Q; RY

v — Av

as follows:

N N
(Av,w) = <Z AW g;l,w> = —Z/QAU)’U 2710 dx for all w € Wy 9(Q; RY).
i=1 ¢ i=1 ¢

Even though the operator A so defined depends on 2, we will omit reference to the underlying domain whenever
it is clear from the context. In particular, if v € L‘{_per(RN;Rd) then we will say that v € ker A if Av =0 in
W=L9(Q;RY).

Throughout the paper we assume that A satisfies the constant-rank property (1.1).

The following proposition is due to Fonseca and Miiller [22].

Proposition 2.3. (i) (1 < ¢ < +00) Let 1 < ¢ < +00, let {V,,} be a bounded sequence in LI(;R?) such that
AV, — 0 in WL RY, V,, = V in LY(;RY), and assume that {V,,} generates a Young measure v. Then
there exists a q-equi-integrable sequence {v,} C LY(Q;R?) Nker A such that

/’Und:E:/Vd:E, [|vr, — Vil
Q Q

and, in particular, {v,} still generates v. Moreover, if Q = Q then v, —V € L‘f_per(RN; R?) N ker A.

o) — 0 foralll <s<gq,
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(i) (g = 1) Let {V,,} be a sequence converging weakly in L*(Q;R%) to a function V, AV, — 0 in W17 (Q; RY)
for some r € (1, N/(N — 1)), and assume that {V,} generates a Young measure v. Then there exists an
equi-integrable sequence {v,} C L'(Q;R?) Nker A such that

/’Undl‘:/de, ||’Un_Vn||L1(Q)_>Oa
Q Q

and, in particular, {v,} still generates v. Moreover, if @ = Q then v, —V € Li. per(RN; R?) N ker A.

(iii) (¢ = +oo) Let {V;,} be a sequence that satisfies V,, =V in L=(;R?), AV, — 0 in L"(Q) for somer > N,
and assume that {V,,} generates a Young measure v. Then there exists a sequence {v,} C L>®(;R%) N ker A
such that

/ Up dx = / Vidz, |[vn—Vallpe@) — 0,
Q
and, in particular, {v,} still generates v. Moreover, if Q = Q then v, —V € L% .. (RN; RY) Nker A.
In the second part of the paper we will need the following classical results from I'-convergence. For a proof

see [10].

Proposition 2.4. Let (X,d) be a separable metric space and let f, : X — [—o00,00]. Then

(i) there exists an increasing sequence of integers {ny} such that
I'(d) — klim frp () exists for all x € X.
— 00
(ii) Moreover
foo =T(d) = lim fy,
n—oo
if and only if for every subsequence { f,} there exists a further subsequence {fnkj} which T'(d)-converges
to foo.
3. RELAXATION

In this section we prove Theorem 1.1 and its generalization to the case where ¢ € {1,00} and p = oo (see
Th. 3.6).

Lemma 3.1. Let f : Q@ x R™ x RY — [0,00) be a Carathéodory function satisfying (H), with 1 < p < oo
and 1 < q < oo. Let (u,v) € LP(D;R™) x (LY(D;R%) Nker A), where D € O(R), and consider a sequence of
functions {(ux, o)} C LP(D;R™) x L1(D;RY) such that

up —u in  LP(D;R™), op —wv in L9(D;R?)

L . (3.1)
Avp, — 0 in W™HI(D;RY).

Then we can find a q-equi-integrable sequence {v,} C LI(D;RY) Nker A such that

vp = v in  LY(D;R%), /vkdx:/ vdz,
D D
and

liminf/ flz,u(z), vg(x)) dz <hm1nf/ fz,ug(x), 0k (x)) de.
D

k—oo k—o00
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Proof of Lemma 3.1. Consider a subsequence {(un,0,)} of {(ux, )} such that

lim fla,up(z), 0, (x)) d:n—hmmf/ fz,ug(x), 0 (x)) dz

n—oo [p k—o0

and {(un,0,)} generates the Young measure {d,(z) ® vz }eep. For i € N let
. 1
F; .= {x € D : dist(z,0D) < —,} ,
i

and consider cut-off functions ¢; with compact support in D and such that §; = 1 in D\ F;. Set w;, :=
0; (0, —v) € LY(D;R?) and fix ¢ € LY (D;R?), where ¢’ is the Holder conjugate exponent of g. Then

lim lim o(x)w; pn(r)de = lim lim o(2)0; () (0 (z) — v(x))dz =0, (3.2)

t—oon—oo [p t—oon—oo [p

where we have used the fact that 9 — v in L9(D;R?). Hence w;,, — 0 in L9(D;R%) as n — oo and i — oo.
Moreover, in view of the compact embedding

LY(D;RY) — W~14(D;RY
and the assumption that Ad, — 0 in W~14(D;R!); we have that

lim lim Aw;, =0 in W~ b4(D;R").

71— 00 N—00

Let G be a countable dense subset of LI(D;R?). By means of a diagonalization process we obtain subsequences
{u; == uy, } and {w; == w; n, = 0;(0,,, — v)} such that ||u; — u||rr — 0, (3.2) holds for each ¢ € G, and

A; —0 in W h(D;RY).

Hence w; — 0 in LY(D;R?), by the density of G in L(D;R?). By Proposition 2.3(i) there exists a g-equi-
integrable sequence {w;} C L9(D;R%) Nker A such that w; — 0 in L¢(D;R?), and

/widx:O, |[; —wil|ps(py — 0 forall 1 <s<gq. (3.3)
D

Set v; := v+ w;. Then [pvide = [pvdz, v; = v in LY(D;R?). By Hélder’s inequality and by (3.3), for
1<s<q

[[On, —

Un, — U — Wil||Ls(py + ||Wi — L*(D)
<1 = 0:)(0n, — v)l|Ls(p) + [|0i — (3.4)
<||on; — vl[Lap)y | Fil" + |[@i — wil|ps(py — 0
as i — oo and where r := (¢ — s)/sq. By (3.4) and Proposition 2.2, the two sequences
{(u(@),vi(x))}  and  {(uwi(z),d:(x))}
generate the same Young measure {J,(;) ® Vs }zep. Hence by Theorems 2.1(ii) and (iii)
lim [ f(z,u(x),vi(z dm—/ fla,u(x), V)dr, (V da:<hm1nf/ flx,ui(x), 0;(x)) dz
i—oo Jp R 17— 00 (35)

—hmmf/ f(z,ug(x), 0k (x)) dz,

k—o0
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where we have used the fact that {f(z, u(z),v;(x))} is equi-integrable over D, which follows from (H) and the
g-equi-integrability of {v;} over D. O

It follows immediately from Lemma 3.1 that under its assumptions on f it holds:

Corollary 3.2. For D € O(Q) and (u,v) € LP(;R™) x (L(Q;R?) Nker A)

n—oo

F((u,v); D) = inf{lim inf/ g(z, v, () dz - {v,} € LYD;RY) Nker A is g-equi-integrable
D
and v, = v in Lq(D;Rd)},

where g is the Carathéodory function defined by

g(z,v) = f(z,u(x),v).
Note that, by (H), the function g satisfies the growth condition
0<g(z,v) <O+ [u(@)]” +[v]7) (3.6)
for a.e. x € Q and all v € R%. Moreover, since g is a Carathéodory function, by the Scorza-Dragoni theorem

for each j € N there exists a compact set K; C , with [Q\ K;| < 1/4, such that g : K; x R? — [0,00) is
continuous. Let K be the set of Lebesgue points of xx;, and set

[j K;NK;) N L(u,v), (3.7)

where L(u,v) is the set of Lebesgue points of (u,v). Then

1
Q\w| S IQVE <= =0 asj— ool
J

Corollary 3.3. Assume that 9 € w, let v € LY(Q;R%) Nker A, and consider v, — 0% and a sequence of
functions

{ox} € LYQ;RY) Nker A
such that
o — v in LYQ;RY).

Then we can find a q-equi-integrable sequence {wy} C L{__.(RV;R?) Nker A such that

1-per
wy, — 0 in  LY(Q;RY), / wydr =0,
Q

and

k—oo

lim 1nf/ g(zo,v(y) + wi(y)) dy < likm inf/ g(xo + vy, U (y)) dy.
Q - JQ
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Proof of Corollary 3.3. We proceed as in the proof of Lemma 3.1 up to (3.4). Since the sequence {v;} is g-equi-
integrable, for any n > 0 there exists § > 0 such that

sup [ O+ uao)? + (o)) dy <1 (38)
7 D

for any measurable set D C Q, with |D| < §, and where C is the constant given in (H). Fix n > 0 and let § > 0
be given according to (3.8). By the Biting Lemma (see [6]) we may find a further subsequence {0n;} C {0n, }
and a set E' C @ such that |@Q \ E| < § and {0y, } is ¢g-equi-integrable over E. Hence there exists 0 < §; < §
such that

sup [ C(L+ fuleo) P+ [on, ()7 dy < (39
i Jp
for any measurable set D C E, with |D| < d;. Moreover, as {0y, }, {v;} are bounded in L?(Q; R?), we may find
L > 0 such that
|E\ Ej| <61, where Ej:={ycFE: |i,,y)|<L,|vi(y)| <L} (3.10)

Note that by construction of v; and by Proposition 2.3, v; = v + w; where w; € LY __ (RV:R%) Nker A. From

1-per
the definition of the set w there exists an integer jo such that z¢ € K;, N K. Since

g: Kjy x B4(0,L) — [0, 00)
is uniformly continuous, there exists p > 0 such that

lg(x,v) — g(z1,v)| <7 (3.11)

for all (z,v), (z1,v) € Kj, x B4(0, L), with |x — 21| < p. By (3.10) and (3.11)

lim [ g(xo + rn,y, 0n,(y)) dy > liminf / 9(xo + Ty, On, (y)) dy
E

17— 00 Q J—0 p
. 1 .
> liminf — / 9(x, O, ((x — 20)/1n;)) d (3.12)
J—0 rnj (;80+Tnj Ej)ﬂKjO
. 1 .
> —n+ liminf — 9(0, On; ((x — 20)/70;)) da.

J—oe rnj (o+rn; E;)NKj,
Using, once again, the fact that |0, (y)| < L for y € Ej;, by (3.6) we have that

i g(xO’@nJ_((x — xO)/rnj)) dx < C(]_ + |u(x0)|p 4 Lq) |Q($O,Tnj) \Kj

ol

=0
N N
Tn; J(wotrn; Ej)\Kjq Tn;

as j — 00, because xy is a Lebesgue point of xx; . Consequently, from (3.12) we get

. . o1 N
lim 9(xo + Tn,y, 0n, (y)) dy = —n + hjm inf — 9(20, On,; ((z — 20)/Tn;)) d

11— 00 — 00
Q rnj 320+T‘nj E;

=-n+ Hm inf/ g(:vo, 'ﬁnj (y)) dy
J—0o0 E

J

> —2n+1iminf/ 9(0, 0, (y)) dy,
E

J—0o0
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where we have used (3.6, 3.9) and the fact that |E \ E;| < §;. We may now proceed as in the previous lemma,
using the Carathéory function h(z,v) := xg(z)g(xo,v), to obtain

lim g(xo + 1, y, On, (v)) dy > —2n+ liminf/ g(xo,v;(y)) dy > —3n+ 1iminf/ g(xo,v;(y)) dy
Q j—oo S j—oo Jo

by (3.8). It now suffices to let n — 0F. O

Theorem 1.1 follows from Lemmas 3.4 and 3.5 below. We will use the notation u| A to denote the restriction
of a Radon measure p to the Borel set A, i.e., u| A(X) := u(X N A) where X is an arbitrary Borel set in the
domain of p.

Lemma 3.4. F((u,v);-) is the trace of a Radon measure absolutely continuous with respect to LN Q.
Proof of Lemma 3.4. As it is usual, it suffices to prove subadditivity (see e.g. [3,21]), i.e.
F((u,v); D) < F((u,v); D\ B) + F((u,v); C)
if BCcC C cc D. Fixn > 0. By Corollary 3.2 there exist two g-equi-integrable sequences
{vp} € LYD \ B;RY) Nker A, {w} € LY(C;RY) Nker A,
such that
v, —v in LY(D\ B;R%), wy —v in  LI(C;RY),

and

lim g(@,vk(x)) dz < F((u,v); D\ B) +1,

k—o00 D\B

klim g(z, wi(x)) de < F((u,v);C) +n.

Let 6; be smooth cut-off functions, 6; € C°(C;[0,1]), 8;(z) = 1 for all x € B, and |[{0 < §; < 1}| — 0 as
j — o0o. Set

Vj,k = (1 — Hj)’Uk + 0wy
Then, for j fixed,
N

N
. \00; . 06;
AV = (1= 0;) Avg + 0, Awy, — Y Ay, o+ > AWy, 7 0

i=1 =1 v

as k — oo in W~14(D;R!) strong. Using a diagonalization procedure such as that adopted in the proof of
Lemma 3.1, we get

Vi —wv in LYD;RY),  AV; -0 in W™ H(D;RY,

where Vj = V]kj By Lemma 3.1 we can find a g-equi-integrable sequence {V;} C L9(D;R?) N ker A such that
V; — v in L9(D;R%) and

liminf/ g(x,Vj(x))dxgliminf/ g(z, Vi(z)) dz.
D D

j—oo Jj—0o0
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Consequently, in view of Corollary 3.2

J—0o0 J—0o0

F((u,v); D) < hminf/Dg(x,Vj(x)) dz < hminf/Dg(x,\A/j(x)) dx

< lim sup/ g(x, vk, (z)) do + lim sup/ 9(x, w; (v)) dx
{6,=0} {6;=1}

j—o0 j—oo

+ hmsup/ C(1 + |u(@)? 4 [wg,; (2)|? + |vx; (x)|?) do
j—oo  J{0<0;<1}
<20+ F((u,v); D\ B) + F((u,0); C).
It suffices to let n — 0T. Finally, note that by (H) we have that

Fl(u,0),7) < O+ uf? + o] )LV 2.

O
Lemma 3.5. For LN a.e. zg € Q we have
dF((u,v);-
) (4) = Qu (a0, ulan).viao).
Proof of Lemma 3.5. Fix z¢ € w, where w is defined as in (3.7), and such that
tn o [ ue) - ww)Pdo = lim [ Jule) < (el de =0 (313)
im — u(x) — u(xo r= lim — v(z) — v(xo r = .
r—o+ N Q(wo,r) r—o+ N Q(zo,r)
and
dF((u,v);) o F(u,0); Q(zo,7))
acN (o) = i, rN =0

where, by virtue of Lemma 3.4, we have chosen the radii » — 0% such that

F((u,v); 0(Q(z0,7))) = 0.

By Corollary 3.2 and for r > 0 fixed, let {v,,} C L4(Q(zo,7);R?) Nker A be such that v,, — v in
LY(Q(zo,7); R?) as n — oo and

lim 9@, Ve (@) d < F((u,0); Q(wo, 1)) + N+,

n—oo Q(IO 77’)
Then

df((“? v);-)
dLnN

r—0+ n—oo 7"N r—Q0+ n—oo

1
(xo) > liminf lim — /Q( )g(x,vn,r(x)) dr = liminf lim ; g(xo + 1y, v(z0) + Wnr(y)) dy
Zo,T

where wy, -(y) := v (20 + 1Y) — v(20). We claim that w,,, — 0 in L9(Q;R?) if we first let n — oo and then
r — 0T. Indeed let ¢ € Lq/(Q; R?), where ¢’ is the Holder conjugate exponent of q. Using Holder’s inequality



A-QUASICONVEXITY: RELAXATION AND HOMOGENIZATION 9595

and then making a change of variables, we get
[ ctwrwentnds] < | [ o toorm) =i+ ) o]+ | [ ct)oteo + ) = wlaw)
Q

§ T_N /Q(zo,r) 50((1' - mO)/r)(vn,r(x) - U(l‘)) dx

1/q
1
+ Il o) (r—N /Q o @ —v(m)de) .
0,

If we now let n — oo the first integral tends to zero, since v, » — v in L9(Q(xg,7); R?). The claim then follows
by letting 7 — 0% and by using (3.13). Diagonalize to get w, € L(Q; R%)Nker A such that s — 0 in L9(Q;RY)
and

%( 0) 2 lim Qg(xo+rky,v(xo)+wk(y))dy

where 7, — 0. By Corollary 3.3 there is a g-equi-integrable sequence {wy} C L{ RY;R%) Nker A such that

1- per(

wr —0 in Lq(Q;Rd), /wkdy:O,
Q

and
dF ((u,v);-) .
— (o) = lim [ g(zo + 11y, v(wo) + Wi (y)) dy
dEN k—o0 Q
> timinf | Flan,ulzo),o(e0) + wi(0)) dy = Qaf(ao,ulza). oan))
— 00 Q
To conclude the proof of the lemma, it remains to show that
d ;e
%(wo) < Qaf(xo,u(zo),v(xo)) for LY ae. zo € Q.

Fix 7 > 0 and let w € C75, (RY; R?) Nker A be such that fQ wdy =0 and

/Q F(o, ulzo), vlxo) + w(y)) dy < Qaf (o, ulo), v(zo)) + 1. (3.14)

For any fixed 7 > 0 set wy, (x) := w(n(z — x0)/r). Then wy,, — 0 in LY(Q(z,7);RY) as n — oo. Hence, by
Corollary 3.2,

F((u,v); ]?(xo,r)) < Tim inf lim inf — g9(@,v(z) +wn (@) dz.  (3.15)

r—0+ n—oo 7T Q(IO,T)

dF((u,v);-) o
goy (@) = lim, r

Fix L > [v(zo)| + [|w|[r= + 1, and let j be such that zo € K; N K N L(u,v), where we are using the notation
introduced in (3.7). Since

g: K; x Bq(0,L) — [0,00)

is uniformly continuous, there exists 0 < p < 1 such that

lg(x,v) — g(z1,v1)] < n (3.16)
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for all (x,v), (z1,v1) € K; x Ba(v(xo), L), with |z — 21| < p and |v — v;1] < p. Let
Erp = {2 € Qxo,7) : |v(z) — v(x0)| < p}-

We claim that

. 1
limsup —

/ C(L+ fu()[P + [v(x)]? + [Jw]|] )dz = 0. (3.17)
r—ot T Q(z0,r)\(Er pNK;)

Since |v(z) — v(xg)| > p for © € Q(zo,7) \ Er p, we have

=~/ O+ @) + @) + [lwllt ) < ¢ 1@\ (Erp 0 K)
T T
Q(zo,m)\(Er ,NKj)
C
F O (ule) = o)l + o() — oeo)|?) do
" JQ(xo,r)

and

@0, ) \ (Erp VK _ [QLo, )\ Kyl | |Qx0, 1)\ Erpl _ [Q(x0,7) \ K
N = N N = N

1c

04 rN lv(x) —v(wo)|?der — 0 asr— 0T,
Q(zo,r)

where we have used (3.13) and the fact that z is a Lebesgue point of xx;. Then by (3.6, 3.15-3.17) and (3.14),

dF((u,v);- PO |
7%’ ) (20) < BRINRRIR J,, o, S50 F a0
1
+ lim sup —= C(1+ |w(@) P + |v(@)|? + [|w]|] o )dae
r—0t T JQ(x0,m)\(Br,,NK;)
1
<7+ liminflim inf — g(xo, v(x0) + Wy r(x)) da
r—0+t mn—oo 7T Q(zo0,r)

=1+ lim inf/ g(zo,v(x0) + w(ny)) dy
Q

- /Q 9o, v(z0) + w(y)) dy < 20+ Quf (o, ulzo), vlxo)),

by virtue of the equality

liminf/Qg(xo,v(:vo)+w(ny))dx=/g(xo,v(fvo)-f—w(y))dy,

n—oo Q
which follows from the @Q-periodicity of the function g(xo,v(zo) + w(-)). It now suffices to let n — 0%, O

As mentioned in the introduction, Theorem 1.1 continues to hold when ¢ € {1,000} and p = oo. Indeed, let
1 <p, ¢ < oo and assume that

(A) f:Qx R™ x R? — [0,00) is a Carathéodory function satisfying the following growth conditions for a.e.
r € Q and all (u,v) € R™ x R%:

0 < f(z,u,0) <O+ [uf’ + o) if 1 <p, g <oo,
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where C > 0;
0 < fz,u,v) < a(z,u) (14 |v]?) if p=ocand 1 <q< oo, (3.18)
where xqa € L2 (RN x R%; [0, 00));
0 < fz,u,v) < b(z,v) (1+ |ulP) if1 <p<ooandqg=o0,
where xob € L (RY x R™; [0, 00));

xaf € LS (RY x R™ x R%; [0, 00)) if p=g=o0.

For D € O(Q) and (u,v) € LP(Q; R™) x (Lq(Q;Rd) N ker .A) define
F((u,v); D) := mf{ lim inf F((un, vn); D) ¢ (tn, vn) € LP(D;R™) X LY(D;RY),
Up — win LP(D;R™), v, — v in L*(D;RY), Av, -0 in W‘“(D;Rl)}
if ¢ =1 and for some r € (1, N/(N —1)); as in (1.2), we set
F((u,v); D) := mf{ lim inf F((un, vn); D) ¢ (un,vn) € LP(D;R™) X LY(D;R%)
U, — win LP(D;R™), v, — v in LYD;RY), Av, — 0 in W b4(D;R!) }
if 1 <q < oo;
F((u,v); D) := inf{ lim inf F'((un, vn); D) ¢ (un,vn) € LP(D;R™) x L>®(D;R%),

U, — uin LP(D;R™), w, > v in L*(D;R?Y), Av, =0 in L’“(D;Rl)}

if ¢ = 0o and for some r > N.
We can prove the following theorem:

Theorem 3.6. Under condition (A4) and the constant-rank hypothesis (1.1), for all D € O(Q2), u € LP(Q; R™)
and v € LI(Q;RY) Nker A, we have

F((u,v); D) = /D Oaf(x,u(zx),v(z))dz.

Proof of Theorem 3.6.

Step 1. Assume first that 1 < p < co and ¢ = 1. The proof is similar to the one of Theorem 1.1, with the
exceptions that in Lemma 3.1 condition (3.1) should be replaced by

up —u in LP(D;R™), op—v in LYD;R%),
Ab, — 0 in WL (D;R) for some r € (1, N/(N — 1)),
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that we use the compact embedding
LYD;RY) — w=tr(D;RY, 7€ (0,N/(N —1),

to diagonalize {w; .}, and (3.3, 3.4) are replaced, respectively, by
/ wzdx:O, ||’Lf)i7wi||L1(D)*>0,
D

[0, — villzapy < [0, —v —Wil|Lrpy + [[@i — willLypy < (11— 60:)(0n; — V)|[L2 (D) + (|05 — wil|L1(D)
<o, = vllza(m) + [10i — wil [ (py) — 0,
where we have used the fact that ||0,, — v||z1(F,) — 0 as i — oo, which is due to the equi-integrability of the
original sequence {0y — v} and the fact that |F;| — 0.

Step 2. If p = 0o and 1 < ¢ < oo then in Lemma 3.1 the only change needed is in deriving (3.5), which now
follows from the fact that, by (3),

0 < f(z,u(x),vi()) < Aoo (1 + |vi(2)[?),
where Ay = esssup {a(z,u) : z € Q, |u| < |Ju|lec} < 00, and thus equi-integrability of { f(z,u,v;)} follows
from the g-equi-integrability of {v;} over D. Moreover in the remaining of the proof of Theorem 1.1, the growth
condition (3.6) should be replaced by
0 < g(w,v) < As (1+[v]*) (3.19)

for a.e. € Q and all v € R%.
Step 3. If 1 < p < oo and ¢ = oo then in Lemma 3.1 the hypothesis (3.1) should be replaced by

up —u in  LP(D;R™), 0 2o in L>®(D;RY),
Ad, —0 in L"(D;R") for some r > N,

the growth condition should be replaced by (3.19) if 1 < p < 00, ¢ = o0, and by yag € L (RY x R%; [0, 00)) if

loc
p = q = 00, and we can proceed similarly to the proof of Lemma 3.1 to show that w; , 20in L™ (D;R%) and

Aw; ,, — 01in L™(D;RY), and use Proposition 2.3(iii) to get

[[vi = On, |l — 0.

‘We omit the details. O

4. PROOFS OF THEOREMS 1.3 AND 1.5

Proof of Theorem 1.3. We present the proof for 1 < p < oo, the case p = oo being very similar. Fix u €
WP (Q;R™), and for D € O(R) define

F(u; D) := inf { hminf/ flz,ug, ..., Voug)de : {uy} C W¥P(D;R"),
D

k—o0

up — win W“’(D;R")},
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and let g be the Carathéodory function

g(x,v) == f(z,u(z),... ’vs—lu(x),,u).

Reasoning as in Lemma 3.4, it is easy to show that F(u; -) is the trace of a Radon measure absolutely continuous
with respect to LV €.
For any function v € LP(Q2; E7) set

G(v; D) := inf{likrn inf/ g(x, Vi(z))de : {Vi} C LP(D; EY) Nker A is p-equi-integrable,
— 00 D
and Vi —wvin LP(D;E;I)},

where the differential operator A is given by

0 0
Av = (8_ Viy..infingz.is — [

T O Ui1~~ihiin+2mis) .
v J 0<h<s—1,1<4,j,21...is <N

Here h = 0 and h = s — 1 correspond to the multi-indeces jis...is and 47 ...is—1j. By Theorem 3.6 (and
Cor. 3.2), and where the target space R is being replaced by the finite dimensional vector space E?, for any
D e O(Q)

6(0:D) = [ Qugle.v(a) da,
where for a.e. z € Q and for all v € E7,
Qag(x,v) := inf { /Qg(fv,v +w(y))dy : we CT5e,(RY; EY) Nker A, /Qw(y) dy = 0}-

As shown in [22],

{w €O RN ED) - Aw =0, /de:n = 0} ={Vp: p e C7(RV;R")} - (4.1)
Hence

Qug(z,v) = inf { /Qg(:v,v +Vio(y))dy : ¢ € Cf?per(RN;RN)}
In particular
G(Viu; D) = /D Q*f(x,u,...,Vu)dz. (4.2)

Let {ux} € WP(Q;R™) be any sequence such that up — u in W>P(Q;R™). Extracting a subsequence, if
necessary, we may assume that

uy = (up, ..., Vi ) —ui=(u,..., V) in LP(D; Efy_y)-
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Since Viuy — V®u in LP(D; E?) and AV®u;, = 0, by Lemma 3.1 there exists a p-equi-integrable sequence
{Vk} C LP(D; E?) Nker A such that V}, = V®u in L?(D; E?) and

likminf/ g(z, Vi(z)) dx < hkrnmf/ flx,ug, ..., Vug)de.
—00 D —00
Thus
G(V?u; D) < F(u; D). (4.3)

To prove the converse inequality, fix zo € © and r > 0, and consider any p-equi-integrable sequence {Vj} C
LP(B(xo;7); E™) Nker A such that Vi, — V*u in LP(B(zo;r); E?). An induction argument, similar to the one
used in [22] to prove (4.1) above, shows that AV}, = 0 if and only if there exists ¢ € WP (B(xo;7); R™) such
that V®p, = Vi. By Lemmas 1.1-1.3 in [24], for any ¢ € WP(B(xz;7); R™) we may find a unique function
P € C>=(R™;R") whose components are polynomials of degree s — 1 such that

/ Vip—-P)de=0 0<I1<s—1, (4.4)
B(zo,r)

and a constant C'(n, N, s,p,r) > 0 such that the following Poincaré type inequality holds
||<P - P||W5'p(B(Io;7’);R") < CHVS@HLP(B(IO;T);EQ)- (45)

Let Py, and P be the functions associated to ¢y and u, respectively, and satisfying (4.4, 4.5). Since V3¢, — V*u
in LP(B(xo;r); ET), we have that

o — Py = u— P in WP (B(xo;7); R"),
0
ug := @ — P, + P — uin Ws’p(B(xo;r);RN).
Consider a subsequence of {V4} (not relabelled) such that the two sequences
{(ug, ...,V ug, Vi)t and  {(u,..., Vi lu, Vi)}
generate the Young measure {J(y(y),... ve-1u) ® Va zeB(ao,r), and

(U, .., Vi ug) — (u,..., Vo )

pointwise and in LP(B(zg;r); ET_ ;). Since {Vi} is p-equi-integrable and wuj converge to wu strongly
in Ws=1P(Q; RY), it follows from Theorem 2.1 and the growth condition on f that

lim flug, ...,V ug, Vi) do = lim g(x, Vi(z)) dz

k=00 JB(zo,r) k=00 JB(zo,r)
Thus
G(Viu; B(xg,r)) > F(u; B(zo,71)),
which, together with (4.3), yields

G(V?u; B(xo,1)) = F(u; B(xo,T)). (4.6)
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Since F(u;-) and G(V®u;-) are both traces of a Radon measures absolutely continuous with respect to £V |,

by (4.2) and (4.6) we immediately obtain that

f(u;D)zg(Vsu;D):/ oOf(z,u,...,Vu)dx.
D

Proof of Theorem 1.5. We only proof Theorem 1.5 for 1 < p < oo, the case p = oo being very similar

For v € RNV ~1 Jet
v= (W, .. o), where v@ eRY, i=1,... N—-1, o™ eRN-1
Given a function v € LP(Q; RY 2*1) define the differential operator A as follows

curl v®

Av = :
curl -1
71))

curl (vN), —v%l) — .= vng_l

A straightforward calculation shows that A4 satisfies the constant-rank property (1.1).

Given a Carathéodory function f : QxRN xRN” — [0, 00), we define f(z, u,v), for (x,u,v) € QxRN xRN*-1,

as

. ) o)
f(a:,u,v) :f T, u, ,0(1)7.“ av(N 1)a (1) (N-1) .
vy — . — Uy

Let u € WHP(Q;RY), with divu = 0, and let {u,} C WHP(Q;RY) be such that divu, = 0 and u, — u in
WP (Q;RN). By Lemma 3.1 there exists a p-equi-integrable sequence {V,,} C LP(£); RNZ*I) N ker A such that

V, = v in LP(D; RY°~1) and

hminf/ f(x,u,Vn) dx < liminf/ f(x,un,vn) dr = liminf/ f(z, upn, Vuy,) d,

n—oo

where
Du pu)
Ox1 Ox1
— 1 N-1 . _ 1 N—1 .
Up 1= VugL),...,Vu% ), : NRES Vu(),...,Vu( ), :
6“9’) ouN)
OrN_1 OrN_1
Define

G(v; D) := inf{lim inf/ §9(x, Vo (2)) de :{V,} C Lp(D;RN2_1) Nker A is p-equi-integrable,
D

n—00

and V, = vin LP(D;IR{N21)},
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where g is the Carathéodory function defined by §(z,v) := f(z,u(z),v). By Theorem 3.6 (and Cor. 3.2)

G(v;2) = /Q QAd(z,v) da, (4.9)

where
Oag(x,v(z mf{/ Fla,u(@), (@) +wy))dy : we C per(RN RN “HNker A, / y—O}-

Now
w e C’f_"per(RN;RNz_l) Nker A and / w(y)dy =0
Q

if and only if there exists ¢ € C{° per(RN; R™) such that

32(1\’)
8931
_ 1 N—1 .
w = V@(),...,ch( ), :
8¢(N)
OrN_1
(N) ) (N-1)
and 28— = %2 9% . Hence
or N Ox1 OrN_1

Qug(z,v(x)) = inf{/Qf(fc,u(w),VU(x) + VoY) dy : ¢ € C75,(RY;RY), dive = 0}

= (@ ue), Vu(@)). (4.10)
Thus, by (4.7, 4.9), and (4.10),

/ f(z,u(z), Vu(x)) dz = G(v; Q) < hmmf/ fla,u, V) de < hmmf/ f(z, up(x), Vuy(z)) dz,
Q

n—00 n—oo

and, in turn,

n—oo

/ f(z,u(z), Vu(z)) de < inf { liminf/ f (@, un (), V() do : {u,}y € WHP(Q;RY),
Q Q
divu, =0, u, —~uin Wlfp(Q;RN)}

To prove the converse inequality, fix € > 0. By the definition of G(v; §2), there exists a p-equi-integrable sequence
{V,,} € LP(D;RY*~1) N ker A such that V,, — v in LP(D;RY°~1) and

/Qf(a:, w(x), Vu(x)) de +¢ > liminf [ §(z,V,(z))de =liminf | f(z,u(z), Vo (2))de, (4.11)

n—00 D n—00 D

where we used for v the notation introduced in (4.8). Now AV,, = 0 if and only if there exists p,, € WHP(Q;RY)
such that

BgaslN)
8321
VrL = v@ri(q,l)a see 7v<)0$LN_1)7
9oV

OxrN_1
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&) 9V =1

oM 9 ; in LP(Q: RN
and 52— = - — ... — 52— Since Vi, — Vu in LP(;R™), we have that

1
On — —/ on(x)de — U in Wl’p(Q;RN),
12 Jq
where U = u + ¢ for some constant ¢ € RY. So
1 . 1 N
Up = @n — — [ op(x)dr —c— uin WHP(Q;RY),
19| Jo
and div u,, = 0. Consider a subsequence {V,, } of {V,,} such that

lim /f(x,u(x),Vn (x) dm—hmmf/ fla,u(z (x))dx

k—o0 9} n—00

and {(un,, Va,)} and {(u, Vi, )} generates the Young measure {0, (,) ® vz }zeq. Since {V,,, } is p-equi-integrable
and u,, converge to u strongly in LP(€2;RY), it follows from Theorem 2.1 and the growth condition on f that

klir{;/{)f(x,u(x),vn (x) x—klir{;/fx Un,, (2), Vo, (2)) dx.

By (4.11)

/ flo,u(@), Vu(@)) de +e > lim | f(z,un, (z), Vp, (@) de = lim [ f(z,un, (z), Vi, (z)) dz
Q k—oo Jq k—oo Jo

> inf{liminf/ [z, un (), Vu, () dz - {u,} € WHP(Q;RY),
n—oo Q
divu, =0, u, — uin Wl”’(Q;RN)}-

It now suffices to let ¢ — 0. O

5. HOMOGENIZATION
In this section we will limit our analysis to the case where 1 < ¢ < co.

Lemma 5.1. Let f : RV xRY — [0, 00) be a continuous function satisfying (A1)-(Az). Letv € LY(D;R%)Nker A,
where D € O(Q), e — 07, and let {0} C LI(D1;R?) be a sequence of functions such that

op — v in  LIY(Dy;RY, Aty — 0 in W~b4(Dy;RY),

for some D1 € O(Q), with D1 C D. Then we can find a q-equi-integrable sequence {v} C Li(D;R?) Nker A
such that [, vpde = [vdz,

v = v in  LY(D;RY), [0 y =0 foralll<s<gq (5.1)
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and

lim inf fx/ep,vp(z)) do < likniinf f(x/er, 0x(z)) du,

k—o0 D, o D,

lim sup / o ()7 da < / o) |7 dz.
D\D,

k—oo D\D:

Moreover, if D = Q, then vy = v + wy, with wy, € L‘f_per(RN; R?) N ker A.

Remark 5.2. Lemma 5.1 implies, in particular, that for every v € L4(£2;R?) Nker A

I —liminf 7., (v; D) = inf{lim inf F., (vn; D) : vp, € LYD;RY) Nker A,

n—oo n—oo
v, — v in LY(D;RY), / vndx:/ vda:},
D D

and if D = @ then

I —liminf 7., (v;Q) = inf{lim inf Fo, (v +wn; Q) : w, € LY (RY;RY) Nker A
n—oo

n— oo 1—per

w, — 0 in LY(Q;RY), / wnd:p—O}
Q

Proof of Lemma 5.1. Let g(x) := x in Q and extend it periodically to RY with period 1. Set gi(z) := g(x/c).
Since {gx} is bounded in L> and 9y — v in L(D1;R?), by Theorem 2.1 there exists a subsequence {e,} of
{ex} such that

{(gn(x),0n(x))} generates a Young measure {v, }

and
im [ f(2/en, in(z) dmznkrggf/]) F(2)en, () da.

n—oo D1
For i € N let
1
F; = {IE € Dy : dist(z,0D1) < —_}
i
and consider cut-off functions 6; with compact support in D; and such that 6; = 1 in Dy \ F;. Set w;, =

0; (0, —v) € LY(Q;R?). Then we can proceed as in the proof of Lemma 3.1 to find a g-equi-integrable sequence
{vi == v+ w;}, where {w;} satisfies (3.3, 5.1) holds, and the two sequences

{(gni(@),vi(x))}  and  {(gn,(2), 0n; ())}

generate the same Young measure {v,}. Hence by Theorem 2.1

lim f(x/en,,vi(z)) de = /D1 </]RN><]Rd F(X,V)dv, (X, V)) dr < lim f(x/en,;, On,; (x)) dz

17— 00 D, =00 Jp,

= liminf/D f(x/er, 0 (2)) dz,

k—oo

where we have used (Az), and the facts that {v;(z)} is ¢g-equi-integrable over D7, and that f is a continuous
function.
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If
o

To prove the second inequality in (5.2), we remark that by (3.3) and the fact that @; = 6;(0,, — v)
outside D1, we have for all 1 < s < ¢

l[vi = vllLs(p\Dy) =l[®i = wil[Ls(D\Dy) — O

Hence {v;(z)} generates the Young measure {1, = d,(,)} on D\ Dy, and since {v;} is g-equi-integrable we have

that
limsup/ |v;(z)|? dx = / [Y]9dp, (Y)dr = / [v(x)|? dz.
i—00 D\D; D\D1 D\D:

To complete the proof it suffices to define vy := vy, for each n; < k < n;y;. Clearly
lim inf f(x/eg,vip(x)) de < liminf f(x/en,,vi(x)) d.
k—o0 D i—00 D,
O

Lemma 5.3. Let ¢, — 0% and let R(Q) be the family of all finite unions of open cubes contained in Q and
with vertices in Q. Then there exists a subsequence {en, } of {en} such that the T -limit

I' - lim F

koo Mk

(v; R)
exists for all v € LY(R;RY) Nker A and for all R € R(Q).
Proof of Lemma 5.3. Fix R € R(Q). For simplicity set F,, := F.  and let B denote the closed unit ball of
L(R;R%). For each | € N consider
1B:={ve LYR;RY) : ||v||p« <1}

Since ¢ > 1 the dual of LI(R;R%) is separable, and hence the space [ B endowed with the weak topology is
metrizable. Let d; be any metric which generates the L?-weak topology. Consider [ = 1 and apply Proposition 2.4
to the sequence of functionals {F,(-; R)} restricted to (BNker.A,d;). Then we can find an increasing sequence
of integers {n}} such that

I'(dy) — jlirgo T (v; R)

exists for all v € BNker A. We now proceed recursively, so that given [ € N we apply Proposition 2.4 to the
sequence of functionals {F, -1 (-; R)} restricted to (I BNker.A,d;) to obtain a subsequence {n}} of {né_l} such
J

that
F(dl) - hIIl J nl (’U; ]E)
Jj—oo J

exists for all v € I BNker A. Let ng := ny. Since {n} is a subsequence of all {n}} we have that for each I € N
I'(d;) — lim F,, (v; R)
k—o0

exists for all v € | BN ker A.
We claim that the I'-limit

r— klim Fo(v; R) (5.3)

exists for all v € LY(R; R?) Nker A. Indeed assume by contradiction that this is not the case. Then there exists
v € LY(R;R?) Nker A for which

F (v;R) =T — likminf]-'nk (v; R) < F"(v; R) :=T — limsup F,, (v; R).

k—o0
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Let vy € LY(R;RY) Nker A be such that vy — v in LI(R;R?) and

liminf F,, (vg; R) = F~ (v; R).
k—o0

Since v — v in LY(R; R?), we may find an integer [y such that vg, v € lo BNker A for all k£ € N. Consequently
di, (vg,v) = 0 as k — oo,
and thus

I(dy,) — likm inf Fp,, (v; R) < 1ikm inf F,,, (vi; R) = F~ (v; R) < F(v; R) < T(dy,) — limsup Fy, (v; R),

k—oo

which contradicts the existence of the T-limit I'(d;,) — klim Fn, (v; R), and where we have used the fact that

Ft(v;R) = inf {lim sup Fn, (213 R) © 2x € LYR;RY) Nker A, 2z, — v in Lq(R;Rd)}

k—o0

<T'(di,) — limsup F,, (v; R)

k—o0

= inf {limsupfnk (zg; R) : 2z €loBNker A, zp — v in Lq(R;Rd)} .

k—oo

Hence (5.3) holds. To conclude the proof of the lemma it suffices to observe that since the family R(2) is
countable, with a diagonal process it is possible to extract a further subsequence for which (5.3) holds for all
R € R(Q).

O

Remark 5.4. The previous proof asserts that for any given D € O(Q) and &,, — 0% there exists a subsequence
{en,} (depending on the particular set D) of {€,} such that such that the I'limit

I' - lim F., (v;D)
k—o0 k
exists for all v € LI(D;R?) Nker A.

Lemma 5.5. Assume that conditions (A1)-(A2) hold. Given e, — 0T, let {e,, } be as in Lemma 5.3, and for
any D € O(Q) set
F~ (D) :=T —liminf . (-; D).
k—o0 k

Then F~(v;-) is the trace of a Radon measure.

Proof of Lemma 5.5. We start by establishing inner regularity. Precisely, we claim that for any v € L4(D;R%)N
ker A and D € O(Q)

F~(v;D)=sup{F (»;R): RER(Q), RC D} = }%i}nD}"f(v;R), (5.4)

where the limit is taken over all finite unions of cubes R € R(Q2) with R C D. For fixed n > 0 there exists 6 > 0
such that

Cl+ ()| de <n (5.5)
Do
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for any measurable set Dy C D, with |Dg| < §, and where C' is the constant given in (Az). Let R € R(Q)), with
R C D and |D\ R| <4, and, in light of Lemma 5.3, consider a sequence {9y} C LY(R;R%) Nker A, with ¢ — v
in L9(R;R?), and such that

klirn Fen, (03 R) = F~(v; R).

By Lemma 5.1 there exists a g-equi-integrable sequence {v;.} C LI(D;R%) Nker A such that

vp —= v in  LI(D;RY), /vkdxz/vdx,
D D

and
liminf/ f(x/en,,ve(x)) de < lim [ f(z/en,,0x(z)) dz,
k—oo R k—oo R
limsup/ |vg (x)]9 da < / |v(x)]? da.
k—o0 D\R D\R
Hence

F~ (v <hm1nf/ f(x/en,,ve(z da:<khm/f (x/€n,,, Uk (x)) dr + limsup C(1+ |vk(x)]?) dz
— 00 k—oo D\R

<F (v;R)+ C(1+ |v(x)]|?)de < F~(v; R) +n,
D\R

where we have used (A4z) and (5.5). Consequently
F~(v;D) <sup{F (v;R): RER(Q), RC D} +n,
and letting n — 07 we obtain one inequality in (5.4). To show the opposite inequality, note that if {v;} C

Li(D;RY) Nker A, with vy, — v in L9(D;R?), then the restriction of vy to R belongs to LI(R; R?) Nker A, and
v, — v in LI(R;R?). Therefore

F~ (v <hm1nf/f (x/eny,, vi(x)) d:E<hrn1nf/ f(x/en,,vi(x)) do

and by taking the infimum over all such sequences we get that
F~(v;R) < F~ (v; D), (5.6)
and in turn (5.4) holds.

In order to prove that F~ (v;-) is the trace of a Radon measure, as it is usual it suffices to prove subadditivity
for nested sets (see [3,21]). Let B CC C CC D. By (5.4) for fixed n > 0 we find R € R(f2) such that R C D
and

F (v;D) <n+F (v;R).
Construct Ri, Ry € R(2) with

R C Ry URs, R1CD\§ and Ry C C.
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By (5.6) we have
F~(v;D) <n+F (v;R) <n+F (v; R1 URy). (5.7)

By the definition of I'-convergence and Lemma 5.1 there exist vy, € LY(R1;RY) Nker A and wy, € LI(R2; R?) N
ker A, with v, — v in LI(R;;R?) and wy, — v in L(Rg;R?), such that

F~(v;R1) = lim Fz, (vg; Ra), F~(v; Rg) = lim Fz, (wg; Re), (5.8)

k—oo k k—oo k
where {&,, } is a subsequence of {e,,} and {v;}, {ws} are g-equi-integrable over Ry and Rs, respectively. Let
6; be smooth cut-off functions which are equal to 1 on B and 0 on D \ C, and such that [{0 < 0; < 1}| — 0 as
j — oo. Set R
Vik = (1 — Hj)’Uk + 0w,

For j fixed

Y 09 09
V= (1 — 0. . _ (@ J (@) J
AV = (1 — 60;) Avy, + 0; Awy, ;A Ok o + ;A w5t =0
in W~59(R; U Ry; R!) strong, because ||vg — Wi||lyy-1.0(p\@ry — 0 as k — oo. Diagonalize to get V= ‘A/ij
such that R .
V; = v in LRy U Ry;RY), AV; — 0 in W™(Ry U Ry RY).
By Lemma 5.1 we can find V; € L9(R; U Re; RY) Nker A such that V; — v in LY(Ry U Ry; R?) and

lim inf / f (x/gnk,,vj(:c)) dz < liminf / f (:v/énk ,vj(:c)) dz.
R1URs ! R1UR; ’

J—0o0 J—0o0

Consequently, by (5.7)

J—00

F (v;D)<n+F (RiURy; D) < 77+1iminf/ f (x/énk,,Vv(x)) dz
RiUR> ’

gn—f—hminf/ f(x/énk ,‘A/j(x)) dr < n+limsup/ f (x/énk,,vkj(x)) dx
R1UR3 ! Ry !

J—00 j—o0
+ hmsup/ f (x/énk,,wkj (x)) dx + limsup/ C(1+ |wg, (x)]7 + vk, (2)|7)
j—oo JRy ! j—oo J{0<6;<1}

<n+F (v;R)+F (v;Re) <n+F (v;D\ B) +F (v;0),

where we have used (5.6) and the fact that in (5.8) inferior limits are actually limits. It now suffices to let
n—07.
O

Lemma 5.6. Under conditions (A;)-(Az), for LN a.e. xo € Q we have
dF~(v;)
dcyN

Proof of Lemma 5.6. We divide the proof in three steps.
Given e, — 07, let {e,, } be as in Lemma 5.3. In order to simplify the notations, in the proof of this lemma
we will represent {ey, } simply by {c}.

Step 1. We claim that

(20) = fhom(v(20)).

F~(v(- —z0); D+ x0) = F (v; D).
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The proof is similar to the one of Lemma 3.9 in [11]. We present it here for the convenience of the reader. Let
ve € LY(D;R%) Nker A be such that v. — v in L(D;R?) and

F~(v;D) = limi(r)lf}"a(ve;D). (5.9)
Consider the sequence z. := [xo/¢] € ZV, so that z. := z. € converges to z¢. Here [2] := ([21], ... [2n]), With [2]

denoting the integer part of z; € R. By the periodicity of f,

FwaD) = [ 1T ) de= [ (L= o

Let B CC D. For ¢ sufficiently small we have that D + x. D B + z¢, and thus

Fe(ve; D) 2/

B4x¢

f (g,va(y - xa)) dy. (5.10)

Since v. (- — xc) — v(- — 2¢) in LI(B + x0; R?), and v (- — 2.) € LI(B +z0; R?Y) Nker A, by (5.9, 5.10), we obtain
F~(v;D) > F~(v(- —xg); B+ o).

By letting R /' D + xo, R € R(Q), setting B := R — xy above, we obtain by (5.4)
F~(v;D) > F~(v(- — x0); D + x0).

The converse inequality follows in a similar way.
Step 2. Next, we show that

dF~ (v;-)

TN (20) > from(v(z)) for LN ae. 29 € Q.

Fix 2o € Q such that

1
lim _N/Q< o) et =0 (5.11)

r—0t 7

and
dF~(v;-) o1 x
T e = i it [ (So0er(o) de <0

where we have used Step 1 and Lemma 5.5, and where we have chosen the radii » — 07 such that
F~(v(- 4+ 20); 0(rQ)) = 0. Here v., € LI(rQ;R?) Nker A and v, — v(- + x9) in LI(rQ;R?) as e — 0%,
Then

dF~(v;-) e r

Sapw o) =t it |1 (2ot + e ) dy
where we (y) := ve (1Y) — v(z0). As in the proof of Lemma 3.5, we have that w., — 0 in L9(Q; R?) if we first
let ¢ — 0 and then r — 0T. Diagonalize to get Wy, € L9(Q;R%) Nker A such that W — 0 in LY(Q;RY),

%(%) = lm J flsry, v(zo) +wi(y)) dy,

Q
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and where s := 1/e;, — oo. By Lemma 5.1, applied to the Carathéodory function h(z,v) := f(z,v(xo) + v),

there exists a g-equi-integrable sequence {wk} c L{ per(RN ;RY) Nker A such that

wy — 0 in LY(Q;RY), /wkdy:O,
Q

and
1iklggf/Qf(8k Yy, v(wo) + wi(y)) dy < kliII;O/Qf(Sk%U(ﬂUO)+U3k(y))dy-

Consequently

dF~(v;)
dcy

71— 00

(x )>hm1nf/ f(sky,v(zo) +wi(y ))dy>hm1nfhm1nf/ f(sky,v(zo) + 0:(v)wi(y)) dy,

where 0 < 6; < 1 are smooth cut-off functions with compact support in @ such that 6; =1 in (1 — 1/4)Q, and
where we used the g-equi-integrability of {wy} and (Az). Then 6; wy — 0 in L9(Q;R?) as k — oo and i — oo,
in this order, and

lim lim A(6;wg) =0 in W h9(Q;RY.

1—00 k—o00
Diagonalize to get U; := 0; wy, extended by zero outside @, such that U; — 0 in LI(Q;R?), AU; — 0 in
W-L4(Q;RY) as i — oo, and

hmmfhmmf/ f(sy,v(zo) + 0:(y)wr(y ))dy—ligioglf/Qf(ski,v(xo)+Ui(y))dy

Thus

dF~ (v;- im inf ;
L) o) 2B e’ (x’”("”o”Ui (§>) “

1
> liminf — f (x,v(xo) + U; (i>) dx
1—00 Ski ([Ski]+1)Q Ski

1
—limsup — f (m,v(xo) + U; <i)> dz,
i—00 skfi ([Skl]""l)Q\sle ski

where [sg,] denotes the integer part of si,. We claim that the last limit is zero. Indeed

1

x
_N/ f (fﬂa”(ﬂfo)JrUz‘ <—)> dﬂf:/[sk_]ﬂ) F(skiyv(wo) + Ui(y)) dy
Sk J ([sk; 14D Q\sw, Q Sk — Qe

Since ([sk;] +1)/sk, — 1, we have that

|- (2422 1o

and thus the claim follows from the g-equi-integrability of {U;} and (A3). Hence, setting
m; = 1/sg,, n; :=[sk,] +1 €N,

we obtain

dF~(v;- 1
%(ﬂfo) 2> liminf o f(z,v(xo) + Ui(m; x)) dx = ligioglf/Qf(niy, v(wo) + Ui(n; miy)) dy.
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We claim that
Ui(nim;-) =0 in LY(Q;RY),  AUj(nim;-) — 0 in W H9(Q;RY) (5.12)

as ¢ — oo. Assuming that the claim holds, by Lemma 5.1 there exists a g-equi-integrable sequence {V;} C

L‘f_per (RV:R%) Nker A such that

V; =0 in LYQ;R%), /Vidy:O,
Q
and

dF = (v;- - imi
L ) 2 tmint [ 7 . vta0) + Ui i) dy > i [ ] g vta0) + Vi) dy
71— 00 Q 71— 00 Q

—tminf L [ (a:,vcno) Ty (n%)) de > fuom(v(z0)),
niQ i

1— 00 .
n’L (2

and where we have used the facts that

1 1
V; (—N ) € LY xRV RY) Nker A, / V; (—N y) dy = 0.

Thus it remains to show (5.12). If ¢ € C°(Q) then

1 T
/QUi(m- miy) (y) dy = O /n o Ui(z) ¢ (m mi) dz

_ m (/Q Ui(z) o(z) dz +/¢gUi(Z) (<P (mfm) - <P(9:)) da:)7

where we have used the fact that U;(x) = 0 in n;m; Q \ Q. Since U; — 0 in L(Q;R?) and n; m; — 1 the first
integral on the right hand side of the previous inequality tends to zero as ¢ — co. By Holder’s inequality

o) (o (55) —ot@) ds| < (swpliilinc) (/Q‘w(nm) o] d:c)l/d.

Since ¢ is bounded we can apply Lebesgue Dominated Convergence Theorem to conclude that the right hand
side approaches zero as i — oo. In a similar way we can show that

AU;(n;m;-) — 0 in W H(Q;RY) as i — oo.

We omit the details.
Step 3. To conclude the proof of the lemma it remains to show that

dF~(v;)

TN (20) < fhom(v(xo)) for LN ae. z € Q.

By Remark 1.8(i), for any fixed n > 0 we may find k € N, w € sz’per(RN;Rd) N ker A such that ka wdzr =0

and
1

7 L @ ele0) & wl@) do < fuom(v(a)) + (513)
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For any fixed r > 0 and for any n € N, let u,, ,.(z) :== w(znk/r). Then u, , € L>®(rQ;R%) Nker A, u, , — 0 in
Li(rQ;R%) as n — oo, and by Step 1

dF~(v;-) P4 w)ir@) g e x
Tapy () = g, T sttt /(2

Ju(zo + ) + ug(x)) dx

= lim inf lim inf/ f(nky,v(xo +ry)+w(nky)) dy,
Q

r—0+ mn—oo
where &, , :=r/nk. Since f(-,v) is @Q-periodic, there exists ¢ > 0 such that if |[v — v(x¢)| < ¢ then

sup [f(s,v+w(s)) — f(s,v(z0) +w(s))| <n.
SERN

Setting Ers5 :={y € Q : |v(zo + ry) — v(zo)| > ¢}, we deduce that

dF~(v;- . .
%(xo) <n+ hmsuphmsup/ f(nky,v(xo) +w(nky)) dy
r—0+ n—oo Q

+1imsuplimsup/ C (14 |v(xo+ry)|?+ |w(71ky)|q) dy
E,s

r—0+ n—00

=n-+ LN/ f(y,v(zo) +w(y)) dy < from(v(z0)) + 21,
N Jro

where we have used (5.13), the kQ-periodicity of the function h(y) := f(y,v(zo) + w(y)), the equi-integrability
of {|uc|?}, and the fact that (5.11) entails

Tim [{y € Q: vl +ry) —vlwo) = 6})| = 0.

It suffices to let n — 0.

Proof of Theorem 1.7. We claim that for any &, — 0T

Fhom(; D) =T —liminf F. (-; D).

n—oo

By Lemmas 5.5 and 5.6 we always have

Fhom (3 D) > T — 1ikm inf 7., >TI —liminf 7 (D).

n—oo
Thus assume for contradiction that that there exists e, — 07 and v € LY(D; R?) Nker A such that

Fhom (v; D) > T' — liminf F,  (v; D).

Let {v,} C LY(D;R%) Nker A be such that v, — v in LY(D;R?) and

Fhom(v; D) > liminf F. (v,; D),

n—oo

and choose a subsequence {e,, } such that

Fhom(v; D) > lim F., (vp,; D).
k—oo k
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Then, by the previous lemmas, we can extract a further subsequence {e,, } such that
J

Fhom(v; D) =T — liminf F, (v D) < lim F., (vnkj;D) < Fhom(v; D),

Jj—00 Jj—00

which is a contradiction and proves the claim.
Hence it remains to show that, when (A3) holds, for any &, — 0% and v € LY(D;R?) Nker A

I —limsup F., (v; D) < Fhom(v; D).

n—oo

By taking w,, = v and using (As) we get

I’ —limsup F¢, (v; D) < limsup Fe, (wn; D) < C/ (lo(z)]? + 1)da
D

n
n—oo n—oo

Hence for any sequence {v,} C LY(D;R?%) Nker A such that v, — v in LI(D;R9) and

lim sup £, (vn; D) < c/ (Jo()]? + 1)da
D

n
n—oo

by (As3) we get that sup,, ||vn|[La(py < L < 0o, where the constant L depends only on the constants in (Asz), (43),
and on |[v[|g¢(qre). Using the notation introduced in the proof of Lemma 5.3, we conclude that

I' — limsup F, (v; D) =T'(dg) — limsup F,, (v; D). (5.14)
By Remark 5.4 and by Lemma 5.6, for any subsequence {e,,} of {e,} there exists a subsequence {Enkj}
(depending on D) such that
I'— lim 7, (U;D) = Fhom(v; D).

j—oo
By (5.14) this implies that
I'(dy) — hm fank (v; D) = From(v; D).

We can now apply the second part of Pr0p051t10n 2.4 in the metric space (L B,dy) to conclude that

I'(dp) — lim F,(v; D) = From(v; D).

n—oo

O

Corollary 5.7. Under hypotheses (A1)-(As) the function fnom is A-quasiconver and the following asymptotic
formula holds

Jhom(§) = lim TLN inf{/TQ fz, & +v(x))de: ve Ll per(RN;Rd) Nker A, v(z)de = 0} . (5.15)

T—+oco TQ

Proof of Corollary 5.7. It may be shown easily, via a diagonalization procedure and in view of the coercivity
condition (As), that Fhom(-; Q) is Li-sequentially weakly lower semicontinuous in ker A. In particular this
entails A-quasiconvexity for fhom. Indeed, fix v € R? and w € L{. per(RN RY) Nker A, with [, w QW y)dy =0, and

define w, (z) := w(nz). Then w, € LI(Q;R?) Nker A, w, — 0 in LI(Q;R?), and so

fhom (V) = From(v; Q) < liminf Fom(v + wy; Q) = hmmf/ Srhom (v + w(nz)) dr = / Shom (v +w(x)) de.

n—oo n—oo
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Finally, using Theorem 1.7 (As), and recalling Remark 5.2, we conclude that
Jhom (v) = min{fhom(v +w;Q): we L‘Lper(RN;Rd) N kerA,/ w(z)de = 0}
Q

= lir% inf {fe(v +w;Q): we L?Lper(RN;Rd) Nker A, /Qw(:n) dx = 0} ,

£—

and (5.15) follows by setting 7' = 1/¢ and changing variables in the last expression. O

As a corollary of Theorem 1.7, we obtain the following result via the same choice of the underlying operator A
as in the proof of Theorem 1.5.

Theorem 5.8 (Homogenization with constraint on the divergence). Assume that conditions (A1) — (As) hold,
with d = N2, and let F, be defined by

x
Fo(u; D) = /D f(g, Vu) da
on functions u € WH4(Q; RYN) such that divu = 0. Then the T-limit
F(u; D) :=T(LY) — lir% F.(u; D) = / fhom(Vu)dx
E— D

exists on functions u € WH4(Q; RYN) such that divu = 0, where

k-per

1
Jhom(v) = lirellf\‘l v inf{ fl@, v+ Vw(z))de: we W e (RV;RY), divw = 0}
kQ
for allv € RN,

APPENDIX
We prove that in Remark 1.2(iii) in the introduction
b

F(v;(a,b)) = F((v1,v2); (a, b)) = / (™ (v1) + v3) du, (5.16)

a

where 1**(v1) is the convex envelope of

. v +1)2if v1 >0

v1) :==min {(v; — 1), (v; +1)?} = ( ’

V(v {or = 1% b+ )7 {(v11)2 if v < 0.

Indeed, if v — vy in L?(a,b), v} — vy in L?(a,b) and (v}) — 0 in H~'(a,b) then the function vs is constant
and Jensen’s inequality yields

b b b b
liminf/ f(v?,vg)da:ZIiminf/ [(v]) + (v5)?] da:Zliminf/ w(v?)derliminf/ (v9)? dx

n—00 n—oo

b
2/ ¥** (v1) d + (v2)2(b — a).
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The arbitrariness of the sequence {(v},v})} allows us to conclude that

b
Flo: (a,b))z/ W™ (v1) d + (v2)2(b — a).

Conversely, suppose that if v is smooth, v; € L?(a,b), and |{z € (a,b) : vi(z) =0} =0, v € R, then

Fo: (a,b))g/ V(1) da + (v2)2(b — a). (5.17)

Then this inequality remains true for v; € L?(a,b), va € R arbitrary, because we may approximate v, in L?
strong by a sequence {v'} C L2(a,b) N C*(a,b), |{x € (a,b) : v} (z) =0} = 0, and

b
v — F((v1,v2); (a,b)), v r—>/ Y(vy)dx

are, respectively, L?-weak lower semicontinuous and L2-strong continuous. Once we establish (5.17) for (v, v2) €
L?(a,b) x R then (5.16) follows because, once again, F((-,v2); (a,b)) is L?-weak lower semicontinuous.
Fix now vy € L2(a,b) N C*(a,b), with [{z € (a,b) : vi(z) = 0}| =0, and let vo € R, § > 0 be fixed. Set

As = {z € (a,b) : (vi(x) —1)* < (vi(z) + 1)? = 5},
AT ={z € (a,b): (v1(2) = 1)* > (v (@) +1)° + 6}

If for all § > 0 Ay = 0 then (vi(z) —1)? > (v1(z)+1)? for every z € (a,b) and we choose w,, ¢ Q with w,, — vs.
Then

n—oo n—oo

b
F((v1,v2);(a,b)) < hmmf/ fv,wy)de = liminf/ [(v1(2) + 1) + (wn)?] dx

< / Y(v1) dz + (v2)%(b — a).

Similary (5.17) holds if for all § > 0 Af = (). Thus assume that for § > 0 sufficiently small Ay # 0 # Af.
Choose a cut-off function @5 € C°((a, b); [0, 1]) such that p5 =1 in Ay, s =0 in Af, and let 2, € Q, w,, ¢ Q,
be such that with w,, z, — v2. Define

05" (@) = 5(x) 2 + (1 = ps(@)) w

n,8\/

Since (v5"°) = ¢§(z)(zn — wy), it is clear that

o~

— — ! =
(Slirgl+ nlgr;OHvQ val|pe = 11rg)1+ Jim (5 || r-1 = 0.
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‘We have

F((v1,v2); (a,b)) < liminfliminf [ f(vy,v0%) da

§—0+ n—oo a

—liminfliminf{ f(vl,zn)da:Jr/ f(vl,wn)da:Jr/ f(q;{l’vgv‘s)dm}
Ay A3 (@b)\(45 UA])

§—0t n—oo

< liminf lim inf /
§—0+t n—oo Ay

:mmm{éwgw@g+@g%m+cmwn@guAp@

§—0t

fw<v1>4—<zn>2]da:+-j/

+
Aé

wwﬂ+a%wa+cumw\mﬁuAp@

=/meMmm%—w

where we have used the fact that

[(a,b) \ (Ay UAD)| = |{z € (a,b) : |(1 —1)* = (v1 + 1)*| < 6} = |{z € (a,b) : |vi(z)| < §/2}]
— [{z € (a,b) : vi(z) =0} =0

as § — 0T.
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